圆形截面偏心受压构件强度计算复件
- 格式:doc
- 大小:46.00 KB
- 文档页数:3
一、计算参数注:后缀s表示砼材料性质按水(海)工规范取值注:本表格只适用于热轧钢筋二、配筋计算均匀配筋圆形截面偏心受压(受弯)构件的配筋根据《混凝土结构设计规范》(GB 50010-2002)7.3.8 条计算轴向力偏心距 e 0=M / N 14250mm 附加偏心距 e a 40mm初始偏心距 e i =e 0+e a 14290mm 截面曲率修正系数 ζ1 1.0长细比对截面曲率影响系数 ζ2 1.0偏心距增大系数 η 1.006解上面的联立方程可得:全部纵向钢筋截面面积 As =22022受压区砼截面圆心角与2π的比值 α =0.287受拉纵筋与全部纵筋面积的比值 αt =0.676实际选用40根直径d=32mm 的钢筋实际配筋面积32170mm 2三、裂缝计算圆形截面偏心受压(受弯)构件最大裂缝宽度根据《港口工程灌注桩设计与施工规程》(JTJ 248-2001)附录B 计算最大裂缝宽度限值[W max ] =0.25mm构件受力特征系数α1=0.9钢筋表面形状影响系数α2= 1.0荷载长期效应组合影响系数α3= 1.5桩身截面配筋率ρ= 2.84%受压区砼截面圆心角之半φ= 1.33受拉区边缘纵向钢筋应力σsl =304.4最大裂缝宽度0.226mm 圆形截面偏心受压(受弯)构件均匀配筋计算)()()(38.3.7225.128.3.7sin sin sin 3218.3.7)(22sin 1311--=-++≤--+⎪⎭⎫⎝⎛-≤ααππαπαππααηααπαπαααt ts s y c i s y t c r A f Ar f e N A f A f N =⎪⎪⎭⎫⎝⎛++=ρσααα1028.030321max s s sl d E W。
C.O.2沿用边均匀配筋的圆形截面钢筋混凝土偏心受压构件,其正截面抗压承载力可用查表法(表C.0.2)并按下列规定计算求得:1当对构件承载力进行复核验算时1)由本规范公式(5.3.9-1)和(5.3.9-2)解得轴向力的偏心距:'0'g cd sd cd sd Bf D f e r Af C f ρρ+=+(C.0.2-1)2)已知cd f 、'sd f 、ρ、r ,设定ξ值,查表C.0.2,将查得的系数A、B、C、D值代入公式(C.0.2-1)计算0e 值。
若此0e 值与实际计算偏心距/d d M N η相符(允许偏差在2%以内),则设定的ξ值为所求者;若不相符,重新设定ξ值,重复上述计算,直到相符为止;3)将最后确定的ξ相应的A、B、C、D值代入规范公式(5.3.9-1)或(5.3.9-2)进行构件正截面承载力的复核验算。
2当对构件进行配筋设计时1)由公式(C.0.2-1)变换得截面配筋率:0'cd sd o f Br Ae f Ce Dgr ρ−=•−(C.0.2-2)2)已知cd f 、'sd f 、0e 、r ,设定ξ值,查表C.0.2,将查得的系数A、B、C、D值代入公式( C.0.2-2)计算ρ值,计算时式中的0e 应乘以偏心距增大系数η;再再把ρ和A、C值直代入规范公式(5.3.9-1)算得轴向力值。
若此轴向力值与实际作用的轴向力设计值相符(允许偏差在2%以内),则该ξ值及依此计算的ρ值为所求者;若不相符,重新设定ξ值,重复上述计算,直至相符为止。
3)以最后确定的ρ值代入下列公式计算纵向钢筋截面面积:2s A r ρπ=(C.0.2-3)所得钢筋配筋率应符合最小配筋率的要求。
表C.O.2圆形截面钢筋混凝土偏压构件正截面抗压承载力计算系数ξA B C D ξA B C DξA B C D0.200.32440.2628-1.52961.4216 0.210.34810.2787-1.46761.4623 0.220.37230.2945-1.40741.5004 0.230.39690.3103-1.34861.5361 0.240.42190.3259-1.29111.5697 0.250.44730.3413-1.23481.6012 0.260.47310.3566-1.17961.6307 0.270.49920.3717-1.12541.6584 0.280.52580.3865-1.07201.6843 0.290.55260.4011-1.01941.7086 0.300.57980.4155-0.96751.7313 0.310.60730.4295-0.91631.7524 0.320.63510.4433-0.86561.7721 0.330.66310.4568-0.81541.7903 0.340.69150.4699-0.76571.8071 