数学:232两个变量之间的线性关系
- 格式:pdf
- 大小:685.06 KB
- 文档页数:19
2.3 变量的相关性 2.3.1 变量间的相关关系 2.3.2 两个变量的线性相关学习目标:1.理解两个变量的相关关系的概念.(重点)2.会画散点图,并利用散点图判断两个变量是否具有相关关系.(重点)3.理解最小二乘法原理,会求回归直线方程.(难点)[自 主 预 习·探 新 知]一、变量间的相关关系 1.两个变量的关系2.将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. 3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.二、两个变量的线性相关 1.最小二乘法设x 、Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx .当x 取值x i (i =1,2,…,n )时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n )刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即Q = i =1n(y i -a -bx i )2作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.2.回归直线方程的系数计算公式1.思考辨析(1)回归直线方程中,由x的值得出的y值是准确值.()(2)回归直线方程一定过样本点的中心.()(3)回归直线方程一定过样本中的某一个点.()(4)选取一组数据中的部分点得到的回归方程与由整组数据得到的回归方程是同一个方程.()[答案](1)×(2)√(3)×(4) ×2.过(3,10),(7,20),(11,24)三点的回归直线方程是()A.y^=1.75+5.75xB.y^=-1.75+5.75xC.y^=5.75+1.75xD.y^=5.75-1.75xC[代入系数公式得b^=1.75,a^=5.75.代入直线方程,求得y^=5.75+1.75x.故选C.]3.如图2-3-1所示的两个变量不具有相关关系的有________.图2-3-1①④[①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x,y不具有相关关系.]4.若施肥量x(kg)与水稻产量y(kg)的线性回归方程为y^=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.650[把x=80代入回归方程得其预测值y^=5×80+250=650(kg).][合作探究·攻重难]相关关系的判断(1)下列两个变量之间的关系,哪个不是函数关系()A.正方体的棱长和体积B.圆半径和圆的面积C.正n边形的边数和内角度数之和D.人的年龄和身高(2)对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图①;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图②.由这两个散点图可以判断()图2-3-2A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关[思路探究]结合相关关系,函数关系的定义及正负相关的定义分别对四个选项作出判断.(1)D(2)C[(1)A、B、C都是函数关系,对于A,V=a3;对于B,S=πr2;对于C,g(n)=(n-2)π.而对于年龄确定的不同的人可以有不同的身高,∴选D. (2)由图象知,变量x与y呈负相关关系;u与v呈正相关关系.][跟踪训练]1.某公司2009~2019年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如下表所示:A.B.利润中位数是18,x与y有负线性相关关系C.利润中位数是17,x与y有正线性相关关系D.利润中位数是17,x与y有负线性相关关系C[由表知,利润中位数是12(16+18)=17,且y随x的增大而增大,故选C.]求回归直线方程[探究问题]1.怎样判断一组数据是否具有线性相关关系?[提示]画出散点图,若点大致分布在一条直线附近,就说明这两个变量具有线性相关关系,否则不具有线性相关关系.2.最小二乘法的实质是什么?任何一组数据都可以由最小二乘法得出回归直线方程吗?[提示]实际上,最小二乘法就是从整体上看,使各点与回归直线的距离最小.用最小二乘法求回归直线方程的前提是所给数据是线性相关的,不是线性相关的数据,求出回归直线方程是无意义的.3.回归系数b^的含义是什么?[提示]b^代表x每增加一个单位,y的平均增加单位数.当b^>0时,两变量呈正相关;当b^<0时,两变量呈负相关.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:(2)如果y与x具有线性相关关系,求y关于x的回归直线方程.[思路探究]画散点图→确定相关关系→求回归直线系数→写回归直线方程[解](1)画散点图如下:由上图可知y与x具有线性相关关系.(2)列表、计算:b^=∑i=110x i y i-10x y∑i=110x2i-10x2=55 950-10×55×91.738 500-10×552≈0.668,a^=y-b^x=91.7-0.668×55=54.96.即所求的回归直线方程为:y^=0.668x+54.96.下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(1)(2)请根据上表提供的数据,用最小二乘法求出回归直线方程y ^=bx +a ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?