初中数学幂运算完全平方平方差
- 格式:doc
- 大小:203.50 KB
- 文档页数:4
2021-2022学年七年级数学【赢在寒假】同步精讲精练系列第1章整式的乘除第03讲平方差与完全平方公式【考点梳理】考点1:完全平方公式1.2222)(bab a b a +±=±公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。
ab b a ab b a b a 2)(2)(2222-+=-+=+ab b a b a 4)()(22-+=-222)()]([)(b a b a b a +=+-=--222)()]([)(b a b a b a -=--=+-完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。
2.三项式的完全平方公式:bcac ab c b a c b a 222)(2222+++++=++考点2:平方差公式22))((b a b a b a -=-+注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。
右边是相同项的平方减去相反项的平方。
如:))((z y x z y x +--+【题型归纳】题型一:完全平方公式1.(2022·全国·七年级)下列关系式中,正确的是()A .(a ﹣b )2=a 2﹣b 2B .(a +b )(﹣a ﹣b )=a 2﹣b 2C .(a +b )2=a 2+b 2D .(﹣a ﹣b )2=a 2+2ab +b 2【答案】D 【分析】根据完全平方公式判断即可.【详解】解:A 选项,原式=a 2﹣2ab +b 2,故该选项计算错误;B 选项,原式=﹣(a +b )2=﹣a 2﹣2ab ﹣b 2,故该选项计算错误;C 选项,原式=a 2+2ab +b 2,故该选项计算错误;D 选项,原式=[﹣(a +b )]2=(a +b )2=a 2+2ab +b 2,故该选项计算正确;故选:D .【点睛】本题考查了完全平方公式,掌握(a ±b )2=a 2±2ab +b 2是解题的关键.2.(2022·福建·厦门市第十一中学八年级期末)运用完全平方公式()2222a b a ab b -=-+计算212x ⎛⎫- ⎪⎝⎭,则公式中的2ab 是()A .12x B .﹣x C .x D .2x【答案】C 【分析】运用完全平方公式计算,然后和()2222a b a ab b -=-+对比即可解答.【详解】解:2222111122224x x x x x ⎛⎫⎛⎫-=-⨯+=-+⎪ ⎪⎝⎭⎝⎭对比()2222a b a ab b -=-+可得-2ab =-x ,则2ab =x .故选C.【点睛】本题主要考查了完全平方公式,理解完全平方公式的特征成为解答本题的关键.3.(2022·广东东莞·八年级期末)如果x 2﹣3x +k (k 是常数)是完全平方式,那么k 的值为()A .6B .9C .32D .94【答案】D 【分析】根据完全平方公式解答即可.【详解】解:∵x 2-3x +k (k 是常数)是完全平方式,∴x 2-3x +k =(x -32)2=x 2-3x +94,∴k =94.故选:D .【点睛】本题主要考查了完全平方公式的运用;其中两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.4.(2021·黑龙江·绥棱县克音河乡学校八年级期末)要使24x kx ++是完全平方式,那么k 的值是()A .4k =±B .4k =C .4k =-D .2k =±【答案】A 【分析】根据完全平方公式:222)2(a ab b a b ±+=±进行求解即可.【详解】∵24x kx ++是完全平方式,∴2()42k =,解得:4k =±,故选:A .【点睛】本题考查了完全平方式,解题的关键是掌握常数项是一次项系数一半的平方.5.(2022·辽宁庄河·八年级期末)若2a b +=-,3ab =,则代数式22a ab b -+的值是()A .5-B .13C .5D .9【答案】A 【分析】将2a b +=-两边平方,利用完全平方公式化简,把3ab =-代入求出22a b +的值,即可确定出所求式子的值.【详解】解:将2a b +=-两边平方得:222()24a b a b ab +=++=,把3ab =代入得:2264a b ++=,即222a b +=-,则22235a ab b -+=--=-,故选:A .【点睛】本题考查了完全平方公式,求代数式的值,解题的关键是熟练掌握完全平方公式.6.(2022·重庆·八年级期末)如果216x mx ++是完全平方式,那么m 的值是()A .8B .4C .4±D .8±【答案】D 【分析】先写出22816(4)x x x ±+=±,进一步求出m 的值,即可求解.【详解】解:∵22816(4)x x x ±+=±,且216x mx ++是完全平方式,∴8m =±;故选:D 【点睛】本题主要考查了完全平方式,掌握满足完全平方式的情况只有222a ab b ++和222a ab b -+两种,两种情况的熟练应用是解题关键.7.(2022·广东·塘厦初中八年级期末)下列运算中,结果正确的是()A .824a a a ÷=B .()222a b a b +=+C .()2242a b a b =D .()()2122a a a -+=-【答案】C 【分析】根据同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式的计算法则计算求解即可.【详解】解:A 、826a a a ÷=,计算错误,不符合题意;B 、()2222a b a ab b +=++,计算错误,不符合题意;C 、()2242a b a b =,计算正确,符合题意;D 、()()2212222a a a a a a a -+=+--=+-,计算错误,不符合题意;故选C .本题主要考查了同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式,熟知相关计算法则是解题的关键.8.(2022·北京·八年级期末)已知一个正方形的边长为a+1,则该正方形的面积为()A.a2+2a+1B.a2-2a+1C.a2+1D.4a+4【答案】A【分析】由题意根据正方形的面积公式可求该正方形的面积,再根据完全平方公式计算即可求解.【详解】解:该正方形的面积为(a+1)2=a2+2a+1.故选:A.【点睛】本题主要考查列代数式,解题的关键是熟练掌握正方形的面积公式以及完全平方公式.9.(2022·甘肃·金昌市龙门学校八年级期末)若x2+mxy+25y2是一个完全平方式,那么m的值是()A.±10B.-5C.5D.±5【答案】A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x2+mxy+25y2=x2+mxy+(5y)2,∴mxy=±2x×5y,解得:m=±10.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.题型二:平方差公式11.(2022·全国·七年级)已知(2x+3y)2=15,(2x﹣3y)2=3,则3xy=()A.1B.32C.3D.不能确定【分析】根据平方差公式即可求出答案.【详解】解:2(23)15x y += ,2(23)3x y -=,22(23)(23)12x y x y ∴+--=,(2323)(2323)12x y x y x y x y ∴+-+++-=,6412y x ∴⋅=,332xy ∴=,故选:B .