0.350.72010.4828-0.71651.8225 0.360.74890.4952-0.66761.8366 0.370.77800.5073-0.61901.8494 0.380.80740.5191-0.57071.8609 0.390.83690.5304-0.52271.8711 0.400.86670.5414-0.47491.8801 0.410.89660.5519-0.42731.8878 0.420.92680.5620-0.379818943 0.430.95710.5717-0.33231.8996 0.440.98760.5810-0.28501.9036 0.451.01820.5898-0.23771.9065 0.461.04900.5982-0.19031.9081 0.471.07990.6061-0.14291.9084 0.481.11100.6136-0.09541.9075 0.491.14220.6206-0.04781.9053 0.501.17350.6271-0.00001.9018 0.51 1.20490.63310.0480 1.8971 0.52 1.23640.63860.0963 1.8909 0.53 1.26800.64370.1450 1.8834 0.54 1.29960.64830.1941 1.8744 0.55 1.33140.65230.2436 1.8639 0.56 1.36320.65590.2937 1.8519 0.57 1.39500.65890.3444 1.8381 0.58 1.42690.66150.3960 1.8226 0.59 1.45890.66350.44851,8052 0.60 1.49080.66510.5021 1.78560.64 1.61880.66610.7373 1.67630.65 1.65080.66510.8080 1.63430.66 1.68270.66350.8766 1.59330.67 1.71470.66150.9430 1.55340.68 1.74660.6589 1.0071 1.51460.691.77840.6559 1.06921.47690.70 1.81020.6523 1.1294 1.44020.71 1.84200.6483 1.1876 1.40450.72 1.87360.6437 1.2440 1.36970.73 1.90520.6386 1.2987 1.33580.74 1.93670.6331 1.3517 1.30280.75 1.96810.6271 1.4030 1.27060.76 1.99940.6206 1.4529 1.23920.77 2.03060.6136 1.5013 1.20860.78 2.06170.6061 1.5482 1.17870.79 2.09260.5982 1.5938 1.14960.80 2.12340.5898 1.6381 1.12120.81 2.15400.5810 1.6811 1.09340.82 2.18450.5717 1.7228 1.06630.83 2.21480.5620 1.7635 1.03980.84 2.24500.5519 1.8029 1.01390.85 2.27490.5414 1.84130.98860.86 2.30470.5304 1.87860.96390.87 2.33420.5191 1.91490.93970.88 2.36360.5073 1.95030.91610.89 2.39270.4952 1.98460.89300.90 2.42150.4828 2.01810.87040.91 2.45010.4699 2.05070.84830.92 2.47850.4568 2.08240.82660.93 2.50650.4433 2.11320.80550.94 2.53430.4295 2.14330.78470.95 2.56180.4155 2.17260.76450.96 2.58900.4011 2.20120.74460.97 2.61580.3865 2.22900.72510.98 2.64240.3717 2.25610.70610.99 2.66850.3566 2.28250.68741.002.69430.3413 2.30820.66921.012.71120.3311 2.33330.65131.022.72770.3209 2.35780.63371.032.74400.3108 2.38170.61651.042.75980.3006 