当前位置:文档之家› 高中数学必修二:圆的方程

高中数学必修二:圆的方程

高中数学必修二:圆的方程
高中数学必修二:圆的方程

2019-2020学年高一数学必修二

第三节:圆的方程

1.圆的定义及方程

2.点与圆的位置关系

点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.

1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( )

(2)方程(x -a )2+(y -b )2=t 2(t ∈R)表示圆心为(a ,b ),半径为t 的一个圆.( ) (3)方程x 2+y 2+4mx -2y =0不一定表示圆.( )

(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 2

0+Dx 0+Ey

+F >0.( )

答案:(1)√ (2)× (3)× (4)√

2.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )

A .-4

3

B .-3

4

C. 3

D .2

解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =

|a +4-1|a 2+1

=1,解得a =-4

3.

3.(教材习题改编)圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________.

解析:设圆心C 的坐标为(a ,b ),

则a =-1+12=0,b =2+42=3,故圆心C (0,3).

半径r =12|AB |=1

2[1-(-1)]2+(4-2)2= 2.

∴圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=2

4.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是________. 解析:方程x 2+y 2+ax +2ay +2a 2+a -1=0可化为????x +a 22+(y +a )2=-3

4a 2-a +1,因为该方程表示圆,所以-34a 2-a +1>0,即3a 2+4a -4<0,所以-2

3

.

答案:?

???-2,2

3 5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)

考点一 求圆的方程 (重点保分型考点——师生共研)

(2017·全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.

?

(1)证明:坐标原点O 在圆M 上;

?

(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.

?

[学审题]

①由此条件可知,直线AB 的方程可设为x =my +2.如果设为点斜式,则需讨论斜率的

存在性;

②若坐标原点O 在圆M 上,则OA ⊥OB ; ③由此可知PA ⊥PB ,|MO |=|MP |.

解:(1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2.

由?????

x =my +2,y 2=2x

可得y 2-2my -4=0,则y 1y 2=-4. 又x 1=y 212,x 2=y 22

2,故x 1x 2=(y 1y 2)24

=4.

因此OA 与OB 的斜率之积为y 1x 1·y 2x 2=-4

4=-1,

所以OA ⊥OB .

故坐标原点O 在圆M 上.

(2)法一:由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =(m 2+2)2+m 2.

由于圆M 过点P (4,-2),因此AP ―→·BP ―→

=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可知y 1y 2=-4,x 1x 2=4.

所以2m 2-m -1=0,解得m =1或m =-12

.

当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.

当m =-1

2时,直线l 的方程为2x +y -4=0,圆心M 的坐标为????94,-12,圆M 的半径为

854

,圆M 的方程为????x -942+????y +122=85

16. 法二:由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ). 又圆M 过坐标原点O 和点P (4,-2), ∴|MO |=|MP |,

即(m 2+2)2+m 2=(m 2-2)2+(m +2)2, 整理得2m 2-m -1=0, 解得m =1或m =-1

2

.

当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,

圆M 的方程为(x -3)2+(y -1)2=10.

当m =-1

2时,直线l 的方程为2x +y -4=0,圆心M 的坐标为????94,-12,圆M 的半径为

854

,圆M 的方程为????x -942+????y +122=85

16. [解题师说]

1.求圆的方程的2种方法

(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:

①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;

②若已知条件没有明确给出圆心或半径,则选择设圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.

2.确定圆心的方法

求圆的标准方程,其关键是确定圆心,确定圆心的主要方法有:

(1)当题目条件中出现直线与圆相切时,可利用圆心在过切点且与切线垂直的直线上来确定圆心位置;

(2)当题目条件中出现直线与圆相交,可考虑圆心在弦的垂直平分线上; (3)当题目条件出现两圆相切时,可考虑切点与两圆的圆心共线.

[冲关演练]

1.已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.

解析:过切点且与x +y -1=0垂直的直线方程为x -y -5=0,与y =-4x 联立可求得圆心为(1,-4).

所以半径r =(3-1)2+(-2+4)2=22, 故所求圆的方程为(x -1)2+(y +4)2=8. 答案:(x -1)2+(y +4)2=8

2.一个圆经过椭圆x 216+y 2

4=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准

方程为________________.

解析:由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(00),

则?????

m 2+4=r 2

,(4-m )2=r 2

解得???

m =32

r 2

=254.

所以圆的标准方程为????x -322+y 2=254. 答案:????x -322+y 2=25

4

3.(2018·广东七校联考)一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为________________.

解析:法一:∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ), 又所求圆与y 轴相切,∴半径r =3|a |, 又所求圆在直线y =x 上截得的弦长为27, 圆心(3a ,a )到直线y =x 的距离d =|2a |

2=2|a |,

∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.

故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 法二:设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,

∴r 2

=(a -b )2

2

+7,

即2r 2=(a -b )2+14.① 由于所求圆与y 轴相切, ∴r 2=a 2,②

又∵所求圆的圆心在直线x -3y =0上, ∴a -3b =0,③

联立①②③,解得????

?

a =3,

b =1,

r 2=9

或????

?

a =-3,

b =-1,r 2=9.

故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 答案:(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9

考点二 与圆有关的轨迹问题 (重点保分型考点——师生共研)

设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.

解:如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为????

x 2,y 2,线段MN 的中点坐标为????x 0-32,y 0+42.

因为平行四边形的对角线互相平分,

所以x 2=x 0-32,y 2=y 0+4

2,整理得?????

x 0=x +3,y 0=y -4.

又点N (x +3,y -4)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.

所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,因为O ,M ,P 三点不共线,所以应除去两点????-95,125和???

?-215,285. [解题师说]

1.掌握“3方法”

2.明确“5步骤”

3.关注1个易错点

此类问题在解题过程中,常因忽视对特殊点的验证而造成解题失误.(如典题领悟)

[冲关演练]

在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.

(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为

2

2

,求圆P 的方程. 解:(1)设P (x ,y ),圆P 的半径为r .

