算术平方根优质课
- 格式:doc
- 大小:95.00 KB
- 文档页数:3
《算术平方根》教案教学目标:知识与技能1、了解算术平方根的概念,会用根号表示正数的算术平方根,并能理解算术平方根的非负性。
2、会借助平方运算求某些非负数的算术平方根。
过程与方法通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。
情感、态度与价值观通过对实际生活中问题的解决,让学生体验数学与生活实际的紧密联系。
教学重点:算术平方根的概念。
教学难点:理解算术平方根的概念。
一、创设情境,引入课题1,提出问题:美术老师为了调动同学们的绘画热情,特准备了一次画展。
为了增强画展的视觉冲击力,请工艺美术店制作几块面积不等的正方形展板。
可刚刚工艺美术店的工作人员打来电话说有两块求不出边长,做不成。
张老师请我帮忙,我正好上课,就把问题带到课堂上来了,先请大家看看。
2,用表格的形式展示正方形展板的面积。
4,根据学生的回答情况,适当的诱导学生,可设正方形的边长为x,根据正方形的面积公式有x2=7,那我们找找看那个正数的平方等于7. 22=4, 32=9,42=16再继续找,那面积就更大了。
看样子求面积为7的正方形边长确实不是那么简单的事,所以12我们也不能全怪工艺店的工作人员了。
我想告诉大家这里由x2=7求正数x, x 就是我们这节课要学习的内容《算术平方根》,从而引出算术平方根的定义。
5,板书算术平方根的定义同时课件展示。
为了加强学生独自对定义的理解和调动课堂学习气氛,由学生齐读定义两遍,然后再齐声背诵。
二,例题讲解(主要采用老师诱导的方式进行)例1 求下列各数的算术平方根(1)100 (2)4964 (3)0.01 (在这引导学生借助定义感受求100的算术平方根就是找谁的平方等于100,进一步加深学生对定义的理解。
用课件展示书写的格式,提供给学生去模仿,并教给学生100算术平方根的符号表示,理解表示100的算术平方根。
后两题可由学生自己在课堂练习本上完成,老师根据情况点评。
)三,课堂练习1, 在括号里填上适当的正数( )2=49 ( )2=144 ( )2=10000 ( )2 =0.64 ( )2=49 ( )2=4981 (增加提问:在这你们能直接说出那些数的算术平方根。
《算术平方根》6章第一节的内容。
在此之前,学生们已经掌握了数的平方,这为过渡到本节内容的学习起到了铺垫的作用。
本课是《实数》的开篇第一课,掌握好算术平方根的概念和计算,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累。
【知识与能力目标】(1)了解算术平方根的概念,懂得使用根号表示正数的算术平方根。
(2)会求正数的算术平方根并会用符号表示。
【过程与方法目标】(1)经历算术平方根概念的形成过程,理解平方与开方之间是互为逆,会求正数的算术平方根并会用符号表示。
(2)通过引导、启发学生探索、合作交流等数学活动,使学生掌握研究问题的方法。
【情感态度价值观目标】通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。
平方根的概念。
【教学难点】根据算术平方根的概念正确求出非负数的算术平方根。
(一)创设情境,复习引入1、我们知道,要求正方形的面积,只要知道边长,利用面积公式即可救出;知道面积,怎样求边长呢?如:“学校要举行美术作品比赛,小欧想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?”(1)谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?(2)大家说了很多方法,我们知道52=25,所以这个正方形画布的边长应取5分米;现在请同学们根据这一方法填写下表:2、想一想:如果正方形的面积是102dm ,它的边长是多少?表中的数,我们很容易知道是什么数的平方,但10是什么数的平方呢?这就是我们今天要学习的“算术平方根”,学习后大家说知道了。
(二)感知新知识1、算术平方根的概念(1)从填表知道正数3的平方等于9,我们把正数3叫做9的算术平方根;正数4的平方等于16,我们把正数4叫做16的算术平方根。
(2)归纳概念:一般地,如果一个正数x 的平方等于a ,即x2=a ,那么这个正数x 叫做a 的算术平方根。
a 的算术平方根记为 ,读作“根号a ”,a 叫做被开方数,规定:0的算术平方根是0。
《算术平方根》一等奖说课稿《《算术平方根》一等奖说课稿》这是优秀的说课稿文章,希望可以对您的学习工作中带来帮助!1、《算术平方根》一等奖说课稿一、教材分析1、说教材《算术平方根》是九年制义务教育人教版七年级下册第十章《实数》的第一节内容,与旧教材相比,它在这里先讲算术平方根再去学习平方根。
为后学习平方根奠定一定基础,同时也把数从有理数拓展到无理数。
这一节的教材编写思路是由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。
2、教学目标和要求根据新课标的要求及七年级学生的认知水平,我制定本节课的教学目标如下:知识技能:了解算术平方根的概念,会求正数的算术平方根。