【导学号:31892019】[思路探究] (1)以产量为横坐标,以生产能耗对应的测量值为纵坐标,在平面直角坐标系内画散点图;(2)应用计算公式求得线性相关系数b ^,a ^的值;(3)实际上就是求当x =100时,对应的v 的值. [解] (1)散点图,如图所示:(2)由题意,得∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑i =14x 2i =32+42+52+62=86,∴b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a^=y -b ^x =3.5-0.7×4.5=0.35,故线性回归直线方程为y ^=0.7x +0.35.(3)根据回归直线方程的预测,现在生产100吨产品消耗的标准煤为0.7×100+0.35=70.35(吨),故耗能减少了90-70.35=19.65(吨)标准煤.2.某种产品的广告费支出y (百万元)与销售额x (百万元)之间的关系如下表所示.(1)假定y (2)若广告费支出不少于60百万元,则实际销售额应不少于多少?[解] (1)设回归直线方程为y ^=bx +a ,则b ^=438-412.5660-625=25.535=5170,a ^=y -b ^x=5+8+9+114-5170×8+12+14+164=334-5170×252=-67,则所求回归直线方程为y ^=5170x -67.(2)由y ^=5170x -67≥60,得x ≥4 26051≈84,所以实际销售额不少于84百万元.[当 堂 达 标·固 双 基]1.设一个回归方程y ^=3+1.2x ,则变量x 增加一个单位时( ) A .y 平均增加1.2个单位 B .y 平均增加3个单位 C .y 平均减少1.2个单位 D .y 平均减少3个单位 A [由b^=1.2>0,故选A.]2.下列有关线性回归的说法,不正确的是( )A .变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B .在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图C .回归直线方程最能代表观测值x 、y 之间的线性关系D .任何一组观测值都能得到具有代表意义的回归直线D[只有数据点整体上分布在一条直线附近时,才能得到具有代表意义的回归直线.]3.已知变量x,y之间具有线性相关关系,其散点图如图2-3-3所示,则其回归方程可能为()A.y^=1.5x+2B.y^=-1.5x+2C.y^=1.5x-2D.y^=-1.5x-2图2-3-3B[由散点图知,变量x、y呈负相关,且回归直线在y轴上的截距大于0,故b^<0,a^>0.因此回归方程可能为y^=-1.5x+2.]4.已知变量x与y正相关,且由观测数据算得样本平均数x=3,y=3.5,则由该观测数据算得的线性回归方程可能是()A.y^=0.4x+2.3B.y^=2x-2.4C.y^=-2x+9.5D.y^=-0.3x+4.4A[因为变量x和y正相关,则回归直线的斜率为正,故可以排除选项C和D.因为样本点的中心在回归直线上,把点(3,3.5)的坐标分别代入选项A和B中的直线方程进行检验,可以排除B,故选A.]5.对具有线性相关关系的变量x和y,测得一组数据如下表所示.[解]由题意可知x=2+4+5+6+85=5,y=30+40+60+50+705=50,即样本中心为(5,50),设回归直线方程为y^=6.5x+a,∵回归直线过样本中心(5,50),^,即a^=17.5,∴50=6.5×5+a^=6.5x+17.5.∴回归直线方程为y第 11 页。
§2.3《变量间的线性相关》导学案【学习目标】1、通过收集现实问题中两个有关联变量的数据作击散点图,并利用散点图直观认识变量间的相关关系.2、了解最小二乘法的含义.3、若两个变量具有线性相关时,会求线性回归方程,并会用线性回归方程进行预测.4、了解相关系数的大小与两个变量间的相关程度的强弱关系。
【重点】会求线性回归方程,并会用线性回归方程进行预测.【难点】会判断相关系数的大小与两个变量间的相关程度的强弱关系【使用方法与学法指•导】1.用15分钟左右的时间阅读课本基础知识,从中了解变量间的线性相关问题,通过自主高效的预习,提升自己的阅读理解能力。
2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测题。
3.将预习中不能解决的问题标出来,并写到后面的“我的疑惑”处。
【预习案】一、预习练习:1、在下列两个变量的关系中,哪些是相关关系?(1)作文水平与课外阅读量之间的关系;(2)降雪量与交通事故的发生率之间的关系;(3)光照时间和果树亩产量。
2、课本P85-86(1)如何画散点图?(2)两个变量是否具有相关关系,它的散点图有什么特点?(3)两个变量的相关关系有正相关和负相关,它们在散点图上各有什么特点?你能举出一些生活中的变量成正相关和负相关的例子吗?正相关是指:________________________________________________________________ ;负相关是指:________________________________________________________________ O (4)线性相关的两个变量,其散点图有什么特点?【探究案】探究点一:1、引入问题:观察人体的脂肪含量百■分比和年龄的样木数据的散点图,这两个相关变量成正相关•我们需要进一步考虑的问题是,当人的年龄增加时,体内脂肪含量到底是以什么方式增加呢?2^在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?3、课本P87,什么叫回归直线? _______________________________________________________ ;什么叫回归方程?______________________________________________________ ;冋归直线的特点:_________________________________________________________回归直线与散点图中各点的位置应具有怎样的关系?________________________ 。