由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得

|x 0-y 0|2

=2

2. 又P 点在双曲线y 2-x 2=1上,

从而得?????

|x 0-y 0|=1,

y 20-x 20

=1.

由????? x 0-y 0=1,y 20-x 20=1,得?????

x 0=0,y 0=-1.

此时,圆P 的半径r = 3.

由????? x 0-y 0=-1,y 20-x 20

=1,得?????

x 0=0,y 0=1. 此时,圆P 的半径r = 3.

故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.

考点三 与圆有关的最值问题 (题点多变型考点——追根溯源)

角度(一) 斜率μ=

y -b

x -a

型最值问题 1.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y

x 的最大值和最小值. 解:原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.

y

x

的几何意义是圆上一点与原点连线的斜率, 所以设y

x =k ,即y =kx .

当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值, 此时

|2k -0|k 2+1

=3, 解得k =±3.

所以y

x 的最大值为3,最小值为- 3. [题型技法] 形如μ=

y -b

x -a

型的最值问题,可转化过定点(a ,b )的动直线斜率的最值问题求解.如本题y x =y -0

x -0

表示过坐标圆点的直线的斜率.

角度(二) 截距μ=ax +by 型最值问题

2.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y -x 的最大值和最小值. 解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直

线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时

|2-0+b |

2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6.

[题型技法] 形如μ=ax +by 型的最值问题,常转化为动直线截距的最值问题求解.如本题可令b =y -x ,即y =x +b ,从而将y -x 的最值转化为求直线y =x +b 的截距的最值问题.另外,此类问题也常用三角代换求解.由于圆的方程可整理为(x -2)2+y 2=3,故可令

??? x -2=3cos θ,y =3sin θ,即???

x =3cos θ+2,y =3sin θ,

从而y -x =3sin θ-3cos θ-2=6sin ????θ-π

4-2,进而求出y -x 的最大值和最小值.

角度(三) 距离μ=(x -a )2+(y -b )2型最值问题

3.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值. 解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.

又圆心到原点的距离为 (2-0)2+(0-0)2=2,

所以x 2+y 2的最大值是(2+3)2=7+43,

x 2+y 2的最小值是(2-3)2=7-4 3.

[题型技法] 形如μ=(x -a )2+(y -b )2型的最值问题,可转化为动点(x ,y )与定点(a ,b )的距离的平方求最值.如本题中x 2+y 2=(x -0)2+(y -0)2,从而转化为动点(x ,y )与坐标原点的距离的平方.

[题“根”探求]

找共性

求解与圆有关的最值问题,其通法是数形结合和转化化归思想,其流程为:

[冲关演练]

1.(2018·厦门模拟)已知两点A (0,-3),B (4,0),若点P 是圆C :x 2+y 2-2y =0上的动点,则△ABP 的面积的最小值为( )

A .6 B.11

2

C .8

D.212

解析:选B x 2+y 2-2y =0可化为x 2+(y -1)2=1,则圆C 为以(0,1)为圆心,1为半径的圆.如图,过圆心C 向直线AB 作垂线交圆于点P ,连接BP ,AP ,这时△ABP 的面积最小,直线AB 的方程为x 4+y

-3=1,

即3x -4y -12=0,圆心C 到直线AB 的距离d =16

5

,又|AB |=32+42=5,∴△ABP 的面积的最小值为1

2

×5×????165-1=112.

2.已知实数x ,y 满足(x -2)2+(y -1)2=1,则z =y +1

x 的最大值与最小值分别为________和________.

解析:由题意,得y +1

x 表示过点A (0,-1)和圆(x -2)2+(y -1)2=1上的动点(x ,y )的直

线的斜率.当且仅当直线与圆相切时,直线的斜率分别取得最大值和最小值.设切线方程为y =kx -1,即kx -y -1=0,则

|2k -2|

k 2+1

=1,解得k =4±7

3,所以z max =4+73,z min

=4-73. 答案:

4+73 4-7

3

(一)普通高中适用作业

A 级——基础小题练熟练快

1.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2

解析:选B 由????? x =1,x +y =2,得?????

x =1,

y =1,

即所求圆的圆心坐标为(1,1), 又由该圆过点(1,0),得其半径为1, 故圆的方程为(x -1)2+(y -1)2=1.

2.已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m 的值为( )

A .2

B .-2

C .1

D .-1

解析:选D 因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.

3.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( ) A .1 B .2 C. 2

D .4

解析:选B 由半径r =

12D 2+E 2-4F =1

2

4a 2+4b 2=2,得a 2+b 2=2. ∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.

4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1

B .(x -2)2+(y +1)2=4

C .(x +4)2+(y -2)2=4

D .(x +2)2+(y -1)2=1

解析:选A

设圆上任意一点为(x 1

,y 1

),中点为(x ,y ),则???

x =x 1

+42

,y =y 1

-2

2,

?

????

x 1=2x -4,

y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1. 5.(2018·成都高新区月考)已知圆C 经过点A (1,1)和B (2,-2),且圆心C 在直线l :x -y +1=0上,则该圆的面积是( )

A .5π

B .13π

C .17π

D .25π

解析:选D 法一:设圆心为(a ,a +1),半径为r (r >0),则圆的标准方程为(x -a )2+(y

-a -1)2

=r 2

,又圆经过点A (1,1)和点B (2,-2),故有?

????

(1-a )2+(-a )2=r 2

(2-a )2+(-3-a )2=r 2

,解得?

????

a =-3,

r =5,故该圆的面积是25π. 法二:由题意可知圆心C 在AB 的中垂线y +12=1

3???

?x -32,即x -3y -3=0上.由????? x -3y -3=0,x -y +1=0,解得?