【点睛】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.12.(2022·全国·七年级)下列各式,能用平方差公式计算的是()A .(2a +b )(2b ﹣a )B .(﹣a ﹣2b )(﹣a +2b )C .(2a ﹣3b )(﹣2a +3b )D .(113a +)(﹣113a -)【答案】B 【分析】根据平方差公式为22()()a b a b a b +-=-逐项判断即可.【详解】A .既没有相同项,也没有相反项,不能用平方差公式进行计算,故本选项不符合题意;B .原式[][]()2()2a b a b =---+,符合平方差公式,故本选项符合题意;C .原式(23)(23)a b a b =---,只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;D .原式11(1)(1)33a a -++只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;故选:B .【点睛】本题考查平方差公式,掌握平方差公式为22()()a b a b a b +-=-是解答本题的关键.13.(2022·河南川汇·八年级期末)如图,在边长为()x a +的正方形中,剪去一个边长为a 的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x ,a 的恒等式是().A .()()22x a x a x a -=-+B .()222x ax x x a +=+C .()()222x a a x x a +-=+D .()()222x a x a a x +-=+【答案】C 【分析】根据公式分别计算两个图形的面积,由此得到答案.【详解】解:正方形中阴影部分的面积为22()x a a +-,平行四边形的面积为x (x +2a ),由此得到一个x ,a 的恒等式是()()222x a a x x a +-=+,故选:C .【点睛】此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键.14.(2021·福建同安·八年级期中)若02021a =,2201920212020b =⨯-,202020212332c ⎛⎫⎛⎫=-⨯ ⎪⎪⎝⎭⎝⎭则下列a ,b ,c 的大小关系正确的()A .a b c <<B .a c b<<C .b a c<<D .c b a<<【答案】C 【分析】利用零次幂的含义求解a 的值,利用平方差公式求解b 的值,利用积的乘方的逆运算求解c 的值,再比较大小即可.【详解】解: 020211,a ==()()222220192021202020201202012020=2020120201,b =⨯-=-+---=-()202020212020202023233331,3232222c ⎛⎫⎛⎫⎛⎫=-⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭而311,2-<<,b ac \<<故选C 【点睛】本题考查的是零次幂的含义,平方差公式的应用,积的乘方运算的逆运算,先计算,,a b c 的值再比较大小是解本题的关键.15.(2022·黑龙江肇源·七年级期末)下列各式中,能用平方差公式计算的是()A .(a +b )(﹣a ﹣b )B .(a +b )(a ﹣b )C .(a +b )(a ﹣d )D .(a +b )(2a ﹣b )【答案】B 【分析】根据平方差公式(a +b )(a ﹣b )=a 2﹣b 2对各选项分别进行判断.【详解】解:A 、(a +b )(﹣a ﹣b )=﹣(a +b )(a +b )两项都相同,不能用平方差公式计算.故本选项不符合题意;B 、(a +b )(a ﹣b )存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C 、(a +b )(a ﹣d )中存在相同项,没有相反项,不能用平方差公式计算.故本选项不符合题意;D 、(a +b )(2a ﹣b )中存在相反项,没有相同项,不能用平方差公式计算.故本选项不符合题意;故选:B .【点睛】本题考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.16.(2022·天津红桥·八年级期末)下列计算正确的是()A .22224a b a b +=+()B .2225225104x y x xy y -=-+()C .2221122x y x xy y-=-+()D .221111123439x x x +=++()【答案】D 【分析】根据完全平方公式逐项计算即可.【详解】解:A.22224+4a b a ab b +=+(),故不正确;B.2225225204x y x xy y -=-+(),故不正确;C.2221124x y x xy y -=-+(),故不正确;D.221111123439x x x +=++(),正确;故选D 【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a ±b )2=a 2±2ab +b 2是解答本题的关键.17.(2021·辽宁铁岭·八年级期末)若2210a b -=,2a b -=,则a b +的值为()A .5B .2C .10D .无法计算【答案】A 【分析】利用平方差公式:()()22a b a b a b -=+-进行求解即可.【详解】解:∵2a b -=,()()2210a b a b a b -=+-=,∴5a b +=,故选A .【点睛】本题主要考查了平方差公式,熟知平方差公式是解题的关键.18.(2022·吉林通榆·八年级期末)从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.b(a-b)=ab-b2D.a2-b2=(a+b)(a-b)【答案】D【分析】观察图1与图2,根据两图形阴影部分面积相等,即可写出一个正确的等式.【详解】解:根据图形得:图1中阴影部分面积=a2-b2,图2中阴影部分面积=(a+b)(a-b),∴a2-b2=(a+b)(a-b),故选D.【点睛】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.19.(2021·河南原阳·八年级期中)下列各式中不能用平方差公式计算的是()A.(x-y)(-x+y)B.(-x+y)(-x-y)C.(-x-y)(x-y)D.(x+y)(-x+y)【答案】A【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.【详解】解:A、(x−y)(−x+y)=−(x−y)(x−y),含y的项符号相同,含x的项符号相同,不能用平方差公式计算,故本选项正确;B、含x的项符号相同,含y的项符号相反,能用平方差公式计算,故本选项错误;C、含y的项符号相同,含x的项符号相反,能用平方差公式计算,故本选项错误;D、含y的项符号相同,含x的项符号相反,能用平方差公式计算.故本选项错误;【点睛】考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(2021·黑龙江·哈尔滨市第四十九中学校八年级期中)如图分割的正方形,拼接成长方形的方案中,可以验证()A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .222()2a b a ab b -=--【答案】A【分析】对图形中阴影部分的面积进行计算即可得到相关的等式.