当前位置:文档之家› 高通量基因芯片检测系统

高通量基因芯片检测系统

高通量基因芯片检测系统
高通量基因芯片检测系统

浙江大学

科技创新平台

购置大型贵重精密仪器设备项目可行性论证与审批表

设备名称:高通量基因芯片检测系统平台名称:浙江加州国际纳米研究院

经费来源:省拔专项经费

项目负责人:程家安

填表日期:2006.6.10

浙江大学实验室与设备管理处制

(2005年10月版)

购置大型贵重精密仪器设备项目可行性论证与审批报告

类:即基因芯片(Genechip,DNAchip,)、蛋白芯片(Proteinchip)、芯片实验室

审批意见

信息材料-基因芯片简介

基因芯片 Gene Chip 羽【内容摘要】 基因芯片技术是生物芯片的一种,它是生命科学领域里兴起的一项高新技术,它集成了微电子制造技术、激光扫描技术、分子生物学、物理和化学等先进技术。本文简要阐述了基因芯片的定义、特点、分类、工作原理及应用,并提出了基因芯片进一步发展所存在的问题。 Gene chip technology is a kind of biological chip which is a new technology integrating the microelectronics manufacturing technology, laser scanning technology, molecular biology, physics and chemistry and other advanced technology. Gene chip used a large number of specific oligonucleotide fragment or gene fragment as a probe, and fixed wafer, glass sheet, plastic sheet or nylon substrate fixed on the support which combined with the device for photoelectric measurement regularly form a two-dimensional array, and the probe will hybridize with the gene in labeled sample lead to the change electrical signal. The article describes the definition and characteristics of gene chip as well as the classification, working principle and application briefly. And put forward some existing problems for the further development of gene chip in the end. 【关键词】 Gene Chip DNA mRNA蛋白质遗传疾病核苷酸序列蚀刻打印【正文】 一、生物芯片 生物芯片是指将成千上万的靶分子(比如DNA、RNA或蛋白质等)经过一定的方法有序地固化在面积较小的支持物(如玻璃片、硅片、尼龙膜等)上,组成密集分子排列,然后将已经标记的样品与支持物上的靶分子进行杂交,经洗脱、激光扫描后,运用计算机将所得的信号进行自动化分析。 这种方法不仅节约了试剂与样品,而且节省了大量的人力、物力与时间,使检测更为快速、准确、敏感,是目前生物检测中效率高、最为敏感和最具前途的

生物芯片研究进展分子生物学论文

生物芯片研究进展 摘要 生物芯片是切采用生物技术制备或应用于生物技术的微处理器是便携式生物化学分析器的核心技术。通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。生物芯片发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统或称缩微芯片实验室。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。本文主要阐述了生物芯片技术种类和应用方面的近期研究进展。 关键词 生物芯片,疾病诊断,研究运用,基因表达 基因芯片的种类 基因芯片产生的基础则是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。根据基因芯片制造过程中主要技术的区别,下面主要介绍四类基因芯片。 一、光引导原位合成技术生产寡聚核苷酸微阵列 开发并掌握这一技术的是Affymetrix公司,Affymetrix采用了照相平板印刷技术技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。 原位合成法主要为光引导聚合技术(Light-directed synthesis),它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子。光引导聚合技术是照相平板印刷技术(photolithography)与传统的核酸、多肽固相合成技术相结合的产物。半导体技术中曾使用照相平板技术法在半导体硅片上制作微型电子线路。固相合成技术是当前多肽、核酸人工合成中普遍使用的方法,技术成熟且已实现自动化。二者的结合为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。 Affymetrix公司已有诊断用基因芯片成品上市,根据用途可以分为三大类,分别为基因表达芯片、基因多态性分析芯片和疾病诊断芯片,基因表达分析芯片和基因多态性分析芯片主要用于研究机构和生物制药公司,可以用来寻找新基因、基因测序、疾病基因研究、基因制药研究、新药筛选等许多领域,Affymetrix公司主要生产通用寡聚核苷酸芯片;疾病诊断芯片则主要用于医学临床诊断,包括各种遗传病和肿瘤等,目前Affymetrix公司生产

生物芯片及应用简介

生物芯片及应用简介 简介 生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。 生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量

常用分子生物学软件简介

常用分子生物学软件简 介 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

常用分子生物学软件 一、基因芯片: 1、基因芯片综合分析软件。 ArrayVision 一种功能强大的商业版基因芯片分析软件,不仅可以进行图像分析,还可以进行数据处理,方便protocol的管理功能强大,商业版正式版:6900美元。Arraypro Media Cybernetics公司的产品,该公司的gelpro, imagepro一直以精确成为同类产品中的佼佼者,相信arraypro也不会差。 phoretix? Array Nonlinear Dynamics公司的基因片综合分析软件。 J-express 挪威Bergen大学编写,是一个用JAVA语言写的应用程序,界面清晰漂亮,用来分析微矩阵(microarray)实验获得的基因表达数据,需要下载安装JAVA运行环境后后,才能运行。 2、基因芯片阅读图像分析软件 ScanAlyze ,斯坦福的基因芯片基因芯片阅读软件,进行微矩阵荧光图像分析,包括半自动定义格栅与像素点分析。输出为分隔的文本格式,可很容易地转化为任何数据库。 3、基因芯片数据分析软件 Cluster