????

x =-3,

y =-2,故圆心C 为(-3,-2),半径r =|AC |=5,圆的面积是25π. 6.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( )

A .(x +1)2+y 2=2

B .(x +1)2+y 2=8

C .(x -1)2+y 2=2

D .(x -1)2+y 2=8

解析:选A 直线x -y +1=0与x 轴的交点(-1,0). 根据题意,圆C 的圆心坐标为(-1,0).

因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =

|-1+0+3|

12+12

=2,

则圆的方程为(x +1)2+y 2=2.

7.(2018·广州综合测试)若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是________________.

解析:抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2

=r 2(r >0),因为该圆与直线y =x +3相切,所以r =d =|-1+3|

2

=2,故该圆的标准方程是x 2+(y -1)2=2.

答案:x 2+(y -1)2=2

8.在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.

解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知????

?

a <0,|-a |>2,

|2a |>2,

解得a <-2,故实数a 的取值范围为(-∞,-2).

答案:(-∞,-2)

9.(2018·德州模拟)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为

45

5

,则圆C 的方程为________________. 解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =

2a 5

=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的

方程为(x -2)2+y 2=9.

答案:(x -2)2+y 2=9

10.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为________________.

解析:因为直线mx -y -2m -1=0(m ∈R)恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.

答案:(x -1)2+y 2=2

B 级——中档题目练通抓牢

1.(2018·南昌检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程为( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0

D .x 2+y 2-10x =0

解析:选B 根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0.

2.(2018·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆

D .两个半圆

解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2

+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.

3.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )

A .(x +1)2+(y -1)2=2

B .(x +1)2+(y +1)2=2

C .(x -1)2+(y -1)2=2

D .(x -1)2+(y +1)2=2

解析:选D 由题意知x -y =0 和x -y -4=0平行,且它们之间的距离为

|4|

2

=22,所以r = 2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.

4.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 的方程为 ________________.

解析:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π

3,设圆心(0,a ), 半径

为r ,则r sin π3=1,r cos π3=|a |,解得r =23

,即r 2=43,|a |=3

3,

即a =±33,故圆C 的方程为x 2+????y ±332=4

3.

答案:x 2+????y ±

332=43

5.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.

解析:由题意可知,圆的半径r =

12k 2+4-4k 2=1

2

4-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π

4

.

答案:

3π4

6.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.

(1)求直线CD 的方程; (2)求圆P 的方程.

解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2

=-(x -1),即x +y -3=0.

(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又∵直径|CD |=410, ∴|PA |=210, ∴(a +1)2+b 2=40.②

由①②解得????? a =-3,b =6或?????

a =5,

b =-2.

∴圆心P (-3,6)或P (5,-2).

∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.

7.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标.

(2)求线段AB 的中点M 的轨迹C 的方程.

解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4, ∴圆C 1的圆心坐标为C 1(3,0).

(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→

=0. 又∵MC 1―→=(3-x ,-y ),MO ―→

=(-x ,-y ), ∴x 2-3x +y 2=0. 易知直线l 的斜率存在, 故设直线l 的方程为y =mx , 当直线l 与圆C 1相切时, 圆心到直线l 的距离d =|3m -0|

m 2+1

=2, 解得m =±25

5

.

把相切时直线l 的方程代入圆C 1的方程化简得 9x 2-30x +25=0,解得x =5

3

.

当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴5

3

3

C 级——重难题目自主选做

1.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求

n -3

m +2

的最大值和最小值. 解:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,设m +2n =t ,将m +2n =t 看成直线方程,

因为该直线与圆有公共点, 所以圆心到直线的距离d =

|2+2×7-t |

12+22

≤22,

解得16-210≤t ≤16+210, 所以m +2n 的最大值为16+210. (2)记点Q (-2,3),

因为n -3m +2表示直线MQ 的斜率k ,

所以直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0.

由直线MQ 与圆C 有公共点, 得

|2k -7+2k +3|

1+k 2

≤2 2.

可得2-3≤k ≤2+3,

所以n -3m +2

的最大值为2+3,最小值为2- 3.

2.已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线PA ,PB ,切点为A ,B .

(1)若∠APB =60°,求点P 的坐标;

(2)求证:经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.

解:(1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2, 设P (a ,2a ),则a 2+(2a -4)2=2,解得a =2或a =6

5,

所以点P 的坐标为(2,4)或????

65,125.

(2)证明:设P (b,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,

整理得x 2+y 2-bx -4y -2by +8b =0, 即(x 2+y 2-4y )-b (x +2y -8)=0.

由????? x 2

+y 2

-4y =0,x +2y -8=0解得?????

x =0,y =4

或???

x =85

,y =165,

所以该圆必经过定点(0,4)和????

85,165.

(二)重点高中适用作业

A 级——保分题目巧做快做

1.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是( ) A .(x -1)2+y 2=8 B .(x +1)2+y 2=8 C .(x -1)2+y 2=16

D .(x +1)2+y 2=16

解析:选A 因为所求圆与直线x -y +3=0相切,

所以圆心M (1,0)到直线x -y +3=0的距离即为该圆的半径r ,即r =|1-0+3|

2

=2 2. 所以所求圆的方程为(x -1)2+y 2=8.

2.若圆C 的半径为1,圆心C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为( ) A .x 2+y 2=1 B .(x -3)2+y 2=1 C .(x -1)2+y 2=1

D .x 2+(y -3)2=1

解析:选A 因为圆心C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.

3.(2018·兰州模拟)若直线ax +by +1=0(a >0,b >0)把圆(x +4)2+(y +1)2=16分成面积相等的两部分,则12a

+2

b 的最小值为( )

A .10

B .8

C .5

D .4

解析:选B ∵圆(x +4)2+(y +1)2=16的圆心坐标为(-4,-1),直线ax +by +1=0把圆分成面积相等的两部分,∴该直线过点(-4,-1),∴-4a -b +1=0,即4a +b =1,∴

12a +2b =????

12a +2b (4a +b )=4+8a b +b 2a

≥4+28a b ×b 2a =8,当且仅当a =18,b =1

2

时取“=”,故选B.