【详解】解:如图所示,右边阴影部分面积为:22a b -,左边阴影部分面积为:()()a b a b +-,由阴影部分面积相等可得:()()22a b a b a b +-=-,故选A .【点睛】本题考查了平方差公式的几何背景.分别表示出图形阴影部分的面积是解题的关键.【双基达标】1.(2021·福建南安·八年级期中)若x 2+kx +25是一个完全平方式,则k 的取值是()A .5B .±5C .10D .±10【答案】D【解析】两个完全平方式:222a ab b ±+,利用完全平方式的特点可得答案.【详解】解: x 2+kx +25225,x kx =++而x 2+kx +25是一个完全平方式,2510,k \=贝=故选D【点睛】本题考查的是完全平方式,利用完全平方式的特点求解完全平方式中的字母系数是解题的关键.2.(2021·四川江油·八年级阶段练习)已知x ²-2mx +9是完全平方式,则m 的值为()A .±3B .3C .±6D .6【答案】A【解析】【分析】根据完全平方公式的形式,可得答案.【详解】解:已知x 2-2mx +9是完全平方式,∴m =3或m =-3,故选:A .【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏解.3.(2021·河南·郑州外国语中学九年级期中)无论a ,b 为何值代数式226112a b b a +++-的值总是()A .非负数B .0C .正数D .负数【答案】C【解析】【分析】把含a 的放一块,配成完全平方公式,把含b 的放一块,配成完全平方公式,根据平方的非负性即可得出答案.解:原式22(21)(69)1a ab b =-+++++22(1)(3)1a b =-+++,2(1)0a - ,2(3)0b +,22(1)(3)10a b ∴-+++>,即原式的值总是正数.故选:C .【点睛】本题考查了配方法的应用,解题的关键是掌握对代数式进行正确变形.4.(2021·全国·八年级课时练习)下列各式中,不能用平方差公式分解因式的是()A .2249-y x B .4149-x C .42--m n D .21()94+-p q 【答案】C【解析】【分析】分别利用平方差公式分解因式进而得出答案.【详解】解:A 、2249-y x =(y +7x )(y −7x ),可以用平方差公式分解因式,故此选项错误;B 、4149-x =(17+x 2)(17−x 2),可以用平方差公式分解因式,故此选项错误;C 、−m 4−n 2,不可以用平方差公式分解因式,故此选项正确;D 、21()94+-p q =(12p +12q +3)(12p +12q −3),可以用平方差公式分解因式,故此选项错误;故选:C .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.5.(2021·湖南双峰·七年级期中)下列多项式乘法,能用平方差公式进行计算的是()A .()()a b a b --+B .(2x 3y)(2x 3)z +-C .()()x y x y ---D .()()m n n m --【答案】C【解析】【分析】利用平方差公式的结构特征判断即可.【详解】解:A.()()a b a b --+不能用平方差进行计算,故不符合题意B.(2x 3y)(2x 3)z +-不能用平方差进行计算,故不符合题意C.()()x y x y ---能用平方差公式进行计算的是22()()x y x y y x ---=-,D.()()m n n m --不能用平方差进行计算,故不符合题意故选:C .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.(2022·全国·七年级)已知:13x x +=,则221x x+=____.【答案】7【解析】【分析】两边同时平方,再运用完全平方公式计算即可.【详解】解:13x x += ,21()9x x∴+=,22129x x ++=2217x x ∴+=,故答案为:7.【点睛】本题考查了完全平方公式的运算,解题关键是熟练运用完全平方公式进行运算.7.(2022·内蒙古·科尔沁左翼中旗教研室八年级期末)若a +b =8,ab =-5,则()2a b -=___________【答案】84【解析】【分析】根据完全平方公式的变形即可求解.【详解】∵a +b =8,ab =-5∴()2a b -=()24a b ab +-=64-4×(-5)=84故答案为:84.【点睛】此题主要考查代数式求值,解题的关键是熟知完全平方公式的变形.8.(2022·全国·七年级)若(x 2+y 2+1)(x 2+y 2﹣1)=48,则x 2+y 2=___【答案】7【解析】【分析】首先利用平方差公式将已知化简,进而得出x 2+y 2的值.【详解】解:因为(x 2+y 2+1)(x 2+y 2﹣1)=48,所以(x 2+y 2)2﹣12=48,所以(x 2+y 2)2=49,x 2+y 2=±7(负值舍去).故答案为:7.【点睛】本题考查了平方差公式,熟记公式是解题的关键.9.(2022·全国·七年级)已知有理数x ,y 满足x +y 12=,xy =﹣3(1)求(x +1)(y +1)的值;(2)求x 2+y 2的值.【答案】(1)112-(2)164【解析】【分析】(1)(x +1)(y +1)=xy +(x +y )+1,再整体代入计算即可求解;(2)将x 2+y 2变形为(x +y )2-2xy ,再整体代入计算即可求解.(1)(1)解:(1)(x +1)(y +1)=xy +(x +y )+1=-3+12+1=112-;(2)(2)解:x 2+y 2=(x +y )2-2xy =164+,=164.【点睛】本题考查了完全平方公式,多项式乘多项式,解题关键是整体思想的应用.10.(2021·福建同安·八年级期中)计算:(1)()22436310a a a a ⋅+--(2)()()()211a a a a +-+-【答案】(1)0;(2)21a +【解析】【分析】(1)分别计算同底数幂的乘法,积的乘方运算,再合并同类项即可;(2)先计算多项式乘以多项式,结合平方差公式进行简便运算,再合并同类项即可.【详解】解:(1)()22436310a a a a ⋅+--6669100a a a =+-=(2)()()()211a a a a +-+-2221a a a =+-+=21a +【点睛】本题考查的是幂的运算,合并同类项,整式的乘法运算,掌握“利用平方差公式进行简便运算”是解本题的关键.【高分突破】1.(2021·黑龙江·无八年级期末)已知x +y =4,xy =3,则x 2+y 2的值为()A .22B .16C .10D .4【答案】C【解析】【分析】根据完全平方公式变形,整体代入求值即可.【详解】解:()2222242316610x y x y xy +=+-=-⨯=-=.故选择C .【点睛】本题考查式子的值,求代数式的值,掌握完全平方公式变形的方法是解题关键.2.(2022·陕西陇县·八年级期末)下列运算正确的是()A .428a a a =·B .224()xy xy =C .623y y y ÷=D .222()2x y x xy y --=-+-【答案】D【解析】【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案.【详解】解:A 、426=a a a g ,故此选项错误;B 、2224()xy x y =,故此选项错误;C 、624÷=y y y ,故此选项错误;D 、222()2x y x xy y --=-+-,正确;【点睛】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键.3.