2.40490.59971.082.82000.26092.49240.53561.092.83410.25112.51290.52041.102.84800.24152.53300.50551.112.86150.23192.55250.49081.122.87470.22252.57160.47651.132.88760.21322.59020.46241.142.90010.20402.60840.44861.152.91230.19492.62610.43511.162.92420.18602.64340.42191.172.93570.17722.66030.40891.182.94690.16852.67670.39611.192.95780.16002.69280.38361.202.96840.15172.70850.37141.212.97870.14352.72380.35941.222.9886O.13552.73870.34761.232.99820.12772.75320.33611.243.00750.12012.76750.32481.253.01650.11262.78130.31371.263.02520.10532.79480.30281.273.03360.09822.80800.29221.283.04170.09142.82090.28181.293.04950.08472.83350.27151.303.05690.07822.84570.26151.313.06410.07192.85760.25171.323.07090.06592.86930.24211.333.07750.06002.88060.23271.343.08370.05442.89170.22351.353.08970.04902.90240.21451.363.09540.04392.91290.20571.373.10070.03892.92320.19701.383.10580.03432.93310.18861.393.11060.02982.94280.18031.403.11500.02562.95230.17221.413.11920.02172.96150.16431.423.12310.01802.97040.15661.433.12660.01462.97910.14911.443.12990.01152.98760.14171.453.13280.00862.99580.13451.463.13540.00613.00380.12751.473.13760.00393.01150.12061.483.13950.00213.01910.11400.61 1.52280.66610.5571 1.76360.62 1.55480.66660.6139 1.73870.63 1.58680.66660.6734 1.7103 1.05 2.77540.2906 2.42760.58321.06 2.79060.2806 2.44970.56701.07 2.80540.2707 2.47130.5512 1.49 3.14080.007 3.02640.10751.503.14160.00003.03340.10111.513.14160.00003.04030.09505.3.9沿周边均匀配置纵向钢筋的圆形截面钢筋混凝土偏心受压构件(图5.3.9),其正截面抗压承载力计算应符合下列规定:图5.3.9沿周边均匀配筋的圆形截面偏心受压构件计算22'0d cd sdN Ar f C r f γρ≤+(5.3.9-1)33'00d cd sd N e Br f D gr f γρ≤+(5.3.9-2)式中0e ——轴向力的偏心距,0/d d e M N =,应乘以偏心距增大系数η,η可按第5.3.10条的规定计算;A、B——有关混凝土承载力的计算系数,按附录C 的迭代法由表C.O.2查得;C、D——有关纵向钢筋承载力的计算系数,按附录C 的迭代法由表C.O.2查得;r ——圆形截面的半径;g ——纵向钢筋所在圆周的半径s r 与圆截面半径之比,/s g r r =;ρ——纵向钢筋配筋率,2/s A r ρπ=。