斯坦福的对大量微矩阵数据组进行各种簇(Cluster)分析与其它各种处理的软件。 SAM Significance Analysis of Microarrays 的缩写,微矩阵显着性分析软件,EXCEL软件的插件,由Stanford大学编制。 4.基因芯片聚类图形显示 TreeView 斯坦福开发的用来显示Cluster软件分析的图形化结果。现已和Cluster成为了基因芯片处理的标准软件。 FreeView 是基于JAVA语言的系统树生成软件,接收Cluster生成的数据,比Treeview增强了某些功能。 5.基因芯片引物设计 Array Designer DNA微矩阵(microarray)软件,批量设计DNA和寡核苷酸引物工具 二、RNA二级结构。 RNA Structure RNA Sturcture 根据最小自由能原理,将Zuker的根据RNA一级序列预测RNA二级结构的算法在软件上实现。预测所用的热力学数据是最近由Turner实验室获得。提供了一些模块以扩展Zuker算法的能力,使之为一个界面友好的RNA折叠程序。允许你同时打开多个数据处理窗口。主窗口的工具条提供一些基本功能:打开文件、导入文件、关闭文件、设置程序参数、重排窗口、以及即时帮助和退

个体化医学检测微阵列基因芯片技术规范

个体化医学检测 微阵列基因芯片技术规范

微阵列基因芯片是基于DNA分子杂交技术原理研制,通过探针结合碱基互补序列的单链核酸,从而确定其相应序列来识别基因或其产物。能够同时快速检测多个基因及其多个位点,在多态性分析、突变分析、基因表达谱测定及杂交测序等多领域具有广泛应用价值。 临床诊断技术使用的微阵列基因芯片,可快速鉴定病原体、检测遗传突变及基因表达,更早更方便的检测肿瘤基因标志,检测药物反应和代谢相关基因多态性来指导临床个体化治疗。 本规范旨在对个体化医学检测中采用微阵列基因芯片检测核酸序列以及基因表达进行一般性技术指导,不包括行政审批要求。 本规范由全国生物芯片标准化技术委员会(SAC/TC 421)提出。 本规范起草单位:全国生物芯片标准化技术委员会、清华大学医学院、生物芯片北京国家工程研究中心、北京博奥医学检验所。 本规范起草人:项光新、李元源、王辉、邓涛、孙义民、张治位、张川、邢婉丽、程京。

1.适用范围 (1) 2.声明/警告 (1) 3.术语和定义 (1) 4.样本处理 (2) 4.1样本类型 (2) 4.2样本采集、运输与保存 (3) 4.3样本质量保证 (3) 4.4样本信息保存 (3) 5.检测各步骤分述 (4) 5.1核酸分离 (4) 5.2核酸定量(如适用) (4) 5.3核酸扩增和标记 (4) 5.4芯片杂交 (5) 5.5信号采集和数据分析 (5) 6.结果报告 (5) 7.质量控制 (5) 8.注意事项 (6) 9.参考文献 (6)

1.适用范围 本规范适用于医疗机构开展微阵列基因芯片个体化医学检测服务。 检测服务需遵循国家卫生主管部门或各专业协会发布的疾病诊疗指南或国家卫生计生委医政医管局个体化医学检测技术专家委员会发布的个体化医学检测指南。 2.声明/警告 本规范所称微阵列基因芯片诊断技术是指从医疗机构获得的临床样本中,提取核酸(DNA或RNA),进行必要的扩增和标记,标记后的靶标与基因芯片进行分子杂交,通过基因芯片扫描仪器获得基因芯片杂交的图像与数据,经计算机程序分析,并给出检测报告的全过程。 3.术语和定义 (1)聚合酶链反应polymerase chain reaction(PCR) 聚合酶链反应或多聚酶链反应是一种对特定的DNA或RNA片段在体外进行快速扩增的方法。 (2)杂交hybridization 具有一定同源序列的两条核酸单链(DNA或RNA)可以通过氢键的方式,按碱基互补配对原则相结合。 (3)突变mutation 是细胞中DNA核苷酸序列发生了稳定的可遗传的改变。 (4)点重复spot replicates 每种探针在芯片上每个阵列中的重复次数。 (5)探针probe

分子生物学名词解释

分子生物学考试重点 一、名词解释 1、分子生物学(molecular biology):分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。 2、C值(C value):一种生物单倍体基因组DNA的总量。在真核生物中,C值一般是随生物进化而增加的,高等生物的C值一般大于低等生物。 3、DNA多态性(DNA polymorphism):DNA多态性是指DNA序列中发生变异而导致的个体间核苷酸序列的差异。 4、端粒(telomere):端粒是真核生物线性基因组DNA末端的一种特殊结构,它是一段DNA序列和蛋白质形成的复合体。 5、半保留复制(semi-conservative replication):DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。这样形成的两个DNA分子与原来DNA分子的碱基顺序完全一样。一次,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA 的半保留复制。 6、复制子(replicon):复制子是指生物体的复制单位。一个复制子只含一个复制起点。 7、半不连续复制(semi-discontinuous replication):DNA复制过程中,一条链的合成是连续的,另一条链的合成是中断的、不连续的,因此