(2021·四川省德阳市第二中学校八年级阶段练习)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是()A.a+b B.(a-b)2C.ab D.a2-b2【答案】B【解析】【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积-矩形的面积即可得出答案.【详解】解:图1是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2-4ab=(a-b)2.故选:B.【点睛】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.4.(2021·河南·永城市教育体育局教研室八年级期末)下列等式中,一定成立的是()A.(x - y)2 = (y - x)2B.(x + 6)(x - 6) = x2 - 6C.(x + y)2 = x2 + y2D.(x - y)2 = x2 + 2xy + y2【解析】【分析】分别根据完全平方公式和平方差公式判断各选项即可.【详解】解:A .22()()x y y x -=-成立,故选项A 正确;B .2(6)(6)36x x x +-=-,选项B 不成立;C .222()2x y x xy y +=++,选项C 不成立;D .222()2x y x xy y -=-+,选项D 不成立;故选:A【点睛】本题主要考查了乘法公式的应用,熟练掌握平方差公式和完全平方公式是解答本题的关键.5.(2021·全国·七年级期中)已知M 、N 表示两个代数式,M =(x +1)(x ﹣1)﹣2(y 2﹣y +1),N =(2x +y )(2x ﹣y ),则M 与N 的大小是()A .M >NB .M <NC .M =ND .无法确定【答案】B【解析】【分析】根据作差法进行比较即可;【详解】解:∵M =(x +1)(x ﹣1)﹣2(y 2﹣y +1),N =(2x +y )(2x ﹣y ),∴M -N =(x +1)(x ﹣1)﹣2(y 2﹣y +1)-(2x +y )(2x ﹣y ),=x 2-1-2y 2+2y -2-4x 2+y 2,=-3x 2-y 2-3<0,∴M <N ,故答案为:B .【点睛】本题主要考查了整式加减应用,涉及平方差公式等运算,熟练掌握相关运算法则、准确计算是解题的关键.6.(2021·江苏·如皋初级中学八年级阶段练习)若实数m ,n 满足m 2﹣m +3n 2+3n =﹣1,则m ﹣2﹣n 0=_____.【答案】3【解析】【分析】利用完全平方公式分别对等式中的m 、n 配方得到2211()3()022m n -++=,根据平方式的非负性求出m 、n 的值,再代入求解即可.【详解】解:由m 2﹣m +3n 2+3n =﹣1,得:m 2﹣m +3n 2+3n +1=0,∴2211()3()044m m n n -++++=,即2211()3()022m n -++=,∵21()02m -≥,213()02n +≥,∴102m -=,102n +=,解得:m =12,12n =-,∴m -2﹣n 0=201122-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=4-1=3.故答案为:3.【点睛】本题考查代数式的求值、完全平方公式、平方式的非负性、负整数指数幂、零指数幂,会利用完全平方公式求解是解答的关键.7.(2021·浙江·金华市第五中学九年级阶段练习)若a +b =3,ab =1,则(a ﹣b )2=________.【答案】5【解析】【分析】直接利用完全平方公式计算得出答案.【详解】解:∵a +b =3,ab =1,∴(a +b )2=9,则a 2+2ab +b 2=9,∴a 2+b 2=9-2=7;(a -b )2=a 2-2ab +b 2=7-2=5.故答案为:5.【点睛】此题主要考查了完全平方公式,正确将已知变形是解题关键.8.(2021·吉林·长春外国语学校八年级阶段练习)对于任意实数,若规定a b ad bc c d=-,则当2250x x --=时,121x x x +=-____.【答案】4【解析】【分析】先根据题意化简212211x x x x x +=---,将2250x x --=变形为225x x -=,再整体代入即可求解.【详解】解:由题意得()()212112211x x x x x x x x +=+--=---,∵2250x x --=,∴225x x -=,∴原式221=51=4x x ---.故答案为:4【点睛】本题考查了新定义问题,平方差公式,整体思想等知识,理解题意,将121x x x +-化简是解题关键.9.(2022·重庆·八年级期末)已知ax •ay =a 5,ax ÷ay =a .(1)求x +y 和x ﹣y 的值;(2)运用完全平方公式,求x 2+y 2的值.【答案】(1)x +y =5,x ﹣y =1;(2)13【分析】(1)根据同底数幂的乘除法法则解答即可;(2)根据完全平方公式解答即可.【详解】解:(1)因为ax •ay =a 5,ax ÷ay =a ,所以ax +y =a 5,ax ﹣y =a ,所以x +y =5,x ﹣y =1;(2)因为x +y =5,x ﹣y =1,所以(x +y )2=25,(x ﹣y )2=1,所以x 2+2xy +y 2=25①,x 2﹣2xy +y 2=1②,①+②,得2x 2+2y 2=26,所以x 2+y 2=13.【点睛】本题考查了同底数幂的乘除法,完全平方公式.解题的关键是掌握同底数幂的乘除法法则,以及完全平方公式:(a ±b )2=a 2±2ab +b 2.10.(2022·贵州黔西·八年级期末)如图1,边长为a 的大正方形中有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)写出根据上述操作利用阴影部分的面积关系得到的等式:.(2)请应用(1)中的等式,解答下列问题:①已知4a 2﹣b 2=24,2a +b =6,则2a ﹣b =;②计算:2002﹣1992+1982﹣1972+…+42﹣32+22﹣12.【答案】(1)22()()a b a b a b -=+-;(2)①4;②20100.【分析】(1)将两个图中阴影部分面积分别表示出来,建立等式即可;(2)①利用平方差公式得出224(2)(2)a b a b a b =+--,代入求值即可;②利用平方差公式将22200199-写成(200199)(200199)=200199+⨯-+,以此类推,然后化简求值.【详解】解:(1)图1中阴影部分面积22a b -,图2中阴影部分面积()()a b a b +-,所以,得到公式22()()a b a b a b -=+-故答案为22()()a b a b a b -=+-.(2)①∵22224(2)(2)(2)a b a b a b a b -=-=+-∴(2)(2)=24a b a b +-又∵2a +b =6,24a b ∴-=故答案为4.②222222222001991981974321-+-+⋯+-+-(200199)(200199)(198197)(198197)(43)(43)(21)(21)=+⨯-++⨯-+⋯++⨯-++⨯-2001991981974321=+++⋯++++20100=【点睛】本题考查平方差公式的应用.熟练掌握平方差公式是解题的关键.。
平方差公式和完全平方公式(随堂测试)
平方差公式和完全平方公式的学习类比幂的运算法则,包括公式的推导、公式的变形、公式的辨识、公式的逆用等.