计算结果部分1.744507717(2)1338kN 或 kN·m 1439kN 或 kN·m 1439kN 282kN·m 0.5m0.00648025MPa 0.196m1.0000钢筋应力-35.3Mpa 钢筋应力≤24MPa,不必验算裂缝200000Mpa 30mm1.01.46518mm 偏心距 e 0=Ms/Ns=裂缝宽度计算 (JTG D62-2004 第6.4.5条)作用长期效应组合内力值 N l =作用短期效应组合内力值 N s =作用短期效应组合内力值 N s =作用短期效应组合内力值 M s =纵向受拉钢筋配筋率 ρ=As/πr 2=混凝土立方体抗压强度标准值 f cu,k =使用阶段轴向力偏心距增大系数钢筋弹性模量 E s =作用长期效应影响系数 =纵向钢筋直径 d=构件截面半径 r=混凝土保护层厚度 C=钢筋表面形状系数 C 1=210.5lsN C N =+=+=2000)(/140011hl h e s η=∙⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛-=-320,265.10.180.2πr 42.59ρησr e f N s k cu S SS最大裂缝宽度0.003mm < 0.2 mm,满足Ⅰ类0.20mm钢筋混凝土构件所在的环境类别 :最大裂缝宽度限值 :=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++=C d E C C w SSSk f 52.104.003.021ρσ钢筋应力≤24MPa,不必验算裂缝宽度根据“C.0.2-1 的e0=εe0”用excel菜单"工具->单变量求解" 可快速解得ξ< 0.2 mm,满足规范要求。
Vol121No13公路交通科技2004年3月JOURNAL OF HIGHWAY AND TRANSPORTATION RESE ARCH AND DE VELOPMENT文章编号:1002O0268(2004)03O0040O04钢筋混凝土圆环截面偏心受压构件极限强度计算及程序黄平1,陈平2,李立3(11广东省公路勘察规划设计院,广东广州510507;21湖南环达路桥总公司,湖南长沙410001;31北京建达道桥咨询有限公司,北京100101)摘要:在文献[1]沿周边均匀配置钢筋的圆形偏心受压构件强度计算的基础上,运用叠加原理推导出内外圆周均匀配置双层钢筋的圆环截面偏心受压构件的极限强度计算公式,所得公式具有一般性,并编写相应的计算程序,程序在数家设计院经多年使用,证明是正确可靠的,可供工程设计应用。
关键词:圆环截面构件;偏心受压;极限强度;计算程序中图分类号:U444118文献标识码:AThe Limit Strength Calculation and Program for Circu lar Section ReinforcedConcrete Members under Eccentric Pressu resH U ANG Ping1,C H E N Ping2,LI li3(11Guangdon g Highway Desi gn Institute,Guangdong Guangzhou510507,China;21Hunan Huanda Road and Bridge En g ineering Company,Hunan Changsha410001,Chian;31Beijing Jianda Jianda Road and Bridge Consultant Company,Beijing100101,China)Abstract:This paper employs superposi tion theory to deduce formulations for limit strength calculation of eccen trically pressured circular sections wi th evenly placed double deck reinforcemen ts along inner and outer circles1Works i n this paper are based upon former works in strength theory of evenly reinforced circular secti ons under eccentric pressure1These formulations were attested to be accurate enough and sufficient for engineering applications by incorporating into a computer program that has been used by several design ins titutes for many years1Key words:Circular section member;Eccentric pressure;Limit strength;Computer program0引言钢筋混凝土圆环偏心受压构件具有重量轻、刚度大、受力合理、节约材料等优点,应用较为广泛。