称为半不连续复制。 8、前导链(leading strand):与复制叉移动的方向一致,通过连续的5ˊ-3ˊ聚合合成的新的DNA链。 9、后随链(lagging strand):与复制叉移动的方向相反,通过不连续的5ˊ-3ˊ聚合合成的新的DNA链。 10、AP位点(AP site):所有细胞中都带有不同类型、能识别受损核酸位点的糖苷水解酶,它能特异性切除受损核苷酸上N-β糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点。 11、cDNA(complementary DNA):在体外以mRNA为模板,利用反转录酶和DNA聚合酶合成的一段双链DNA。 12、C值反常现象(C value paradox):也称C值谬误。指C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然的联系。 13、DNA甲基化(DNA methylation):CpG二核苷酸(CpG岛)通常成串出现在DNA上,在甲基转移酶的作用下,胞嘧啶(C)的第5位碳原子能被修饰加上甲基。这种现象称为DNA甲基化。 14、DNA聚合酶(DNA polymerase):一种催化由脱氧核糖核苷三磷酸合成DNA的酶。 15、DNA拓扑异构酶(DNA topoisomerase):能在闭环DNA分子中改变两条链的环绕次数的酶。 16、DNA重组技术(recombinant DNA technology):又称基因工程(genetic engineering),将不同的DNA片段按照预先的设计定向连接

分子生物学名解——自己整理

分生考点 Copyright by 孙倩1.顺式作用元件(cis-acting elements): 存在于基因内外,与基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特定的DNA序列称为顺式作用元件。 2.启动子(promoter):真核基因的启动子指的是RNA聚合酶识别、结合的基因转录调控区中启动基因转录的一段特异DNA序列,包含一组转录调控功能组件,其中每一个功能组件的DNA序列约7~20 bp。 3.典型的启动子核心序列(core sequences)是在转录起始位点上游25~35 bp处,有一保守的TATA序列,被称为TATA盒(TATA box),真核细胞的TATA盒多为TATAAAA序列。TA TA盒与原核细胞的启动子一样,对RNA聚合酶II的转录起始位点起定位作用。 4. 有一些编码蛋白质基因不含TA TA盒或起始子,多在起始位点上游约100bp内含有20~50个核苷酸的CG序列,被称做CpG岛(CpG island)。此种基因可有多个转录起始点,可产生含不同5’末端的mRNA。这些基因大多为低转录基因,编码中间代谢酶的管家基因。 5.启动子上游元件(promoter-proximal elements, 或upstream promoter elements)是一些位于TATA盒上游的DNA序列,与调节蛋白结合,调节通用转录因子与TATA盒的结合、RNA聚合酶与启动子的结合,以及转录起始复合物的形成,从而决定基因的转录效率与专一性。常见的序列是CAA T盒和GC盒。 6.一些真核细胞基因含有另一种启动子元件,称为起始子(initiator,Inr),决定启动子的强度。 7.增强子(enhancer):是能够结合特异基因调节蛋白,促进邻近或远隔特定基因表达的DNA 序列。在酵母中,被称为上游活化序列(upstream activator sequences, UASs)。增强子的作用通常与其所处的位置和方向无关。 8.沉默子(silencer)是指某些真核基因转录调控区中抑制或阻遏基因转录的一段(数百bp)DNA序列。沉默序列促进局部DNA的染色质形成致密结构,从而阻止转录激活因子结合DNA,是基因转录的负性调节因素。 9.能够帮助RNA聚合酶转录RNA的蛋白质统称转录因子(transcription factors,TF)。以反式作用方式调节基因转录的转录因子称为反式作用因子(trans-acting factor),以顺式作用方式调节基因转录的转录因子称为顺式作用蛋白(cis-acting protein)。 10.基本转录因子(general transcription factors)是RNA聚合酶结合启动子所必需的一组蛋白因子,决定三种RNA(mRNA、tRNA及rRNA)转录的类别。 11.特异转录因子(special transcription factors)为个别基因转录所必需,决定该基因的时空特异性表达。 12.常染色质(euchromatin)结构松弛,分散分布在核内的染色质,对DNase I敏感,DNA 可降解为约200 bp 或其倍数的片断;基因表达处于活性状态,故亦称为活性染色质。使用DNase I处理活性染色质时,常会出现一些高敏感位点(hypersensitive sites),通常位于转录基因的5’和3’侧翼转录调控区的蛋白结合位点附近的裸露DNA上。 13.异染色质(heterochromatin)结构高度致密,处于凝聚状态的染色质,对DNase I不敏感。基因表达处于阻遏状态。 14.染色质重塑(chromatin remodeling)通过改变基因的启动子和调节序列区域的染色质结构来调节基因的表达,称为染色质重塑,也称为核小体重塑(nucleosome remodeling)。主要包括:CpG岛甲基化和组蛋白共价修饰。 15.核小体重塑(nucleosome remodeling):ATP依赖性核小体重塑复合体参与的核小体的移位、替换和去组装改变等。核小体重塑过程: 基因活化蛋白结合;ATP依赖性酶蛋白复合体结合转录活性区;A TP依赖性酶水解A TP,提供能量;移去或替换核小体。 16.组蛋白修饰包括组蛋白的乙酰化、甲基化、磷酸化、泛素化和多聚ADP-核糖基化。这些