4.(2018·湖北七市(州)联考)关于曲线C :x 2+y 4=1,给出下列四个命题: ①曲线C 有两条对称轴,一个对称中心;

②曲线C 上的点到原点距离的最小值为1; ③曲线C 的长度l 满足l >42;

④曲线C 所围成图形的面积S 满足π

D .1

解析:选A ①将(x ,-y ),(-x ,y ),(-x ,-y )代入,方程不变,

确定曲线C 关于x 轴,y 轴对称,关于原点对称,故①正确.

②x 2+y 4=1?0≤x 2≤1,0≤y 4≤1,故x 2+y 2≥x 2+y 2·y 2=x 2+y 4=1,即曲线C 上的点到原点的距离为x 2+y 2≥1,故②正确;

③由②知,x 2+y 4=1的图象位于单位圆x 2+y 2=1和边长为2的正方形之间,如图所示,其每一段弧长均大于2,所以l >42,故③正确;

④由③知,π×12

5.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )

A .(x +1)2+(y -1)2=2

B .(x +1)2+(y +1)2=2

C .(x -1)2+(y -1)2=2

D .(x -1)2+(y +1)2=2

解析:选D 由题意知x -y =0 和x -y -4=0平行,且它们之间的距离为

|4|

2

=22,所以r = 2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.

6.圆(x -2)2+y 2=4关于直线y =

3

3

x 对称的圆的方程是________. 解析:圆与圆关于直线对称,则圆的半径相同,只需圆心关于直线对称即可.设所求圆的圆心坐标为(a ,b ),

则?????

b -0a -2×3

3=-1,

b +02=33×a +2

2,

解得???

a =1,

b =3,

所以圆(x -2)2+y 2=4的圆心关于直线y =

3

3

x 对称的点的坐标为(1,3),从而所求圆的方程为(x -1)2+(y -3)2=4. 答案:(x -1)2+(y -3)2=4

7.在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.

解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知????

?

a <0,|-a |>2,

|2a |>2,

解得a <-2,故实数a 的取值范围为(-∞,-2).

答案:(-∞,-2)

8.已知平面区域????

?

x ≥0,y ≥0,

x +2y -4≤0

恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内

部所覆盖,则圆C 的方程为____________________.

解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.

∵△OPQ 为直角三角形,

∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |

2

=5, 因此圆C 的方程为(x -2)2+(y -1)2=5. 答案:(x -2)2+(y -1)2=5

9.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标.

(2)求线段AB 的中点M 的轨迹C 的方程.

解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4, ∴圆C 1的圆心坐标为C 1(3,0).

(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→

=0. 又∵MC 1―→=(3-x ,-y ),MO ―→

=(-x ,-y ), ∴x 2-3x +y 2=0. 易知直线l 的斜率存在, 故设直线l 的方程为y =mx , 当直线l 与圆C 1相切时, 圆心到直线l 的距离d =|3m -0|

m 2+1

=2, 解得m =±25

5

.

把相切时直线l 的方程代入圆C 1的方程化简得 9x 2-30x +25=0,解得x =5

3

.

当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴5

3

3

10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求

n -3

m +2

的最大值和最小值. 解:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,设m +2n =t ,将m +2n =t 看成直线方程,

因为该直线与圆有公共点, 所以圆心到直线的距离d =

|2+2×7-t |

12+22

≤22,

解得16-210≤t ≤16+210, 所以m +2n 的最大值为16+210. (2)记点Q (-2,3),

因为n -3m +2表示直线MQ 的斜率k ,

所以直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0.

由直线MQ 与圆C 有公共点, 得

|2k -7+2k +3|

1+k 2

≤2 2.

可得2-3≤k ≤2+3,

所以n -3m +2的最大值为2+3,最小值为2- 3.

B 级——拔高题目稳做准做

1.(2018·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆

D .两个半圆

解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2

+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1

时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.

2.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 的方程为 ________________.

解析:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π

3,设圆心(0,a ), 半径

为r ,则r sin π3=1,r cos π3=|a |,解得r =23

,即r 2=43,|a |=3

3,

即a =±33,故圆C 的方程为x 2+????y ±332=4

3.

答案:x 2+????y ±

332=43

3.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.

解析:由题意可知,圆的半径r =

12k 2+4-4k 2=1

2

4-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π

4

.

答案:

3π4

4.已知圆C 和直线x -6y -10=0相切于点(4,-1),且经过点(9,6),则圆C 的方程为________________.

解析:因为圆C 和直线x -6y -10=0相切于点(4,-1), 所以过点(4,-1)的直径所在直线的斜率为-6, 其方程为y +1=-6(x -4), 即y =-6x +23.

又因为圆心在以(4,-1),(9,6)两点为端点的线段的中垂线y -52=-5

7????x -132上,即5x +7y -50=0上,

由?

????

y =-6x +23,

5x +7y -50=0解得圆心坐标为(3,5), 所以半径为(9-3)2+(6-5)2=37, 故所求圆的方程为(x -3)2+(y -5)2=37. 答案:(x -3)2+(y -5)2=37

5.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.