钢筋混凝土圆形截面偏压构件的复核验算钢筋混凝土结构是建筑工程中常用的结构形式之一。
在设计过程中,为了确保结构的安全性和可靠性,需要进行复核验算。
本文将对钢筋混凝土圆形截面偏压构件的复核验算进行详细阐述。
1. 引言钢筋混凝土圆形截面偏压构件常用于柱、墙等结构中,承受着较大的压力。
复核验算的目的是检查构件的强度和稳定性是否满足设计要求,并通过计算和分析验证其可靠性。
2. 假设条件在进行复核验算之前,需要明确一些假设条件,如构件的几何尺寸、受力情况和材料的力学性质等。
这些假设条件是进行计算的基础,需要根据实际情况进行选择和确定。
3. 强度验算钢筋混凝土圆形截面偏压构件的强度验算是确保其抗压能力满足设计要求的重要步骤。
强度验算主要包括钢筋的抗拉强度和混凝土的抗压强度两个方面。
首先,计算钢筋的抗拉强度。
根据构件的几何尺寸和钢筋的截面面积,可以确定钢筋的受拉应力。
根据钢筋的材料力学性质,可以计算出钢筋的抗拉强度。
如果钢筋的抗拉强度满足设计要求,则通过强度验算。
其次,计算混凝土的抗压强度。
根据构件的几何尺寸和混凝土的截面面积,可以确定混凝土的受压应力。
根据混凝土的材料力学性质,可以计算出混凝土的抗压强度。
如果混凝土的抗压强度满足设计要求,则通过强度验算。
最后,需要根据钢筋的抗拉强度和混凝土的抗压强度,计算构件的抗弯强度。
抗弯强度的计算需要考虑构件的几何尺寸、受力情况和钢筋的布置方式等因素。
通过计算和分析,确定构件的抗弯强度是否满足设计要求。
4. 稳定性验算钢筋混凝土圆形截面偏压构件的稳定性验算是确保其不会发生屈曲和失稳的重要步骤。
稳定性验算主要包括构件的侧向屈曲和扭转稳定两个方面。
首先,进行侧向屈曲验算。
侧向屈曲是指构件在受到压力作用时产生的稳定性问题。
根据构件的几何尺寸和材料的力学性质,可以计算出构件的屈曲荷载。
与设计要求进行比较,如果构件的屈曲荷载小于设计要求,则通过侧向屈曲验算。
其次,进行扭转稳定验算。
计算结果部分2.4640738410.4635307782546.2(2)3827.76kN 或 kN·m 6698.58kN 或 kN·m 6698.58kN 976.29kN·m 0.65m0.01109530MPa 0.146m1.0142钢筋应力-106.2Mpa 钢筋应力≤24MPa,不必验算裂缝200000Mpa 50mm 1.01.28625mm 钢筋弹性模量 E s =混凝土保护层厚度 C=钢筋表面形状系数 C 1=作用长期效应影响系数 =纵向钢筋直径 d=作用短期效应组合内力值 M s =构件截面半径 r=纵向受拉钢筋配筋率 ρ=As/πr 2=混凝土立方体抗压强度标准值 f cu,k =偏心距 e 0=Ms/Ns=使用阶段轴向力偏心距增大系数裂缝宽度计算 (JTG D62-2004 第6.4.5条)作用长期效应组合内力值 N l =作用短期效应组合内力值 N s =作用短期效应组合内力值 N s =210.5lsN C N =+=+=2000)(/400011hl h e s η=∙⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=-320,265.10.180.2πr 42.59ρησr e f N s k cu S SS最大裂缝宽度-0.019mm < 0.2 mm,满足Ⅱ类0.20mm最大裂缝宽度限值 :钢筋混凝土构件所在的环境类别 :=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++=C dE C C w S SS k f 52.1004.003.021ρσ钢筋应力≤24MPa,不必验算裂缝宽度根据“C.0.2-1 的e0=ηe0”用excel菜单"工具->单变量求解" 可快速解得ξ< 0.2 mm,满足规范要求。
钢筋混凝土圆形截面偏压构件的复核验算钢筋混凝土圆形截面偏压构件的复核验算涉及多个步骤。
由于具体的计算过程较为复杂,我将为您提供一个大致的流程和关键点,具体内容可能需要根据实际情况进行调整。
确定基本参数:截面尺寸:首先要明确构件的截面直径或半径。
混凝土的强度等级:不同的混凝土标号对应不同的抗压强度。
钢筋的类型和等级:使用的钢筋是HPB、HRB还是其他类型,这些都会影响其抗压和抗拉强度。
计算偏心距:偏心距是压力作用点与构件中心之间的距离。
它是影响构件承载能力的关键参数。
计算偏心压力产生的弯矩:使用给定的压力值和偏心距来计算弯矩。
这需要使用结构力学的知识。
计算钢筋的承载力:根据已知的弯矩和钢筋的面积,计算出钢筋的应力。
然后,使用钢筋的应力-应变曲线来确定其能够承受的弯矩。