基因芯片数据处理流程与分析介绍

基因芯片数据处理流程与分析介绍 关键词:基因芯片数据处理 当人类基因体定序计划的重要里程碑完成之后,生命科学正式迈入了一个后基因体时代,基因芯片(microarray) 的出现让研究人员得以宏观的视野来探讨分子机转。不过分析是相当复杂的学问,正因为基因芯片成千上万的信息使得分析数据量庞大,更需要应用到生物统计与生物信息相关软件的协助。要取得一完整的数据结果,除了前端的实验设计与操作的无暇外,如何以精确的分析取得可信数据,运筹帷幄于方寸之间,更是画龙点睛的关键。 基因芯片的应用 基因芯片可以同时针对生物体内数以千计的基因进行表现量分析,对于科学研究者而言,不论是细胞的生命周期、生化调控路径、蛋白质交互作用关系等等研究,或是药物研发中对于药物作用目标基因的筛选,到临床的疾病诊断预测,都为基因芯片可以发挥功用的范畴。 基因表现图谱抓取了时间点当下所有的动态基因表现情形,将所有的探针所代表的基因与荧光强度转换成基本数据(raw data) 后,仿如尚未解密前的达文西密码,隐藏的奥秘由丝丝的线索串联绵延,有待专家抽丝剥茧,如剥洋葱般从外而内层层解析出数千数万数据下的隐晦含义。 要获得有意义的分析结果,恐怕不能如泼墨画般洒脱随兴所致。从raw data 取得后,需要一连贯的分析流程(图一),经过许多统计方法,才能条清理明的将raw data 整理出一初步的分析数据,当处理到取得实验组除以对照组的对数值后(log2 ratio),大约完成初步的统计工作,可进展到下一步的进阶分析阶段。

图一、整体分析流程。基本上raw data 取得后,将经过从最上到下的一连串分析流程。(1) Rosetta 软件会透过统计的model,给予不同的权重来评估数据的可信度,譬如一些实验操作的误差或是样品制备与处理上的瑕疵等,可已经过Rosetta error model 的修正而提高数据的可信值;(2) 移除重复出现的探针数据;(3) 移除flagged 数据,并以中位数对荧光强度的数据进行标准化(Normalized) 的校正;(4) Pearson correlation coefficient (得到R 值) 目的在比较技术性重复下的相似性,R 值越高表示两芯片结果越近似。当R 值超过0.975,我们才将此次的实验结果视为可信,才继续后面的分析流程;(5) 将技术性重复芯片间的数据进行平均,取得一平均之后的数据;(6) 将实验组除以对照组的荧光表现强度差异数据,取对数值(log2 ratio) 进行计算。 找寻差异表现基因 实验组与对照组比较后的数据,最重要的就是要找出显著的差异表现基因,因为这些正是条件改变后而受到调控的目标基因,透过差异表现基因的加以分析,背后所隐藏的生物意义才能如拨云见日般的被发掘出来。 一般根据以下两种条件来筛选出差异表现基因:(i) 荧光表现强度差异达2 倍变化(fold change 增加2 倍或减少2倍) 的基因。而我们通常会取对数(log2) 来做fold change 数值的转换,所以看的是log2 ≧1 或≦-1 的差异表现基因;(ii) 显著值低于0.05 (p 值< 0.05) 的基因。当这两种条件都符合的情况下所交集出来的基因群,才是显著性高且稳定的差异表现基因。

基因芯片技术及其应用简介(精)

基因芯片技术及其应用简介 生物科学学院杨汝琪 摘要:随着基因芯片技术的发展,基因芯片越来越多的被人们利用,它可应用于生活中的方方面面,如:它可以应用于医学、环境科学、微生物学和农业等多个方面,基因技术的发展将有利于社会进一步的发展。 关键词:基因芯片;技术;应用 基因(gene是载有生物体遗传信息的基本单位,存在于细胞的染色体(chromosome上。将大量的基因片段有序地、高密度地排列在玻璃片或纤维膜等载体上,称之为基因芯片(又称DNA 芯片、生物芯片。在一块1 平方厘米大小的基因芯片上,根据需要可固定数以千计甚至万计的基因片段,以此形成一个密集的基因方阵,实现对千万个基因的同步检测。基因芯片技术是近年来兴起的生物高新技术,把数以万计的基因片段以显微点阵的方式排列在固体介质表面,可以实现基因检测的快速、高通量、敏感和高效率检测,将可能为临床疾病诊断和健康监测等领域,带来全新的技术并开拓广阔的市场。 1 基因芯片技术原理及其分类 1.1基因芯片的原理: 基因芯片属于生物芯片的一种"其工作原理是:经过标记的待测样本通过与芯片上特定位置的探针杂交,可根据碱基互补配对的原则确定靶序列[1],经激光共聚集显微镜扫描,以计算机系统对荧光信号进行比较和检测,并迅速得出所需的信息"基因芯片技术比常规方法效率高几十到几千倍,可在一次试验中间平行分析成千上万个基因,是一种进行序列分析及基因表达信息分析的强有力工具。 1.2基因芯片分类: 1.2.1根据其制造方法可分原位合成法和合成后点样法;