高一数学必修2圆方程与直线与圆、圆与圆关系

-- 圆方程与直线与圆、圆与圆关系 一、圆的标准方程 1.圆的定义 (1)条件:平面内到定点的距离等于定长的点的__集合___. (2)结论:定点是_圆心____,定长是___半径__. 2.圆的标准方程 (1)圆心为A (a,b ),半径长为r 的圆的标准方程为 . (2)圆心在原点,半径长为r的圆的标准方程为 2.点与圆的位置关系 圆C :(x -a )2 +(y-b)2=r2(r >0),其圆心为(a ,b ),半径为r ,点P (x 0,y 0),设d =|PC |=错误!. 位置关系 d 与r 的大小 图示 点P 的坐标的特点 点在圆外 d__>__r (x 0-a )2+(y 0-b )2>r 2 点在圆上 d __=__r (x 0-a)2+(y0-b )2=r 2 点在圆内 d __<__r (x 0-a )2+(y 0-b )2 <r2 题型一:圆的标准方程 例1.写出下列各圆的方程: (1)圆心在原点,半径是3; (2)圆心在点C (3,4)处,半径是5; (3)经过点P (5,1),圆心在点C (8,-3)处 题型二:点与圆的位置关系的判断 例2. 已知两点P1(3,8)和P 2(5,4),求以线段P 1P 2为直径的圆的方程,并判断点M(5,3),N (3, 4),P(3,5)是在此圆上,在圆内,还是在圆外? 变式:若原点在圆(x -1)2+(y +2)2=m 的内部,则实数m 的取值范围是( ) A .m >5 B.m <5 C .-2<m<2 D.0<m <2 题型三:圆标准方程的求解 例3.求下列条件所决定的圆的方程: (1)已知圆 C 过两点 A (5,1),B (1,3),圆心在 x 轴上; (x -a )2+(y -b )2=r 2 x 2+y 2=r 2

高中数学必修二《圆的标准方程》优秀教学设计

人教A版必修2 4.1.1 圆的标准方程 1 教学目标 (1)知识与技能 在平面直角坐标系中探索圆的方程,掌握圆的标准方程,会判断点与圆的位置关系,能根据条件求圆的标准方程。 (2)过程与方法 通过设置问题情境,让学生经历从几何到代数,从代数到几何解决问题的过程,强调图形在解决问题中的辅助作用,提高学生分析问题,解决问题的能力。 (3)情感态度价值观 通过对问题的探索,培养学生良好的学习习惯,增强学生主动探究知识、合作交流的意识,使学生获得成功的体验,增强数学学习的兴趣和信心。 2 教学重点 推导圆的标准方程,掌握圆的标准方程 3 教学难点

圆的标准方程的应用,根据不同的条件求圆的标准方程。 4 教材分析 本章在前一章的基础之上,在直角坐标系中建立圆的方程,其本质是用代数的方法研究图形,体现数形结合的重要思想方法,为日后进一步学习圆锥曲线,导数等奠定基础。因此,本章第一节的内容设计紧扣数与形的结合,强调图形在分析问题中的辅助作用,同时也要学会将几何问题代数化,用代数处理几何问题。 5 学情分析 学生已经学习了直线与方程,知道了在平面直角坐标系中直线可以用方程表示,并通过方程研究直线,为本节课做了准备,提供了基础,本节内容仅仅是这个过程的一个延续。本教学设计适合中等水平的学生学习。 6 教学方法与辅助手段 (1)以问题为载体,以任务为驱动式教学,突出类比学习,数形结合思想解决问题的思维过程 (2)多媒体课件和几何画板软件辅助教学 7 教学过程

7.1 问题情境引入 我们知道,在平面直角坐标系内确定一条直线的几何要素-----直线上的一点和直线的倾斜角,其代数含义是这个点的坐标以及这条直线的斜率,进而建立了直线的代数方程,通过方程研究直线,用代数的知识和方法去解决直线的问题。 类似地,我们可不可以用同样的方法建立圆的方程呢?回顾圆的定义,提出具体探究任务。 【运用几何画板,让学生形象感知圆的轨迹的形成过程,再次强化圆的几何特征,为建立圆的代数方程指明方向】 7.2 学习任务一:探索圆的标准方程 问题情境1 在平面直角坐标系中,已知圆心C(a,b),半径等于r,试写出圆的方程 学生活动:给予充分时间让学生尝试建立圆的方程,先独立思考完成,然后小组内交流

人教版数学必修二第四章 圆与方程 知识点总结

第四章 圆与方程 4.1 圆的方程 4.1.1 圆的标准方程 1.以(3,-1)为圆心,4为半径的圆的方程为( ) A .(x +3)2+(y -1)2=4 B .(x -3)2+(y +1)2=4 C .(x -3)2+(y +1)2=16 D .(x +3)2+(y -1)2=16 2.一圆的标准方程为x 2+(y +1)2=8,则此圆的圆心与半径分别为( ) A .(1,0),4 B .(-1,0),2 2 C .(0,1),4 D .(0,-1),2 2 3.圆(x +2)2+(y -2)2=m 2的圆心为________,半径为________. 4.若点P (-3,4)在圆x 2+y 2=a 2上,则a 的值是________. 5.以点(-2,1)为圆心且与直线x +y =1相切的圆的方程是____________________. 6.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1 7.一个圆经过点A (5,0)与B (-2,1),圆心在直线x -3y -10=0上,求此圆的方程. 8.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( ) A .|a |<1 B .a <1 13 C .|a |<1 5 D .|a |<1 13 9.圆(x -1)2+y 2=25上的点到点A (5,5)的最大距离是__________. 10.设直线ax -y +3=0与圆(x -1)2 +(y -2)2 =4相交于A ,B 两点,且弦AB 的长为

高中数学必修二教案圆的标准方程

《圆的标准方程》教学设计 一、教材分析 1、教学内容 人教B版教科书《数学》必修2第二章平面解析几何初步中2﹒3节圆的方程。本节主要研究圆的标准方程、一般方程,直线与圆的位置关系,圆与圆的位置关系,以及他们在生活中的简单运用。 2、教材的地位与作用 圆是最简单的曲线之一,这节教材安排在学习了直线之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论为后继学习作好准备。同时有关圆的问题,特别是直线与圆的位置问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。应此教学中应加强练习,使学生确实掌握这单元的知识和方法。 本课是单元的第一课,和直线方程一样,教学中先设计一个问题情景,让学生讨论,并引导学生观察圆上点在运动时,不变的是什么,抓住圆的本质,突破难点。 3、三维目标 (1)知识与技能:掌握圆的标准方程的形式;能够根据题目给定条件求圆的标准方程;能够根据圆的标准方程找到圆心和半径。 (2)过程与方法:加深对数形结合思想和待定系数法的理解;增强应用数学的意识。 (3)情感、态度、价值观:培养主动探究知识、合作交流的意识,在体验数学美的过程中激发学习兴趣,从而培养勤于思考、勤于动手的良好品质。 4.教学重点 圆的标准方程的推导以及根据条件求圆的标准方程 5. 教学难点 根据条件求圆的标准方程。 二.教法分析 高一学生,在老师的引导下,已经具备一定探究与研究问题的能力。所以在设计问题时应考虑周全和灵活性,采用启发式探索式教学,师生共同探讨,共同研究,让学生积极思考,主动学习。 在教学过程中采用讨论法,向学生提供具备启发式和思考性的问题。因此,要求学生在课上讨论,提高学生的探索,推理,想象,分析和总结归纳等方面的能力。