验算截面承载力:将上一步中确定的弯矩与截面的承载能力进行比较,以确保截面的安全性。
考虑轴压力的影响:如果构件还受到轴向压力的作用,需要将轴压力的影响纳入考虑范围。
考虑箍筋和纵筋的影响:箍筋和纵筋的数量和布置会影响构件的承载能力,因此需要进行相应的验算。
调整和优化:根据验算结果,可能需要对构件的截面尺寸、钢筋配置等进行调整,以达到安全和经济的目的。
遵守相关规范:在进行上述验算时,需要遵循国家或地方的相关规范和标准,确保计算和设计符合实际应用的要求。
使用专业软件:为简化计算过程并确保准确性,可以考虑使用专业的结构分析软件,如SAP、Midas或ANSYS等。
这些软件通常内置了丰富的数据库和预定义的模型,能更高效地进行各种复杂的分析计算。
最后,要特别注意,进行偏压构件验算时需要具备深厚的理论基础和实际经验,尤其是对于非圆形截面或特殊工况的构件,务必小心对待。
在完成初步验算后,建议咨询或聘请专业工程师进行复核,以确保安全性和经济性。
尺寸示意图 单位:截面复核思路假定ξ,试算N u步骤:已知ρ、、、、、、'sd cd d d f f r l e M N 00)(首先计算实际0e η→假定ξ→由r f C Af gf D Bf e sdcd sd cd •'+'+=ρρ0试算e 0 ,若试算00e e η≈(误差不超过2%)说明ξ或者中性轴合适,A 、B 、C 、D 正确→由'+sd cd f r C f Ar 22ρ计算N u ,要满足u d N N ≤0γ。
(1)其中圆柱的高度为:m 939.45.30439.35=∇-∇=l其半径为:m 5.0mm 50021000===r 混凝土保护层的厚度为50mm ;竖向轴力:由5根梁组成,每根重16t ,由两根柱承担其重量,故单根柱所受轴向力简化为KN 5.2208.925218=⨯⨯=d N 偏心距:0.28m 280mm 0==e对于C30混凝土轴心抗压强度设计值: MPa 5.11=cd fⅡ级钢筋:抗压强度设计值MPa 280='sd f ,构件的计算长度,按《公桥规》表5.3.1注,当一端固定,一端自由时,取2l ,故计算长度m 878.9939.4220=⨯==l l对于轴压构件的长细比:i l 0=λ A I i = 对于圆形截面面积:441422πππ=⨯==D A 对于圆形截面惯性矩:646416464444ππππ=⨯===D D I 故其回转半径:41644===ππA I i 所以,其长细比:5.17512.3941878.90>===i l λ 对于长细比5.170>i l 的构件,应考虑构件在弯矩作用平面内的挠曲对轴向力偏心距的影响,此时,应将轴向力对截面重心轴的偏心距e 0 乘以偏心距增大系数η。
圆形截面的偏心受压构件的偏心距增大系数可由下式确定:212000140011ζζη⎪⎭⎫ ⎝⎛+=h l h e 17.22.0001≤+=h e ζ 101.015.102≤-=hl ζ 对于圆形截面,截面有效高度h 0 :m 95.045.05.00=+=+=s r r h对于圆形截面,截面高度h :m 0.12==r h由上式可得:0.19958.095.028.07.22.01≤=⨯+=ζ 0.10512.11878.901.015.101.015.102>=⨯-=-=h l ζ 故取0.19958.021==ζζ;。
一、计算简图:如图。
二、基本假定:
1横截面变形符合平面假定,混凝土最大压应变取εhmax=0.0033。
2混凝土压应力采用等效矩形应力图,且达到抗压设计强度fcd,换算受压区高度采用x=βx(x为实际受压区高度),换算系数β与ξ有关:当ξ≤1时β=0.8;当1<ξ≤1.5时β=1.067-0.267ξ;当ξ>1.5时,按全截面混凝土均匀受压处理。
3沿圆截面周边布置的钢筋应力依应变而定
σs=εs×Es
4不考虑受拉区混凝土参加工作,拉力全部由钢筋承担。
三、基本方程
四、计算方法:
《公桥规》(JTJ023-85)采用了一种简化了的计算方法--等效钢环法。
混凝土强度等级C50以下的,沿周边均匀配置纵向钢筋的圆形截面钢筋混凝土偏心受压构件,如图所示,
1、计算公式
2、配筋设计
已知:截面的尺寸已知,求钢筋的截面积并进行配筋。
①假定ξ值,查表求出系数A、B、C、D;
②将A、B、C、D代入
算出初始配筋率;
③将μ值代入
进行试算,按程序①~③反复进行,直到满足为止。
求钢筋截面积As=ρ×π×γ2
并配筋。
3、强度复核
①设ξ值,查表求得A、B、C、D。
②将A、B、C、D值代入上式求ηe01,按①~②反复计算直至ηe0i≈ηe0为止。
③将相应于ηe0i的ξ值的系数A、B、C、D代入
进行强度复核。