数学思考:通过探索的大小,培养估算意识。
解决问题:通过拼正方形的活动,体验解决问题方法的多样性,展形象思维。
情感态度:通过学习算术平方根,认识数学与生活的密切关系。
通过探究活动,锻炼意志,建立自信心,提高学习热情。
3、教学的重点与难点重点:算术平方根的概念,感受无理数。
难点:探究大小的过程二、说教学理念培养学生的合作探究精神,自主学习、创新精神是新课程标准的重要理念。
课堂教学中渗透了数学的转化思想,数型结合思想,体现新课程标准中的知识与能力、情感与态度,过程与方法的三统一。
三、说教法本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化,在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是通过拼图法得出。
再通过渐进法得出的大小。
教师采用点拨的方法,启发学生主动思考,尝试用多种取值来得出的大小,进而引出无理数。
使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识。
四、说学法课堂中逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
算术平方根公开课优质课教学设计一等奖及点评《§6.1.1平方根(第1课时)——算术平方根》教学设计一、教学内容及其解析本节课是概念探究课,是义务教育课程标准实验教科书《数学》(人教版)七年级下册第6章《实数》第一节的内容.从《课程标准》来看,初中阶段主要学习有理数和实数,它们是“数与代数”领域的重要内容.对于有理数和实数,人教版初中阶段共安排三个章节的内容,分别是七上第一章《有理数》,七下第六章《实数》和九上第二十一章《二次根式》.本节课为今后学习平方根、二次根式及实数等奠定基础,而且是后续学习勾股定理和解一元二次方程等内容的预备知识.从教学内容看,揭示算术平方根概念的本质是本节课的关键.教学活动中,可从学生熟悉的实际问题情境出发,设计问题“学校举行美术作品比赛,作品尺寸不能大于26 dm2,小欧裁出边长5.1 dm的正方形画布作品能否符合要求”,从而激发兴趣展开探究.引导学生猜想,面积是1,4,9,16,25等这些对应边长是整数的正方形,再引导学生猜想面积是0.04,0.25,12.25,20.25等这些对应边长不是整数的正方形.还要引导学生说猜想的依据,逐步发现利用正方形连长与面积的关系s=a2,通过边长的大小找到符合要求的正方形美术作品,反之,对面积符合要求的正方形画布,能猜测出正方形的边长大小.研究面积为26 dm2的正方形画布的存在性,尝试把问题退到更简单的面积为2 dm2的情况,研究一类问题解决的方法.利用网格找面积是2 dm2和26 dm2的正方形,让学生初步认识无理数,由实际问题全方位、多角度分析、总结,抽象算术平方根的概念.从发展学生思维的角度,关注猜想和探究活动是抽象算术平方根概念的关键,应鼓励学生大胆猜想,抽象数学模型. 通过寻找幂的底数进行求一个非负数的算术平方根的过程,感悟化归与转化思想,模型思想,方程思想,直观猜想.这节课也是联系数学与生活的桥梁,影响着学生情感态度价值观的发展在发展运算能力的过程中,学生经历了先学习加法,后学习其逆运算减法,先学习乘法,后学习其逆运算除法的过程,因此在本节课中,在学生学习过乘方的基础上,思考是否乘方也有逆运算?在实数集的代数运算体系不断扩充完善的过程中,学生经历了连贯一致的知识建构的过程,了解运算之间的逻辑关联:在学习完算术平方根之后,后续学完平方根及开方运算的定义之后,对于运算法则、性质等算理的理解会更加深刻.通过本节课,可以进一步丰富学生学习、理解算理的经验,本节课对发展学生的运算能力有着重要的作用.二、学情分析学生已有有理数、一元一次方程等数与代数知识的储备,会用有理数刻画现实问题,具有乘方有关概念及运算的基础,理解乘方运算的本质,对加减、乘除运算的互逆关系有了明晰的认识,拥有计算正方形等几何图形面积的技能.但是,七年级学生的数学抽象能力非常薄弱,对无理数没有认识.因此,抽象出算术平方根的概念就显得非常困难.教学中应充分利用用实际问题中正方形画布的边长和面积之间的关系,抽象出数学模型,进而通过探究使学生认识到边长是无理数的情况真实存在,加深对无理数的认识,从而抽象出算术平方根的概念.具体做法是:通过寻找满足面积不大于26 dm2的正方形,以表格的形式写出其面积及其对应的边长,并引导学生思考满足条件的不仅仅只有面积可写成有理数的平方的正方形,还存在不能写成有理数平方的正方形,从而产生算术平方根的概念,且正方形的边长就是正方形面积的算术平方根.三、教学目标及其解析:1.让学生在观察、探索等活动中,获得对非负数的算术平方根特点的认识,进而得到算术平方根的概念.2.会用文字语言和符号语言表示一个数的算术平方根,会求一个非负数的算术平方根.3.在求算术平方根的过程中,感悟算术平方根的非负性,体会被开方数的大小如何影响算术平方根的大小.4.将求算术平方根的运算转化为求幂的底数的运算,在逆向思维中感悟化归思想,模型思想.善于主动思考,学会数学思考问题的方式,初步发展抽象思维,提高学生对问题的迁移能力.5.认识数学与人类生活的密切联系,初步学会用数学的眼光观察,用数学的语言表达.