第2课时导入新课思路1思路2某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数个问题我们接着学习两个变量的线性相关——回归直线及其方程.推进新课新知探究提出问题〔1〕作散点图的步骤和方法〔2〕正、负相关的概念〔3〕什么是线性相关〔4〕看人体的脂肪百分比和年龄的散点图,当人的年龄增加时,体内脂肪含量到底是以什么方式增加的呢〔5〕什么叫做回归直线〔6〕如何求回归直线的方程什么是最小二乘法它有什么样的思想〔7〕利用计算机如何求回归直线的方程〔8〕利用计算器如何求回归直线的方程活动:学生回忆,再思考或讨论,教师及时提示指导.讨论结果:〔1〕建立相应的平面直角坐标系,将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.〔a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系〕〔2〕如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.〔3〕如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.〔4〕大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.〔5〕如以下列图:从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.〔6〕从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.那么,我们应当如何具体求出这个回归方程呢有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得到回归方程了.但是,这样做可靠吗有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数根本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距.同学们不妨去实践一下,看看这些方法是不是真的可行〔学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或根本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.〕教师:分别分析各方法的可靠性.如以下列图:上面这些方法虽然有一定的道理,但总让人感到可靠性不强.实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小〞.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式其中,b是回归方程的斜率,a是截距.推导公式①的计算比较复杂,这里不作推导.但是,我们可以解释一下得出它的原理.假设我们已经得到两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(x n,y n),且所求回归方程是^y=bx+a,其中a、b是待定参数.当变量x取x i(i=1,2,…,n)时可以得到^y=bx i+a(i=1,2,…,n),它与实际收集到的y i之间的偏差是y i-^y=y i-(bx i+a)(i=1,2,…,n).这样,用这n个偏差的和来刻画“各点与此直线的整体偏差〞是比较适宜的.由于〔y i-^y〕可正可负,为了防止相互抵消,可以考虑用∑=-niiiyy1^||来代替,但由于它含有绝对值,运算不太方便,所以改用Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(y n-bx n-a)2②来刻画n个点与回归直线在整体上的偏差.这样,问题就归结为:当a,b取什么值时Q最小,即总体偏差最小.经过数学上求最小值的运算,a,b的值由公式①给出.通过求②式的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法〔method of least square〕.〔7〕利用计算机求回归直线的方程.根据最小二乘法的思想和公式①,利用计算器或计算机,可以方便地求出回归方程.以Excel软件为例,用散点图来建立表示人体的脂肪含量与年龄的相关关系的线性回归方程,具体步骤如下:①在Excel中选定表示人体的脂肪含量与年龄的相关关系的散点图〔如以下列图〕,在菜单中选定“图表〞中的“添加趋势线〞选项,弹出“添加趋势线〞对话框.〔8〕利用计算器求回归直线的方程.用计算器求这个回归方程的过程如下:所以回归方程为^y=0.577x-0.448.正像本节开头所说的,我们从人体脂肪含量与年龄这两个变量的一组随机样本数据中,找到了它们之间关系的一个规律,这个规律是由回归直线来反映的.直线回归方程的应用:①描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系.②利用回归方程进行预测;把预报因子〔即自变量x〕代入回归方程对预报量〔即因变量Y〕进行估计,即可得到个体Y值的容许区间.③利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标.如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度.