1. 在利用平方差公式计算时要找准公式里面的a 和b ,我们把完全相同的“项”
看作公式里的“_____”,只有符号不同的“项”看作公式里的“_____”,比如()()x y z x y z +---,_______是公式里的“a ”,_______是公式里的“b ”;同样在利用完全平方公式的时候,如果底数首项前面有负号,要把底数转为它的________去处理,比如22()(_______)a b --=.
2. 若222(25)425-=-+x y x mxy y ,则m 的值为______.
3. 运用公式计算.
①(23)(23)x y z x y z ++-+;
②(3)(3)(2)(2)x y x y x y y x ------.
【参考答案】
1. a ,b ,x -z ,y ,相反数,a +b
2. 20
3. ①222694x xz z y ++-
②223410x xy y -+。
一、导言在数学学科中,平方差公式和完全平方公式是中学阶段必须掌握的重要知识点。
从初中开始,学生就需要掌握这两个公式的具体内容和运用方法。
八年级是数学学科内容较多的阶段,学习者需要在日常学习中加强对平方差公式和完全平方公式的记忆和理解。
本文章旨在帮助八年级学生加深对这两个数学概念的印象,提高数学学习成绩。
二、平方差公式的记忆1.平方差公式是指两个数的平方差可以用来表示两个数的乘积。
具体公式为(a+b)(a-b)=a²-b²。
2.学生在记忆平方差公式时,可以通过以下方法加深理解和记忆:a.通过实例理解。
将(a+b)(a-b)展开可以得到a²-ab+ab-b²,简化后得到a²-b²,这样可以直观地理解平方差公式的含义。
b.多练习算式转换。
让学生多做一些相关的抽象计算练习,锻炼学生对平方差公式的运用能力。
充分练习可以加深记忆,也有助于提高数学计算能力。
三、完全平方公式的记忆1.完全平方公式是指一个二次多项式能够被写成一个完全平方的形式,即二次多项式的平方等于一个平方数。
具体公式为a²+2ab+b²=(a+b)²。
2.学生在记忆完全平方公式时,可以通过以下方法进行记忆和理解:a.设定变量。
让学生通过给定一些具体的实际数学问题,然后使用完全平方公式进行推导和解决问题,可以在实际操作中加深对完全平方公式的理解和记忆。
b.应用到实际问题。
同样可以利用具体实例,让学生仿照实际问题中的公式应用,从而加深对公式的记忆和理解。
四、平方差公式和完全平方公式的联系1.平方差公式和完全平方公式之间有一定联系。
在实际问题中,可以通过平方差公式和完全平方公式进行变形和转换,以解决特定问题。
2.学生在学习中需要注意理解和掌握这两个公式的联系和差异,举一反三,灵活运用。
五、结语在数学学科中,平方差公式和完全平方公式是非常基础但又非常重要的知识点。
平方差公式与完全平方公式应用中易犯错误分析在初中数学中,学生易犯的错误很多,下面我就平方差公式与完全平方公式的计算来分析一下学生出现错误的原因,并且进一步总结反思。
许多学生由于对两个公式结构特点理解不清楚,计算时往往出现这样那样的错误。
一、我们将这些常出现的错误总结出来,进行分析。
1、平方差与完全平方公式混淆1)( x – 3y)2 = x2 - 9y22)( 2x + 3y)2 = 4x2 + 9y2错因:这两个式子都是完全平方公式,应等于它们的平方和,加上(或减去)它们的积的2倍。
正确解法:1、22222(x-3y)23(3)69x x y y x xy y=-+=-+2、22222(23)(2)223(3)4129x y x x y y x xy y+=++=-+2、平方差公式结构特点模糊( m + 3n ) ( -m - 3n ) = m2 - 9n2错因:平方差公式左边必须是两式中一项相同,一项互为相反数。
m+ 3n 与-m - 3n两项都互为相反数,此题不能用平方差公式。
应用完全平方公式。
正确解法:2 2222( m + 3n ) ( -m - 3n ) =(m+3n)[-(m+3n)]=-(m+3n) [23(3)]69m m n n m mn n=-++=---3、公式计算中项的概念不够明确,漏掉系数( 2x + y ) ( 2x – y ) = 2x2 - y2错因:式子在计算中都没有明确“项”的概念,包括字母前面的系数,因此在平方时漏掉了系数。
应是2x与y这两项的平方差。
正确解法:2222x y x y-=-( 2x + y ) ( 2x - y ) =(2)44、公式中的符号错误1)( -a + b )2 = a2 + 2ab + b22)( -a – b )2 = a2 - 2ab - b2错因:公式中各项的符号特点及公式右边各项与公式左边两项的的关系理解模糊,出现了符号错误。
初中数学全套公式初中数学是义务教育的基础学科,其公式和概念的学习是这门课程的核心部分。
以下是一套完整的初中数学公式,这些公式涵盖了初中数学的大部分内容,对于理解和应用数学概念具有重要意义。
一、代数公式1、乘法公式:(a+b)(a-b)=a²-b²2、完全平方公式:a²+2ab+b²=(a+b)²3、平方差公式:a²-b²=(a+b)(a-b)4、立方和公式:a³+b³=(a+b)(a²-ab+b²)5、立方差公式:a³-b³=(a-b)(a²+ab+b²)6、两数和乘两数差:2(a+b)(a-b)=2a²-2b²7、两数平方和:a²+b²=(a+b)²-2ab8、两数和的平方:(a+b)²=a²+2ab+b²9、两数差的平方:(a-b)²=a²-2ab+b²10、幂的乘方:anbn=(ab)n11、积的乘方:anbn=(ab)n12、分式的约分:同时分子分母除以公因式。
13、提公因式法:一般地,如果想要提取一个多项式的公因式,我们把这个多项式的各项都含有的相同字母因式提到括号外面,将多项式化成积的形式,这种分解因式的方法叫做提公因式法。