1.2.2根据所用载体材料不同分为玻璃芯片!硅芯片等; 1.2.3根据载体上所固定的种类可分为和寡核苷酸芯片两种; 1.2.4根据其用途可分测序芯片!表达谱芯片!诊断芯片等 2 基因芯片技术常规流程 2.1 芯片设计根据需要解决的问题设计拟采用的芯片,包括探针种类、点阵数目、片基种类等。 2.2 芯片制备将DNA, cDNA或寡核昔酸探针固定在片基上的过程。从本质上可分为两大类fz} ,一类是在片基上直接原位合成,有光蚀刻法、压电印刷法和分子印章多次压印法三种;另一类是将预先合成的探针固定于片基表面即合成点样法。 2.3 样品制备常规方法提取样品总RNA,质检控制。再逆转录为。DNAo 2.4 样品标记在逆转录过程中标记荧光素等。 2.5 芯片杂交标记的cDNA溶于杂交液中,与芯片杂交。 2.6 芯片扫描一用激光扫描仪扫描芯片。 2.7 图像采集和数据分析专用软件分析芯片图像,然后对数据进行归一化,最后以差异为两倍的标准来确定差异表达基因。 2.8 验证用定量PCR或原位杂交验证芯片结果的可信性。 3基因芯片合成的主要方法 目前已有多种方法可以将基因片段(寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种: 3.1原位合成:

基因芯片相关图像技术的简单介绍

本科课程论文 基因芯片相关图像技术的简单介绍 张大力 201330200125 指导教师邓继忠 学院名称生命科学学院专业名称14生物科学2班论文提交日期2017年6月9日

摘要 生物芯片是一种高效快速地生物学检测手段,以探针和底物的特异性结合为基本原理。其反应结果常常显示为荧光点阵列,往往具有信息量大,信息密度大的特点,人工难以识别和处理,因此多采用自动化手段进行处理,包括图像技术和计算机技术。本文简单介绍现有的几天芯片图像处理过程中所用到的图像技术。 关键词:图像技术、生物芯片、基因芯片。

1 生物芯片简介 生物芯片是20世纪90年代出现的一种将分子生物学/基因工程和芯片结合的一项技术,根据性能可分为功能芯片和信息芯片两大类。 功能芯片是指在芯片上集成一系列反应所需的试剂和条件,在一块芯片生完成固定的,程序化的,复杂的反应,从而大大减少检测人员的劳动强度,并使检测过程快速方便。 信息芯片又可以根据芯片探针和探测目标的不同分为基因芯片、蛋白芯片、细胞芯片、组织芯片等。[1]信息芯片是现在广泛使用的一类芯片,是在芯片基质材料上安装许多,基质可以是玻璃、金属、尼龙或者其他材料。基因芯片又是信息芯片中最常使用的。 生物芯片上探针可与样品液体中的目标的特异性结合,结合的产物可以经过处理,在激光的照射下发出特定波长的荧光,如果没有发生结合的探针或者目标不会发出荧光。 用特定的光照射反应后的芯片,使其上面发生特异性结合的部位发出荧光,再用技术手段取得此时芯片的图像。通过对芯片图像中荧光的位置,颜色、强弱进行分析可以推测基因芯片上探针发生反应的情况。进而得知样品中待测目标的情况,包括样品中某同可以和探针特异性结合的目标是否存在,含量、浓度是多少等,这些信息可以作为进一步判断的依据。 2 生物芯片图像信息的采集 反应后经光源照射发出荧光的芯片包含我们所需要的信息,所谓基因芯片的扫描就是指将含有大量的以微阵列方式排列的生物杂交反应样点的基因芯片以图像的方式读取出来,且在保证样点信息的能够准确描述前提下,扫描图像转变成可供计算机处理的数字图像[2]。基因芯片以外的生物芯片的与基因芯片类似。 常见的生物芯片扫描仪有两种分别是:CCD 系统扫描仪和激光共聚焦扫描仪,中CCD 扫描仪的应用较为广泛。[3]