高一数学必修二《圆与方程》知识点整理

高一数学必修二《圆与方程》知识点整理 一、标准方程 () ()2 2 2 x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()2 2 2 0x y r r +=≠ 过原点 ()()()22 22220x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2 2 2 0x a y r r -+=≠ 圆心在y 轴上 ()()2 2 2 0x y b r r +-=≠ 圆心在x 轴上且过原点 ()()2 2 2 0x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2 2 2 0x y b b b +-=≠ 与x 轴相切 ()()()2 2 2 0x a y b b b -+-=≠ 与y 轴相切 ()()()2 2 2 0x a y b a a -+-=≠ 与两坐标轴都相切 ()()()22 2 0x a y b a a b -+-==≠ 二、一般方程 ()2 2 2 2 040x y Dx Ey F D E F ++++=+-> 1.22 0Ax By C xy D x Ey F +++++=表示圆方程则

2222 000 4040A B A B C C D E AF D E F A A A ?? =≠=≠???? =?=????+->??????+-?> ? ???? ??? 2.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 m i n P A A N r A C ==- m a x P A A M r A C = = + 思考:过此A 点作最短的弦?(此弦垂直A C ) 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形

高中数学必修2圆的方程练习题

第四章 圆与方程 一、选择题 1.圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( ). A .相交 B .外切 C .内切 D .相离 2.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公共切线有( ). A .1条 B .2条 C .3条 D .4条 3.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ). A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 - C .(x -1)2+(y +2)2=1 D .(x +1)2+(y -2)2=1 4.与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( ). A .x -y ±5=0 B .2x -y +5=0 C .2x -y -5=0 D .2x -y ±5=0 5.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( ). A .2 B .2 C .22 D .42 6.一圆过圆x 2+y 2-2x =0与直线x +2y -3=0的交点,且圆心在y 轴上,则这个圆的方程是( ). A .x 2+y 2+4y -6=0 B .x 2+y 2+4x -6=0 ! C .x 2+y 2-2y =0 D .x 2+y 2+4y +6=0 7.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是 ( ). A .30 B .18 C .62 D .52 8.两圆(x -a )2+(y -b )2=r 2和(x -b )2+(y -a )2=r 2相切,则( ). A .(a -b )2=r 2 B .(a -b )2=2r 2 C .(a +b )2=r 2 D .(a +b )2=2r 2 9.若直线3x -y +c =0,向右平移1个单位长度再向下平移1个单位,平移后与圆x 2 +y 2=10相切,则c 的值为( ). A .14或-6 B .12或-8 C .8或-12 D .6或-14 ' 10.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM | =( ). A .4 53 B . 2 53 C . 2 53 D .213

高一数学必修二《圆与方程》知识点整理

《圆与方程》知识点整理 一、标准方程()() 222 x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b和半径r ①待定系数:往往已知圆上三点坐标,例如教材 119 P例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 二、一般方程 () 2222 040 x y Dx Ey F D E F ++++=+-> 1.220 Ax By Cxy Dx Ey F +++++=表示圆方程则 22 22 00 00 40 40 A B A B C C D E AF D E F A A A ? ? =≠=≠ ? ? ?? =?= ?? ??+-> ? ???? ?+-?> ? ? ????? ? 2.求圆的一般方程一般可采用待定系数法: 3.2240 D E F +->常可用来求有关参数的范围 三、圆系方程: 四、参数方程: 五、点与圆的位置关系 1.判断方法:点到圆心的距离d与半径r的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B,圆上一动点P,讨论PB的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A,圆上一动点P,讨论PA的最值 m i n P A A N r A C ==- max PA AM r AC ==+ 思考:过此A点作最短的弦?(此弦垂直AC)

六、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程 ①切线条数 点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外 如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22 200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=- 第二步:通过d r =k ?,从而得到切线方程 特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆22 46120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x = ii )点在圆上 1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目. 2) 若点()00x y ,在圆()()22 2x a y b r -+-=上,则切线方程为 ()()()()200x a x a y b y b r --+--= 碰到一般方程则可先将一般方程标准化,然后运用上述结果. 由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数. ③求切线长:利用基本图形,222AP CP r AP =-?= 3.直线与圆相交 (1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用

高中数学-必修二-圆与方程-经典例题

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222 )() (r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心 ),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 (06重庆卷文) 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(2 2=-++y x (C)9)1() 2(22 =++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2 243546+++= d r ==3,∴所求的圆方程为9)1()2(22=++-y x , 故选(C). 点评:一般先求得圆心和半径,再代入圆的标准方程222 )()(r b y a x =-+-即得圆的方程. 二、位置关系问题 例2 (06安徽卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B ))12,12( +- (C))12,12(+-- (D))12, 0(+ 解 化为标准方程222 )(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线 1=+y x 与已知圆没有公共点,∴线心距a r a d =>-= 2 1,平方去分母得 2 2212a a a >+-,解得 1212-<<--a ,注意到0>a ,∴120-<r d 线圆相离;?=r d 线圆相切;?