14、运用公式法:如果一个式子的值等于几个其他式子的值乘积,那么这个式子就叫公式的原式,这几个其他式子就叫这个公式的因式。
如果把一个公式的所有因式分解出来,那么它们就都叫这个公式的因式分解。
二、几何公式1、勾股定理:在一个直角三角形中,斜边的平方等于两条直角边的平方和。
2、平行线间的距离公式:如果两条直线平行,那么一条直线上任意一点到另一条直线的距离相等。
3、三角形的面积公式:一个三角形的面积等于底边乘以高再除以2。
初中数学代数公式归纳在初中数学的学习中,代数是一个重要的部分,而掌握代数公式则是学好代数的关键。
下面就为大家归纳一下初中数学中常见的代数公式。
一、整式运算公式1、同底数幂的乘法:$a^m \times a^n = a^{m+n}$(其中$m$、$n$都是正整数)同底数幂相乘,底数不变,指数相加。
例如:$2^3 \times 2^4 = 2^{3+4} = 2^7 = 128$2、幂的乘方:$(a^m)^n = a^{mn}$(其中$m$、$n$都是正整数)幂的乘方,底数不变,指数相乘。
例如:$(3^2)^3 = 3^{2×3} = 3^6 = 729$3、积的乘方:$(ab)^n = a^n b^n$(其中$n$是正整数)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
例如:$(2×3)^2 = 2^2 × 3^2 = 4×9 = 36$4、同底数幂的除法:$a^m ÷a^n =a^{mn}$($a≠0$,$m$、$n$都是正整数,且$m>n$)同底数幂相除,底数不变,指数相减。
例如:$5^5 ÷ 5^3 = 5^{5-3} = 5^2 = 25$5、单项式乘以单项式:系数相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
例如:$2x^2y × 3xy^2 =(2×3)×(x^2×x)×(y×y^2) = 6x^3y^3$6、单项式乘以多项式:用单项式乘以多项式的每一项,再把所得的积相加。
例如:$2x(3x^2 4x + 5) = 2x×3x^2 2x×4x + 2x×5 = 6x^3 8x^2 + 10x$7、多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
例如:$(x + 2)(x 3) = x×x 3×x + 2×x 2×3 = x^2 x 6$8、平方差公式:$(a + b)(a b) = a^2 b^2$两个数的和与这两个数的差的积,等于这两个数的平方差。
乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2概括小结公式的变式,正确灵巧运用公式:①地点变化, x y y x x2y2②符号变化, x y x y x 2 y2 x 2 y2③指数变化, x2 y2x2y2x4y4④系数变化, 2a b2a b4a2b2⑤换式变化, xy z m xy z mxy 2z m2x2y2z m z mx 2y2z22zm zm mx 2y2z222zm m⑥增项变化, x y z x y zx y 2z2x y x y z2x2xy xy y2 z2x22xy y2z222⑦连用公式变化,x y x y x y2222x y x y44x y⑧逆用公式变化,x y z 2x y z 2x y z x y z x y z x y z2x2y 2z4xy 4xz完整平方公式活用: 把公式自己适合变形后再用于解题。
这里以完整平方公式为例,经过变形或从头组合,可得以下几个比较实用的派生公式:1. a22ab a2b2 b2. a22ab a2b2 b3. a2a22 a 2b2b b4. a2a24ab b b灵巧运用这些公式,常常能够办理一些特别的计算问题,培育综合运用知识的能力。
例 1.已知a b 2 , ab 1,求a2b2的值。
例 2.已知a b 8, ab2,求 (a b)2的值。
解:∵ (a b) 2 a 22ab b 2(a b)2a22ab b 2∴∵(a b) 2(a b) 24ab∴ (a b) 24ab =(a b) 2 a b 8, ab 2∴ ( a b) 282 4 2 56例 3已知 a b4, ab5,求 a2b2的值。
解:2222a ab ab425262三、学习乘法公式应注意的问题(一)、注意掌握公式的特色,认清公式中的“两数”.例 1 计算 (-2 x2-5)(2 x2-5)剖析:本题两个因式中“-5 ”同样,“2x2”符号相反,因此“-5 ”是公式 ( a+b)( a- b)= a2- b2中的a,而“ 2x2”则是公式中的b.例 2 计算 (- a2+4b) 2剖析:运用公式 ( a+b) 2=a2+2ab+b2时,“ - a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为 (4 b- a2) 2时,则“ 4b”是公式中的 a,而“ a2”就是公式中的 b.(解略)(二)、注意为使用公式创建条件例 3 计算 (2 x+y- z+5)(2 x- y+z+5) .剖析:粗看不可以运用公式计算,但注意察看,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因此,可运用添括号的技巧使原式变形为切合平方差公式的形式.例 5 计算 (2+1)(2 2 +1)(2 4+1)(2 8+1) .剖析:本题乍看无公式可用,“硬乘”太繁,但若添上一项( 2-1 ),则可运用公式,使问题化繁为简.(三)、注意公式的推行计算多项式的平方,由( a+b) 2=a2+2ab+b2,可推行获得:( a+b+c) 2=a2+b2+c2+2ab+2ac+2bc.