综述基因芯片技术、蛋白芯片技术的原理及应用。

综述基因芯片技术、蛋白芯片技术的原理及应用。 1.1 基因芯片是生物芯片技术中发展最成熟和最先实现商品化的产品。基因芯片是基于核酸探针互补杂交技术原理而研制的。所谓核酸探针只是一段人工合成的碱基序列,在探针上连接上一些可检测的物质,根据碱基互补的原理,利用基因探针到基因混合物中识别特定基因。基因芯片,又称DNA芯片,DNA微阵列(DNAmicroar ray),和我们日常所说的计算机芯片非常相似,只不过高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,通过已知碱基顺序的DNA片段,来结合碱基互补序列的单链DNA,从而确定相应的序列,通过这种方式来识别异常基因或其产物等。目前,比较成熟的产品有检测基因突变的基因芯片和检测细胞基因表达水平的基因表达谱芯片。基因芯片技术主要包括四个基本技术环节:芯片微阵列制备、样品制备、生物分子反应和信号的检测及分析。 目前制备芯片主要采用表面化学的方法或组合化学的方法来处理固相基质如玻璃片或硅片,然后使DNA片段或蛋白质分子按特定顺序排列在片基上。目前已有将近40万种不同的DNA分子放在1平方厘米的高密度基因芯片,并且正在制备包含上百万个DNA探针的人类基因芯片。生物样品的制备和处理是基因芯片技术的第二个重要环节。生物样品往往是非常复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片进行反应。要将样品进行特定的生物处理,获取其中的蛋白质或DNA、RNA等信息分子并加以标记,以提高检测的灵敏度。第三步是生物分子与芯片进行反应。芯片上的生物分子之间的反应是芯片检测的关键一步。通过选择合适的反应条件使生物分子间反应处于最佳状况中,减少生物分子之间的错配比率,从而获取最能反映生物本质的信号。基因芯片技术的最后一步就是芯片信号检测和分析。目前最常用的芯片信号检测方法是将芯片置入芯片扫描仪中,通过采集各反应点的荧光强弱和荧光位置,经相关软件分析图像,即可以获得有关生物信息。 自从1992年Affymetrix公司首次合成第一块基因芯片诞生以来,在之后的十几年里该技术以其高通量、平行性、多样化、微型化、自动化的显著特点被广泛应用到了各个领域,展现出了巨大的发展前景。 1)在医学上的应用:

基因芯片检测服务内容和技术指标

基因芯片检测服务内容和技术指标 一、服务内容说明: 、项目服务总样本量为:例,在合同订立后个月内完成检测,并完成例数据的生物信息学分析。 2、使用公司的? ,该芯片产品说明、技术指标等内容见下。 3、实验过程(包括样品收集、处理和运输;实验实施;数据处理及后续生物信息学 分析)中的具体内容: 提供项目总体实施方案,包括实验设计,实验样品准备,实验操作流程,数据处理,数据分析等部分。 ()实验设计中包括,对实验总体方案的设计,和对血液离体后快速分离核酸的方法,实验批次间的数据归一化问题,指控样本的选择及数量等问题的说明; ()实验实施中包括,对样本采集的要求,细胞数量质量的规定,核酸质量的规定,样本保存运输的条件及要求; ()实验操作中包括,提供样本前处理,样本核酸抽提,核酸质量控制及后续实验的整体详细的规范操作流程; ()数据处理中包括,数据标准化,如何处理质量较差的样本,如何特殊处理临界样本,如何进行批次间指控等特殊情况的处理说明; ()数据分析中包括,常规的选择差异基因,并根据顾客需求,设计定制服务。 要求提供分析总体方案和相应问题的解决策略。 二、技术指标: 1、必须提供公司在中国区的服务授权书,即:公司的认证证书; 2、必须是公司优秀服务商,并提供颁发的优秀服务商证书; 3、公司必须有完善的质量管理体系,包括 (1)有独立的部门, (2)有完善的,提供相应的文件, (3)有认证,提供质量管理体系的认证书, (4)有级实验室,提供相应的(病原微生物实验室备案凭证), 4、生物信息学分析方面,要有很强的分析能力或者成熟软件。 5、服务水平及反馈信息: ()实验需达到天处理个样本以上的能力,并提供完整的数据质量控制和质量分析报告,完成数据的初步分析。 ()返回给客户的数据包括: ()从样本中抽提的质量报告(),得率及质量报告,片度化后的得率及质量报告(所有应提供电泳或质检图); ()所有芯片扫描的原始文件,包括、、、、格式原始文件及原始扫描图片文件; ()返回总体质量评估报告和初步数据分析; ()定制化的分析流程,分析策略,源代码(若需要使用开源软件编写程序)及最终结果。

基因芯片技术及其应用(精)