高中数学圆的方程教案新人教版必修2

第四章圆与方程 本章教材分析 上一章,学生已经学习了直线与方程,知道在直角坐标系中,直线可以用方程表示,通过方程,可以研究直线间的位置关系、直线与直线的交点坐标、点到直线的距离等问题,对数形结合的思想方法有了初步体验.本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究点与圆、直线与圆、圆与圆的位置关系,了解空间直角坐标系,以便为今后的坐标法研究空间的几何对象奠定基础,这些知识是进一步学习圆锥曲线方程、导数和微积分的基础,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力. 通过方程,研究直线与圆、圆与圆的位置关系是本章的重点内容之一,坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法,通过坐标系把点和坐标、曲线和方程联系起来,实现了形和数的统一,因此在教学过程中,要始终贯穿坐标法这一重要思想,不怕反复.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后把运算结果“翻译”成相应的几何结论.这就是坐标法解决几何问题的三步曲.坐标法还可以与平面几何中的综合方法、向量方法建立联系,同时可以推广到空间,解决立体几何问题. 本章教学时间约需9课时,具体分配如下(仅供参考):

§4.1 圆的方程 §4.1.1 圆的标准方程一、教材分析

在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题. 二、教学目标 1.知识与技能 (1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程. (2)会用待定系数法求圆的标准方程. 2.过程与方法 进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题发现问题和解决问题的能力. 3.情感态度与价值观 通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣. 三、教学重点与难点 教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确. 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程. 四、课时安排

高一数学必修二圆与方程知识点整理

高一数学必修二圆与方程 知识点整理 LELE was finally revised on the morning of December 16, 2020

高一数学必修二《圆与方程》知识点整理 一、标准方程 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 ②利用平面几何性质 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件方程形式 圆心在原点()2220x y r r +=≠ 过原点()()()22 22220x a y b a b a b -+-=++≠ 圆心在x 轴上()()2220x a y r r -+=≠ 圆心在y 轴上()()2220x y b r r +-=≠ 圆心在x 轴上且过原点()()2220x a y a a -+=≠ 圆心在y 轴上且过原点()()2220x y b b b +-=≠ 与x 轴相切()()()2220x a y b b b -+-=≠ 与y 轴相切()()()22 20x a y b a a -+-=≠ 与两坐标轴都相切()()()2220x a y b a a b -+-==≠ 二、一般方程 1.220Ax By Cxy Dx Ey F +++++=表示圆方程则 2.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

高中数学必修二《圆的标准方程》教案

教案说明 圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。 一、设计理念 设计的根本出发点是促进学生的发展。教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。 二、设计思路 (1)突出重点抓住关键突破难点 求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。 (2)学生主体教师主导探究主线 本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我在例题2的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。在一个个问题的驱动下,高效的完成本节的学习任务。 三、媒体设计 本节采用powerpoint媒体,知识容量大,同时又有图形。为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。同时

动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。

人教版高中数学必修二圆的标准方程教学设计

4.1.1圆的标准方程 教学目标: (1)掌握圆的标准方程,会由标准方程得出圆心与半径,能根据圆 心、半径写出圆的标准方程. (2)会用待定系数法与数形结合法求圆的标准方程. (3)培养学生用解析法研究几何问题的能力,渗透数形结合思想, (4)在探索圆的知识与特点时感受数学中的对称美与和谐美. 教学重点:圆的标准方程的得出与应用. 教学难点:根据不同的已知条件,求圆的标准方程 教学方法: 启发、引导、讨论. 教学过程: 一、新课引入 1.引入语: 通过上一章的学习,我们知道直线这一平面图形可以由一个代数中的二元一次方程来表示,称此方程为直线的方程。从而,通过方程利用代数的方法研究了直线的性质与特点。事实上,这种方法是解析几何解决问题的基本方法,我们还可以采用它研究其他的一些平面图形,比如:圆。 在直角坐标系中,两点确定一条直线,或者一点和倾斜角也能确定一条直线。圆作为平面几何中的基本图形,确定它的要素又是什么呢? (圆心,半径。圆心决定位置,半径决定大小) 那么我们能否在圆心与半径确定的条件下,找到一个方程与圆对应呢?这就是我们这节课的主要任务。(书写标题) 回顾直线方程得出的过程:在直线l 上任取一点P(x,y),找到该点的横纵坐标满足的一个关系式,通过验证,称此方程为直线的方程。 类似的,我们用得出直线方程方法来探求圆的方程。 二、讲授新课 确定圆的基本条件为圆心和半径,设圆的圆心坐标为(,)A a b ,半径为r (其中a 、b 、r 都是常数,0r ).设(,)M x y 为这个圆上任意一点,

那么点M 满足的条件是(引导学生自己列出){}P M MA r ==,由两点间的距离公式让学生写出点M 适合的条 件r =① 引导学生自己 证明r =为圆的方程,得出结论. 1.若点),(00y x M 在圆上,由上述讨论可知,点M 的坐标适用方程①. 2.若),(00y x 是方程①的一组解,则以这组解为坐标的点),(00y x M 到圆心A 的距离为r ,即点M 在圆心为A 的圆上. 故方 程r =为圆的一个方程。 方程①可等价变为:222()()x a y b r -+-= ② 方程②形式较①式更为和谐美观。 方程②也是圆心为(,)A a b ,半径为r 的圆的方程,我们把它叫做圆的标准方程. 特别地,若圆心为O (0,0),则圆的标准方程为:222r y x =+ 练习1 (口答) 、求圆的圆心及半径 (1)、422=+y x (2)、1)1(22=+-y x 练习2、写出下列圆的方程 (1)、圆心在原点,半径为3; 922=+y x (2)、圆心在(-3、4),半径为5 5)4()3(22=+++y x 三、例题解析 例1 已知两点A(4,9)、B(6,3),求以AB 为直径的圆的方程 分析:可以从计算圆心与半径. 解:解:圆心C (5,6)半径r=10 所求的圆的标准方程是10)6()5(22=-+-y x 把点)7,8(1M 的坐标代入方程10)6()5(22=-+-y x ,左右两边相等,点1M 的坐标适合圆的方程,所以点1M 在这个圆上;把点)5,3(2M 的坐标代入方程10)6()5(22=-+-y x ,左右两边不相等,点2M 的坐标不适合圆的方 程,所以点2M 不在这个圆上. 是否在这个圆上?并判断点 )5,3(),7,8(21M M