可表达为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例 6 计算 (2 x+y-3) 2解:原式 =(2 x) 2+y2 +(-3) 2+2·2x·y+2·2x(-3)+2 ·y(-3)=4x2+y2+9+4xy-12 x-6 y.(四)、注意公式的变换,灵巧运用变形公式例 7 已知:x+2y=7,xy=6,求 ( x-2 y) 2的值.例 10 计算 (2 a+3b) 2-2(2 a+3b)(5 b-4 a)+(4 a-5 b) 2剖析:本题能够利用乘法公式和多项式的乘法睁开后计算,但逆用完整平方公式,则运算更为简易.四、如何娴熟运用公式:熟习常有的几种变化有些题目常常与公式的标准形式不相一致或不可以直接用公式计算,此时要依据公式特色,合理调整变化,使其知足公式特色.常有的几种变化是:1、地点变化如(3x+5y)(5y-3x)互换3x和5y的地点后即可用平方差公式计算了.2、符号变化如(-2m-7n)(2m-7n)变成-(2m+7n)(2m -7n)后即可用平方差公式求解了(思虑:不变或不这样变,能够吗?)3、数字变化如 98×102,992,912平分别变成(100-2)(100+2),(100-1)2,(90+1)2后即可以用乘法公式加以解答了.4、系数变化如( 4m+ n)(2m-n)变成2(2m+ n)(2m-n)2444后即可用平方差公式进行计算了.(四)、注意公式的灵巧运用有些题目常常可用不一样的公式来解,此时要选择最适合的公式以使计算更简易.如计算( a2+1)2·(a2-1)2,若分别睁开后再相乘,则比较繁琐,若逆用积的乘方法例后再进一步计算,则特别简易.即原式 =[ (a2+1)(a2-1)]2=(a4-1) 2=a8-2a4+1.对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-1)(1-1)(1-1)( 1223242-192)(1-1102),若分别算出各因式的值后再行相乘,不单计算繁难,并且简单犯错.若注意到各因式均为平方差的形式而逆用平方差公式,则碰巧解本题.即原式 =(1-1)(1+1)(1-1)(1+ 1)× ×( 1-1)(1+ 1)22331010 = 1× 3× 2× 4× × 9×11= 1× 11= 11.2233101021020有时有些问题不可以直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有: a2+b2=(a+b)2-2ab,a2+b2=(a-b)2+2ab 等.用这些变式解相关问题常能收到事半功倍之效.2222如已知 m+n=7,mn=-18,求 m+n,m-mn+ n 的值.面对这样的问题即可用上述变式来解,2222即 m+n =(m+n)-2mn=7-2×(- 18)=49+36=85,2222m-mn+ n= (m+n)-3mn=7-3×(- 18) =103.以下各题,难不倒你吧?!1、若a+ 1 =5,求( 1)a2+ 12,(2)(a-1)2的值.a a a2、求( 2+1)(22+1)(24+1)(28+1)( 216+1)(232+1)(264+1)+1的末位数字.(答案: 1. (1)23;(2) 21.2. 6)五、乘法公式应用的五个层次乘法公式: (a +b)(a -b)=a 2-b2,(a ±b)=a 2±2ab+b2,(a ±b)(a 2±ab+b2)=a 3±b3.第一层次──正用即依据所求式的特色,模拟公式进行直接、简单的套用.例1计算( - 2x-y)(2x -y) ..第二层次──逆用,马上这些公式反过来进行逆向使用.例2计算第三层次──活用:依据待求式的构造特色,探访规律,连续频频使用乘法公式;有时依据需要创建条件,灵巧应用公式.例 3 化简: (2 +1)(2 2+1)(2 4+1)(2 8+1) +1.剖析直接计算繁琐易错,注意到这四个因式很有规律,假如再增加一个因式“ 2-1”即可连续应用平方差公式,从而问题水到渠成.解原式 =(2 -1)(2 +1)(2 2+1)(2 4+1)(2 8+1) +1=(2 2-1)(2 2+1)(2 4+1)(2 8+1) +1=216.第四层次──变用:解某些问题时,若能娴熟地掌握乘法公式的一些恒等变形式,如a2+b2=(a +b) 2-2ab,a3+b3=(a +b) 3-3ab(a +b) 等,则求解十分简单、明快.例 5 已知 a+b=9,ab=14,求 2a2+2b2的值.解:∵a+b=9,ab=14,∴ 2a2+2b2 =2[(a +b) 2-2ab]=2(9 2-2·14)=106 ,第五层次──综合后用:将 (a + b) 2=a2+ 2ab+ b2和(a -b) 2 =a2-2ab+ b2综合,可得 (a +b) 2+(a - b) 2=2(a 2+b2 ) ;(a +b) 2-(a -b) 2=4ab;等,合理地利用这些公式办理某些问题显得新奇、简捷.例 6 计算: (2x +y-z+5)(2x -y+z+5) .解:原式= 1[(2x+y-z+5)+(2x-y+z+5)]2-1[(2x+y-z+5)-(2x-y+z+5)]244=(2x +5) 2-(y - z) 2=4x2+20x+25-y2+2yz -z2乘法公式的使用技巧:①提出负号:关于含负号许多的因式,往常先提出负号,以防止负号多带来的麻烦。
1、整式包括单项式和多项式
⑴单项式是数与字母的积,单个数或字母也是单项式。
单项式的数字因数叫做单项式的系数,即是单项式的数字部分。
单项式中字母的指数的和叫做单项式的次数。
⑵多项式是几个单项式的和。
在多项式中每个单项式叫做多项式的项;这些单项式中的最高次数叫做多项式的次数。
⑶同类项:在多项式中,所含字母相同....,并且相同字母的指数也相同..........