基因芯片技术及其应用 李家兴1001080728 园艺107 基因芯片( gene chip, DNA chip, DNA microarray 又被称为DNA芯片、DNA微阵列和生物芯片, 是指以大量人工合成的或应用常规分子生物学技术获得的核酸片段作为探针, 按照特定的排列方式和特定的手段固定在硅片、载玻片或塑料片上, 一个指甲盖大小的芯片上排列的探针可以多达上万个[1- 3]。在使用时,先将所研究的样品标记, 然后与芯片上的寡聚核苷酸探针杂交,再用激光共聚焦显微镜等设备对芯片进行扫描, 配合计算机软件系统检测杂交信号的强弱, 从而高效且大规模地获得相关的生物信息。此项技术将大量的核酸分子同时固定在载体上, 一次可检测分析大量的DNA和RNA, 解决了传统核酸印迹杂交技术复杂、自动化程度低、检测目标分子数量少、成本高、效率低等的缺点[4]。此外, 通过设计不同的探针阵列( array , 利用杂交谱重建DNA序列, 还可实现杂交测序( sequencing by hybridization,SBH [5]。目前, 该技术在基因表达研究、基因组研究、序列分析及基因诊断等领域已显示出重要的理论和应用价值[6]。 1 基因芯片技术的产生和发展 21 世纪将是生命科学的世纪, 基因芯片技术是近年产生的一项生物高新技术, 它将像计算机一样成为21 世纪即将来临的又一次新兴革命的奠基石[7,8]。基因芯片技术的产生与发展与人类基因组计划(Human Genome Project, HGP 的研究密不可分[9]。人类基因组的大量信息需要有一种快速、敏感、平行检测的技术,随着越来越多的基因被解码, 基因的功能研究成为迫切需要解决的课题。在这一背景下, 以基因芯片技术为主体的生物芯片诞生了, 它被誉为是20 世纪90 年代中期以来影响最深远的重大科技进展之一。基因芯片技术充分结合灵活运用了寡核苷酸合成、固相合成、PCR 技术、探针标记、分子杂交、大规模集成电路制造技术、荧光显微检测、生物传感器及计算机控制和图像处理等多种技术, 体现了生物技术与其他学科相结合的巨大潜力。基因芯片技术的理论基础是核酸杂交理论, Southern 印迹可以看作是生物芯片的雏形; 其后, 人们又发明了一个以膜片为介质基础的克隆库扫描

常用分子生物学软件简介

常用分子生物学软件 一、基因芯片: 1、基因芯片综合分析软件。 ArrayVision 7.0 一种功能强大的商业版基因芯片分析软件,不仅可以进行图像分析,还可以进行数据处理,方便protocol的管理功能强大,商业版正式版:6900美元。 Arraypro 4.0 Media Cybernetics公司的产品,该公司的gelpro, imagepro一直以精确成为同类产品中的佼佼者,相信arraypro也不会差。 phoretix?Array Nonlinear Dynamics公司的基因片综合分析软件。 J-express 挪威Bergen大学编写,是一个用JAVA语言写的应用程序,界面清晰漂亮,用来分析微矩阵(microarray)实验获得的基因表达数据,需要下载安装JAVA运行环境JRE1.2后(5.1M)后,才能运行。 2、基因芯片阅读图像分析软件 ScanAlyze 2.44 ,斯坦福的基因芯片基因芯片阅读软件,进行微矩阵荧光图像分析,包括半自动定义格栅与像素点分析。输出为分隔的文本格式,可很容易地转化为任何数据库。 3、基因芯片数据分析软件 Cluster 斯坦福的对大量微矩阵数据组进行各种簇(Cluster)分析与其它各种处理的软件。 SAM Significance Analysis of Microarrays 的缩写,微矩阵显著性分析软件,EXCEL软件的插件,由Stanford大学编制。 4.基因芯片聚类图形显示 TreeView 1.5 斯坦福开发的用来显示Cluster软件分析的图形化结果。现已和Cluster成为了基因芯片处理的标准软件。 FreeView 是基于JAVA语言的系统树生成软件,接收Cluster生成的数据,比Treeview增强了某些功能。 5.基因芯片引物设计 Array Designer 2.00 DNA微矩阵(microarray)软件,批量设计DNA和寡核苷酸引物工具 二、RNA二级结构。 RNA Structure 3.5 RNA Sturcture 根据最小自由能原理,将Zuker的根据RNA一级序列预测RNA二级结构的算法在软件上实现。预测所用的热力学数据是最近由T urner实验室获得。提供了一些模块以扩展Zuker算法的能力,使之为一个界面友好的RNA折叠程序。允许你同时打开多个数据处理窗口。主窗口的工具条提供一些基本功能:打开文件、导入文件、关闭文件、设置程序参数、重排窗口、以及即时帮助和退出程序。RNAdraw中一个非常非常重要的特征是鼠