应用例如思路1例1 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的比照表:〔1〕画出散点图;〔2〕从散点图中发现气温与热饮销售杯数之间关系的一般规律;〔3〕求回归方程;〔4〕如果某天的气温是2 ℃,预测这天卖出的热饮杯数.解:〔1〕散点图如以下列图所示:〔2〕从上图看到,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间呈负相关,即气温越高,卖出去的热饮杯数越少.〔3〕从散点图可以看出,这些点大致分布在一条直线的附近,因此,可用公式①求出回归方程的系数.利用计算器容易求得回归方程^y=-2.352x+147.767.(4)当x=2时,^y=143.063.因此,某天的气温为2 ℃时,这天大约可以卖出143杯热饮.思考气温为2 ℃时,小卖部一定能够卖出143杯左右热饮吗为什么这里的答案是小卖部不一定能够卖出143杯左右热饮,原因如下:1.线性回归方程中的截距和斜率都是通过样本估计出来的,存在随机误差,这种误差可以导致预测结果的偏差.2.即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x的预报值,能够与实际值y很接近.我们不能保证点〔x,y〕落在回归直线上,甚至不能百分之百地保证它落在回归直线的附近,事实上,y=bx+a+e=^y+e.这里e是随机变量,预报值^y与实际值y的接近程度由随机变量e的标准差所决定.一些学生可能会提出问题:既然不一定能够卖出143杯左右热饮,那么为什么我们还以“这天大约可以卖出143杯热饮〞作为结论呢这是因为这个结论出现的可能性最大.具体地说,假设我们规定可以选择连续的3个非负整数作为可能的预测结果,那么我们选择142,143和144能够保证预测成功〔即实际卖出的杯数是这3个数之一〕的概率最大.(1)请判断机动车辆数与交通事故数之间是否有线性相关关系,如果不具有线性相关关系,说明理由;(2)如果具有线性相关关系,求出线性回归方程. 解:〔1〕在直角坐标系中画出数据的散点图,如以下列图. 直观判断散点在一条直线附近,故具有线性相关关系. (2)计算相应的数据之和:∑=81i ix=1 031,∑=81i iy=71.6,∑=812i ix=137 835,∑=81i ii yx=9 611.7.将它们代入公式计算得b≈0.077 4,a=-1.024 1, 所以,所求线性回归方程为=0.077 4x-1.024 1.思路2例1 给出施化肥量对水稻产量影响的试验数据: (2)求出回归直线的方程. 解:(1)散点图如以下列图.故可得到 b=230770003.39930787175⨯-⨯⨯-≈4.75,a=399.3-4.75×30≈257.从而得回归直线方程是^y =4.75x+257.例2 一个车间为了规定工时定额,需要确定加工零件所花费的时间.为此进行了10次试验,请判断y 与x 是否具有线性相关关系,如果y 与x 具有线性相关关系,求线性回归方程. 解:在直角坐标系中画出数据的散点图,如以下列图.直观判断散点在一条直线附近,故具有线性相关关系.由测得的数据表可知:∑===1012,7.91,55i ix y x =38 500,∑=1012i iy =87 777,∑=101i i i y x =55 950.b=2210121015510385007.915510559501010⨯-⨯⨯-=--∑∑==x xyx yx i ii ii≈0.668. a=x b y -=91.7-0.668×55≈54.96.因此,所求线性回归方程为^y =bx+a=0.668x+54.96. 例3 10条狗的血球体积及红血球数的测量值如下:〔1〕画出上表的散点图; 〔2〕求出回归直线的方程. 解:〔1〕散点图如下. 〔2〕101=x (45+42+46+48+42+35+58+40+39+50)=44.50, 101=y (6.53+6.30+9.52+7.50+6.99+5.90+9.49+6.20+6.55+8.72)=7.37. 设回归直线方程为^y =bx+a,那么b=210121011010x xyx yx i ii ii --∑∑===0.175,a=x b y -=-0.418,所以所求回归直线的方程为^y =0.175x-0.148.点评:对一组数据进行线性回归分析时,应先画出其散点图,看其是否呈直线形,再依系数a,b 的计算公式,算出a,b .由于计算量较大,所以在计算时应借助技术手段,认真细致,谨防计算中产生错误,求线性回归方程的步骤:计算平均数y x ,;计算x i 与y i 的积,求∑x i y i ;计算∑x i 2;将结果代入公式求b ;用a=x b y -求a ;写出回归直线方程. 知能训练1.以下两个变量之间的关系哪个不是函数关系〔 〕 A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高 答案:D2.三点(3,10),(7,20),(11,24)的线性回归方程是〔 〕A.^yB.^y =1.75+5.75x C.^y D.^y =5.75+1.75x 答案:D设y 对x 呈线性相关关系.试求: 〔1〕线性回归方程^y =bx+a 的回归系数a,b ;〔2〕估计使用年限为10年时,维修费用是多少 答案:〔1〕b=1.23,a=0.08;〔2〕12.38.4.我们考虑两个表示变量x 与y 之间的关系的模型,δ为误差项,模型如下: 模型1:y=6+4x ;模型2:y=6+4x+e .〔1〕如果x=3,e=1,分别求两个模型中y 的值;〔2〕分别说明以上两个模型是确定性模型还是随机模型. 解:〔1〕模型1:y=6+4x=6+4×3=18; 模型2:y=6+4x+e=6+4×3+1=19.