的项,叫同类项。
⑷把一个多项式按同一字母的指数从大(小)到小(大)的顺序排列起来,叫做把这个多项
式进行降(升)幂排列。
⑸掌握去括号、添括号法则,能熟练地进行同类项的合并。
2、 幂的运算(m 、n 都是正整数)
⑴底数幂的乘法:m n n m a
a a +=⋅ ⑵幂 的 乘 方:()
n m n m a a ⋅= ⑶积 的 乘 方:()n n n b a b a ⋅=⋅ ⑷同底数幂的除法:n m n m a
a a -=÷ ⑸规 定:10=a (0≠a )
3、乘法公式:
⑴平 方 差:2
2))((b a b a b a -=-+
⑵完全平方:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-
随堂练习
一、基础训练
1.计算下列各式,如果是x 8的是( )
A .x 2·x 4
B .(x 2)6
C .x 4+x 4
D .x 4·x 4
2.下列四个算式中:①(a 3)3=a 3+3=a 6;②[(b 2)2]2=b 2×2×2=b 8;③[(-x )3]4=(-x )12=x 12;
(4)(-y 2)5=y 10,•正确的算式有( )
A .0个
B .1个
C .2个
D .3个
3.计算(a -b )2n ·(a-b )3-2n ·(a-b )3的结果是( )
A .(a-b )4n+b
B .(a -b )6
C .a 6-b 6
D .以上都不对
4.下列运算中错误的是( )
A .(3a 2b n )m =3m ·a 2m ·b mn
B .(a n+2b n )3=a 3n+6b 3n
C .(-2a n )2·(3a 2)3=-54a 2n+6
D .(2a 2b 3)2=4a 4b 6
5.用幂的形式填写:32×34×33=_____;y ·y 2·y 5=______;(-c )2·(-c )6=_______;(-a )
5·a 4=________.
6.a·(-a2)·(-a3)=_______;(x5m)3=________;
[(a+b)2]m=__________;(x2)3÷x5=_______.
7.下面的计算:①32·34=32×4=38;②a4+a4=a8;③(-210)·(210)=0;
④(a-b)5·(b-a)4=(a-b)9;•⑤(y-x)3(x-y)4=(x-y)7,其中正确的序号是_______.8.下列运算中,计算结果正确的是()
A.a4·a3=a12B.a6÷a3=a2C.(a3)2=a5D.a3·b3=(ab)3
9.已知x-y=a,那么(3x-3y)3=_________.
10.计算.
(1)-a·(-a)3;(2)(-x)·x2·(-x)4;(3)x n·x n-1;
(4)y m·y m+1·y;(5)(x-y)2n·(x-y)n·(x-y)2;
(6)(-x)n·(-x)2n+1·(-x)n+3;(7)(-x-y)2n·(-x-y)3;
(8)81×3n;(9)(-5)6÷(-5)3;(10)(-a3)4÷(a2)3.
11.计算:
(1)(-5a b)3;(2)(-3×103)2;(3)(5ab2)3;(4)(-3x3y2z)4.
12.用简便方法计算:
(1)(21
2
)2×42;(2)(-0.25)12×412;
(3)0.52×25×0.125;(4)[(1
2
)2]3×(23)3.
二、能力训练
13.若2x=4y+1,27y=3x-1,则x-y=()
A.3 B.-3 C.-1 D.1
14.a12=a3·______=_______·a5=______·a·a7.
15.a n+5=a n·______;(a2)3=a3·______;(a n b2n c)2=________.
16.若5m=x,5n=y,则5m+n+3=_________.
17.宇宙空间中的距离通常以光年作为单位,1光年是指光在一年中通过的距离,如果光的
速度为3×105km/s ,一年约为3.2×107s ,那么一光年约为多少千米?
完全平方
一、选择题
1.下列等式不成立的是( )
A 、()222396a b a ab b -=-+
B 、()()22
a b c c a b +-=-- C 、2221124x y x xy y ⎛⎫-=-+ ⎪⎝⎭
D 、()()()2244x y x y x y x y +--=- 2.下列各式中计算结果是222ab a b --的是( )
A 、()2a b -
B 、()2a b --
C 、()2a b -+
D 、()2a b +
3.计算:5225a b b a -⋅-的结果等于( )
A 、()252a b -
B 、()252a b --
C 、()225b a --
D 、()()2252a b -
4.若()242749b a N a b -⋅=-,则因式N =( )
A 、27b a -
B 、27b a -+
C 、27b a --
D 、27b a +
5.要使等式()()22a b M a b -+=+成立,代数式M 应是( )
A 、2ab
B 、4ab
C 、4ab -
D 、2ab -
6.要使2144
x mx ++成为一个两数和的完全平方式,则( ) A 、2m =- B 、2m = C 、1m = D 、2±=m
二、填空题
7.(35x + )2=22962525
x xy y ++. 8.22()()a b a b -=+-
9.()2
22a b a b +=-+ =2()a b +- . 10.()2
a b c -+= .
11.若7,12,a b ab +==则22a ab b -+= .
三、解答题
12.计算:①()221m -- ()()()22a b a b a b -+-
③()2a b c +- ④()2220.43m n -
13.已知110a a +=,求2
1a a ⎛⎫- ⎪⎝
⎭的值和221a a +的值.
14.已知()222116x m xy y -++是一个完全平方式,求m 的值.
15.若2310a a -+=,求1a a
+
的值.
16.已知2
410a a -+=,求841a a +的值.
17.已知多项式224614x x y y ++-+,求当x 、y 为何值时,多项式有最小值,最小值是多少?。