必修二圆的方程

圆的方程 ()() 2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()222 0x y r r +=≠ 过原点 ()()()2 2 2 2 2 20x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2 2 2 0x a y r r -+=≠ 圆心在y 轴上 ()()2 2 2 0x y b r r +-=≠ 圆心在x 轴上且过原点 ()()2 2 2 0x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2 2 2 0x y b b b +-=≠ 与x 轴相切 ()()()2 2 2 0x a y b b b -+-=≠ 与y 轴相切 ()()()2 2 2 0x a y b a a -+-=≠ 与两坐标轴都相切 ()()()2 2 2 0x a y b a a b -+-==≠ 二、一般方程 ()2222040x y Dx Ey F D E F ++++=+-> 1.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 2.2 2 40D E F +->常可用来求相关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

新人教版必修二高中数学 《圆的标准方程》 教学设计-2019最新整理

新人教版必修二高中数学《圆的标准方程》教学设计-2019 最新整理 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径

为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点 间的距离公式让学生写出点M 适合的条件 ①r 化简可得: ②222()()x a y b r -+-= 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的 标准方程。 总结出点与圆的关系的判断方法:00(,)M x y 222()()x a y b r -+-= (1)=点在圆上 2200()()x a y b -+-2r ? (2)<点在圆内220 0()()x a y b -+-2r ? (3)>点在圆外 2200()()x a y b -+-2r ? 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1); 222=+y x (2); 5)1()3(22=-+-y x (3)()。222)1()2(a y x =+++0≠a 2、写出下列圆的标准方程:(P120-121练习1、3、4) (1)圆心在C(-3,4),半径长为;5 (2)圆心在C(8,-3),且经过点M(5,1); (3)圆心在(-1,2),与y 轴相切 (4)以P1(4,9)、P2(6,3)为直径的圆; (5)已知△ABC的顶点坐标分别是A(4,0),B(0,3),

必修二圆与方程复习小结

必修2 第四章 圆与方程复习小结 一、知识点归纳 (一).圆的两种方程 (1)圆的标准方程 222()()x a y b r -+-=,表示_____________. (2)圆的一般方程 022=++++F Ey Dx y x . ①当D 2+E 2 -4F >0时,方程 ② 表示(1)当0422>-+F E D 时,表示__________; : ②当0422=-+F E D 时,方程只有实数解2D x -=,2 E y -=,即只表示_______; ③当0422<-+ F E D 时,方程_____________________________________________. 综上所述,方程022=++++F Ey Dx y x 表示的曲线不一定是圆. (二).点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在_____;(2)2200()()x a y b -+-=2r ,点在______; (3)2200()()x a y b -+-<2r ,点在______. (三).直线与圆的位置关系 设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2 ,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: # (1)当r d >时,直线l 与圆C ______;(2)当r d =时,直线l 与圆C ________; (3)当r d <时,直线l 与圆C ________. (四).圆与圆的位置关系 设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: (1)当21r r l +>时,圆1C 与圆2C _______;(2)当21r r l +=时,圆1C 与圆2C ______; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C ____;(4)当||21r r l -=时,圆1C 与圆2C ___; (5)当||21r r l -<时,圆1C 与圆2C ______.

必修二 圆的方程(例+练)2019年

圆的方程 1、已知圆与y 轴相切,圆心在直线x-3y=0,且被直线y=x 截得的弦长为72,求该圆的方程. 2、动点P 在圆4:2 2=+y x C 上运动,求它与定点A (3,1)相连的线段的中点Q 的轨迹方程。 ()对称的圆的方程。关于、求圆0241:322=+-=+-y x y x C 1、已知一圆过P(4,-2)、Q(-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程. 2、的方程。求圆两点,且轴的正半轴交于与轴相切于点与圆C B A y T x C 2,|AB |,),0,1(= 3、过原点O 作圆C:x 2+y 2-8x=0的弦OA 。 (1)求弦OA 中点M 的轨迹方程;(2)过圆C 上任意一点A 作x 轴的垂线到B ,求AB 中点N 点的轨迹方程. 4、圆C 与圆22 (1)1x y -+=关于直线y x =-对称,求圆C 的方程。 5、求与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程.

6、已知点P(0,5)及圆C :x 2+y 2 +4x -12y +24=0. (1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程; (2)求圆C 内过点P 的弦的中点的轨迹方程. 题型二 直线与圆的位置关系 1、已知圆C 的方程为0322 2=--+y y x ,过点(1,2)P -的直线l 与圆C 交于,A B 两点,若使AB 最大,则直线l 的方程是________________;若使AB 最小,则直线l 的方程是________________。 2、过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________. 3、若曲线21x y -=与直线b x y +=有一个交点,则b 的取值范围是 ; 若有两个交点,则b 的取值范围是 . 4、若实数x ,y 满足x 2+y 2 -6y+5=0.求: (1)的取值范围;1 1y -+x (2)的取值范围;y x -3;(3)().422的取值范围y x +-.

新人教版必修二高中数学《圆的标准方程》教学设计

高中数学 《圆的标准方程》 教学设计 新人教版必修二2 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出) P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222()()x a y b r -+-= ② 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 总结出点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+-=2r ?点在圆上 (2)2200()()x a y b -+-<2r ?点在圆内 (3)2200()()x a y b -+->2r ?点在圆外 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1) 222=+y x ; (2) 5)1()3(22=-+-y x ; (3)222)1()2(a y x =+++(0≠a )。

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

相关主题
文本预览
相关文档 最新文档