四、教学策略分析:1.问题性策略:通过一系列的问题串(两个问题3个追问),引导学生主动发现,积极探索,一步步理解算术平方根概念的产生的必要性,通过生活实例理解算术平方根,启发对算术平方根算理的认识;在环节一,问题1中先引导学生思考边长的平方等于26及边长的平方等于2等这一类正方形的存在性,再尝试表达出它们的边长,从而思考类似问题引出算术平方根的概念,并领会算术平方根的原理与本质是由平方而来;再通过问题2,引导学生发现正方形边长和面积之间存在的联系,理解算术平方根,建立模型思想.了解平方根概念的基础上,利用问题3-6引导学生观察分析,提出问题区别正数,负数,0的平方根的特点,总结出算术平方根的性质;通过问题8引导学生思考平方运算和算术平方根之间的关系,从而让学生了解乘方运算和开方运算互逆,从而了解数学知识之间的联系.2.程序性策略:在认知阶段,引导学生清楚算术平方根的算理过程,以具体例子让学生自己感受从平方到算术平方根的认识过程,并进行清晰示范;在联系阶段,引导学生学习算术平方根运算的步骤,从逆运算的角度理解运算,不断回到本原,固化运算技能,将运算程序化;在第三阶段,通过设计有针对性的练习,逐步实现技能自动化.3.层次性策略:教学过程中,根据学生的认知发展,对算术平方根的学习分三个层次:(1)理解算术平方根的生成过程;(2)会求非负数的算术平方根;(3)会用算术平方根的概念解决简单数学问题.在这个过程中不同学生不同层次的认知能力得到螺旋式发展.从一些比较简单的数(如完全平方数、分子分母均为完全平方数的分数等)入手,引入概念,设置疑问,在活动中让学生动手操作,再根据需要,教师从方法上指导.师生合作探究、合作学习.五、教学过程设计。
算术平方根
主讲人:
学习目标
1.了解算术平方根的概念,会用根号表示一个数的算术平方根;
2.根据算术平方根的概念求出非负数的算术平方根;
3.了解算术平方根的性质。
学习重点
根据算术平方根的概念求出非负数的算术平方根。
学习难点
了解算术平方根的性质。
教学过程
一、情境导入
在我校举行的绘画比赛中,小鸥想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形的画布边长应取多少呢?
分析:你一定脱口而出边长是5dm。
说一说,你是怎样算出来的?
因为52=25,所以这个正方形的边长应取5dm。
填表:
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
二、合作探究
1.算术平方根定义
如果正数x 2=a ,那么这个正数x 叫做a 的算术平方根。
a 的算术平方根记为a ,读作“根号a ”,a 叫作被开方数。
规定:0的算术平方根是0。
例1 求下列各数的算术平方根
(1)100(2)24
1(3)0.0001(4)224041- 分析:根据算术平方根的定义求一个数的算术平方根,只要找到一个非负数的平方等于这个数即可。
解:(1)因为102=100,所以100的算术平方根是10,即100=10;
(2)因为(23)2=49=241,所以241的算术平方根是23,即49=2
3; (3)因为(0.01)2=0.0001,所以0.0001的算术平方根是0.01,即0001.0=0.01。
(4)因为224041-=81,且92=81,所以81=9,而32=9,所以224041-的算术平方根是3,即224041-=3。
方法总结:(1)求一个数的算术平方根时,常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用;(2)有带分数的一定要先化成假分数;
(3)81与81的算术平方根意义不同,不要被表面现象迷惑;(4)被开方数越大,对应的算术平方根也越大。
2.开拓创新
例2 3+a 的算术平方根是5,求a 的值。
分析:先根据算术平方根的定义,先求出3+a ,再求a 的值。
解:因为52=25,所以25的算术平方根是5,即3+a=25,所以a=22。
方法总结:已知一个数的算术平方根,可以根据平方运算来解题。
例3已知x,y为有理数,且1
x+3(y-2)2=0,求x-y的值。
-
分析:算术平方根和完全平方根都具有非负性,即a≥0,a2≥0,非负数之和为0,可得每一非负数都为0,由此可求出x和y的值,进而求得答案。
解:由题意可知x-1=0, y-2=0,所以x=1,y=2,所以x-y=1-2=-1。
方法总结:算术平方根、绝对值和完全平方都具有非负性,即a≥0,
︱a︱≥0,a2≥0,当几个非负数的和为0时,各数均为0。
三、课后巩固
1.P41第1、2题。
2.已知a-2的算术平方根是3,3a+b-1的算术平方根是4,求2a+b的值。
3.若︱3x-3︱和4
y互为相反数,求x+4y的值。
2-
四、板书设计
概念:非负数a的算术平方根记作a
算术平方根
性质:双重非负性a≥0, a≥0
五、教学反思
让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化。
概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的。
概念教学过程中要做到:讲清概念,加强训练,逐步深化。