〔2〕模型1中相同的x 值一定得到相同的y 值,所以是确定性模型;模型2中相同的x 值,因δ的不同,所得y 值不一定相同,且δ为误差项是随机的,所以模型2是随机性模型.〔1〕画出数据的散点图;〔2〕用最小二乘法估计求线性回归方程. 解:〔1〕散点图如以下列图. 〔2〕n=5,∑=51i ix=545,x =109,∑=51i iy=116,y =23.2,∑=512i ix=60 952,∑=51i ii yx =12 952,b=2545609525116545129525-⨯⨯-⨯≈0.199,a=23.2-0.199×109≈1.509,所以,线性回归方程为y=0.199x+1.509. 拓展提升要求估计利润〔Y i 〕对科研费用支出〔X i 〕的线性回归模型. 解:设线性回归模型直线方程为:i i X Y 1^0^^ββ+=,因为:630==∑nX x i=5,6180==∑nYY i=30,现求解参数β0、β1的估计值: 方法一:3006009001200540060003020061803010006)(2221^=--=-⨯⨯-⨯=--=∑∑∑∑i i ii i X X n Y Y X n β=2, x Y 1^0^ββ-==30-2×5=20.方法二:501005620030561000)(2221^=⨯-⨯⨯-=--=∑∑x n X Y x n Y X ii i β=2, x Y 1^0^ββ-==30-2×5=20.方法三:50100)())((21^=---=∑∑x X Y Y x X ii iβ=2,x Y 1^0^ββ-==30-2×5=20.所以利润〔Y i 〕对科研费用支出〔X i 〕的线性回归模型直线方程为:i Y ^=20+2X i . 课堂小结1.求线性回归方程的步骤: 〔1〕计算平均数y x ,; (2)计算x i 与y i 的积,求∑x i y i ; (3)计算∑x i 2,∑y i 2,(4)将上述有关结果代入公式⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====xb y a x n x yx n yx x x y y x x b n i i ni ii ni i ni i i ,)())((1221121求b,a,写出回归直线方程.2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 作业习题2.3A 组3、4,B 组1、2.设计感想本节课在上节课的根底上,利用实例分析了散点图的分布规律,推导出了线性回归直线的方程的求法,并利用回归直线的方程估计可能的结果,本节课讲得较为详细,实例较多,便于同学们分析比较.思路1和思路2的例题对知识进行了稳固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,养成良好的学习态度,树立时间观,培养勤奋、刻苦的精神.。
2.3.2两个变量的线性相关教学目标:1.明确事物间的相互联系。
认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。
2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.教学重点:1.利用散点图直观认识两个变量之间的线性关系.2.根据给出的线性回归方程的系数公式建立线性回归方程.教学难点:1.作散点图和理解两个变量的正相关和负相关。
2.理解最小二乘法的思想教学过程:一、复习准备:1. 人的身高和体重之间的关系?2. 学生设计一个统计问题,并指出问题涉及的总体是什么,所涉及的变量是什么.二、讲授新课:1. 教学散点图①出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:据的图形,这样的图形叫做散点图。
正相关与负相关概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关。
如果散点图中的点散布在从左上角到右下角的区域内,称为负相关。
④讨论:你能举出一些生活中的变量成正相关或负相关的例子吗?⑤练习:一个工厂为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次调查,收集数据如下:2. 指出是正相关还是负相关。
3. 关于加工零件的个数与加工时间,你能得出什么结论? ⑥ 小结:1.散点图的画法。
2.正相关与负相关的概念。
三、回归方程1. 教学回归直线概念:① 从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线。
如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这这两个变量之间具有线形相关关系,直线叫回归直线。
②提问:从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线。
那么,怎样确定这条直线呢? 2. 教学最小二乘法:①求回归方程的关键是如何用数学的方法刻画“从整体上看,各点与此直线的距离最小”.如果直线的方程为αβ+=x y ,用()i ,,βαρ表示第i 个样本点()i i y x ,与直线之间的距离,则从总体上看各点与此直线的距离可以用所有样本点与回归直线的距离来表示,即用下面的公式()()∑==ni i Q 1,,,βαρβα来表示.注意到上面的等式对于任何实数α和β都有定义,因此可把()βα,Q 看成二元函数.这样,“从整体上看,各点与此直线的距离最小”的含义是回归方程的截距a 和斜率b 构成的点()b a ,应该是函数()βα,Q 的最小值点.特别地,当()()2,,i i i x y i αββαρ--=时,()b a ,应该使函数()()()()2222211,αβαβαββα--++--+--=n n x y x y x y Q 达到极小值,即a 和b 由公式①给出。