基因芯片技术论文

生物技术导论 ——基因芯片技术

基因芯片技术 摘要:基因芯片技术具有无可比拟的高效、快速和多参量特点,使其进行基因研究、法医鉴定、疾病检测和药物筛选等方面远远超过了传统方式方法在不远的将来,用它制作的微缩分析仪将广泛地应用于分子生物学、医学基础研究、临床诊断治疗、新药开发、司法鉴定、食品卫生监督、生物武器战争等领域。 关键字:基因芯片简介、基因芯片的种类、基因芯片技术、基因芯片的应用技术举例及其应用领域 一、基因芯片简介 基因芯片(Gene Chip)通常指DNA芯片,其基本原理是将指大量寡核苷酸分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强弱进而判断样品中靶分子的数量,是在90年代中期发展出来的高科技产物。基因芯片大小如指甲盖一般,其基质一般是经过处理后的玻璃片。每个芯片的基面上都可划分出数万至数百万个小区。在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子(也叫分子探针)。 二、基因芯片的种类 基因芯片产生的基础则是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。根据基因芯片制造过程中主要技术的区别,以下是主要的三类基因芯片。 (1)光引导原位合成技术生产寡聚核苷酸微阵列 它采用了照相平板印刷技术技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子,为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。 (2)微电子芯片 微电子基因芯片,其基质全部以硅、锗与基础的半导体材料,在其上构建25-400个微铂电极位点,各位点可由计算机独立或组合控制。它通过相似微电极的电场变化来使核酸结合,由于引入“电子严谨度”参数使芯片检测通过靶、探针序列特征和使用者要求来控制杂交过程中的严格性。 (3)微量点样技术 使用这种方法生产的芯片上探针不受探针分子大小种类的限制,能够灵活机动地根据使用者的要求制作出符合目的的芯片。由于对检测仪的要求很高,其使用范围受到很大限制

基因芯片技术及其应用

基因芯片技术及其应用摘要: DNA芯片技术是指在固相支持物上原位合成寡核苷酸,或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。 关键词 DNA芯片制备检测应用 随着人类基因组计划的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组测序得以测定,基因序列数据正在以前所未有的速度迅速增长。DNA芯片的出现是科学发展的必然产物。本文就DNA芯片的制备及其在医学领域的应用予以阐述。 1 基因芯片的制备及检测技术[1-4] 1.1 基因芯片的制备方法 1.1.1 原位合成法其中最具代表的是原位光刻合成法。该法是利用分子生物学、微电光刻技术及计算机技术等直接在基片上合成所需的DNA探针。除原位光刻合成法外,原位合成法还包括原位喷印合成和分子印章在片合成法。 1.1.2 直接点样法该法是将制备好的DNA(cDNA)片段直接点在芯片上。近来有人提出用电定位捕获法和选择性沉淀法制备芯片。 1.1.3 电定位捕获法是将生物素标记的探针在电场的作用下快速地固定在含有链霉素亲和素的琼脂糖凝胶膜上。由于生物素与链霉素亲和素的强亲合力,使得探针的固定更加容易和牢固。在电场的作用下,靶基因能快速地在杂交部位积聚,大大缩短了杂交时间,提高了杂交的效率,且改变电场电极的方向可以除去未杂交或低效率杂交的靶基因。 1.1.4 选择性沉淀法该技术是用金属纳米粒标记探针的方法来制备微阵列,靶基因在芯片上与探针杂交后发生选择性沉淀,通过检测沉淀物的电化学值等来获取相应的生物信息。

基因芯片检测试剂盒

基因芯片检测试剂盒 研发背景 致病微生物是影响人类健康、食品安全的主要因素之一。对于致病微生物的检测除了传统的免疫学检测之外,分子生物学检测以其灵敏度高、检测时间短等特点得到越来越广泛的应用。基因芯片检测试剂盒是利用高通量生物芯片检测技术制备而成的快速集成检测产品,该类产品灵敏快速、信息量大、操作便捷,可对样品中多种致病菌同时进行检测分析。目前,天津生物芯片已自行研发出8种基因芯片检测试剂盒产品(检测菌种总计可达69种菌,44种血清型)。这些产品已在出入境检验检疫局、中国CDC及各省市CDC应用,效果良好。 核心技术 掌握利用细菌表面多糖抗原合成基因簇中的特异基因筛选特异分子标识的关键技术,已获得了 建立了当前国际上容量最大的致病微生物特异分子标识库——包括520余种不同细菌的特异分 ●种属水平——拥有121个细菌种属水平的特异分子标识。 ●血清型水平——拥有针对405种血清型的特异分子标识。 在FEMS Microbiology Reviews、Journal of Bacteriology等国际微生物权威期刊上发表65篇关于 具有丰富的菌株资源——菌种库中共有标准菌株3500余株、临床分离株8000余株,其中包括 产品特性 芯片所用探针均经过生物信息学分析,确保了每条探针都有着较高的种内保守性和种间特异性, 芯片所用探针均经过大量菌株实验验证,监测范围内和范围外均经过了标准株和临床株的双重 实用性强。针对高致病性或者食品、水产品、饮用水中较常出现并且对人类有着较高威胁的致 灵敏度高。可实现对检测菌1ng DNA的检测。 1

2.4性能指标 高特异性和高保守性:实现对每一种检测菌的准确检测,确保试剂盒具有较高的保守性和特异 高灵敏性:当样品中检测菌的DNA量达到1ng时,可实现对检测菌的准确检测。 高重复性:针对每一种检测菌多次重复可实现100%的重复检测。 稳定性:有效期长达6个月。 2.5订货信息

相关主题
文本预览
相关文档 最新文档