基因芯片技术基本过程
- 格式:doc
- 大小:22.50 KB
- 文档页数:2
基因芯片技术简介引言随着基因组学的快速发展,基因芯片技术作为一种高通量、高效率的基因表达分析方法,越来越受到科学家们的关注和广泛应用。
本文将介绍基因芯片技术的定义、原理、应用领域以及发展趋势。
定义基因芯片技术,又称DNA芯片技术,是利用半导体芯片上固定携带有特定DNA序列或cDNA序列的探针,通过杂交技术测定样本中的基因表达水平的一种新兴技术。
它通过将大量DNA序列固定在芯片表面上,可以同时检测成千上万个基因的表达水平,从而实现了高通量、高灵敏度、高速度的基因表达分析。
基因芯片技术的原理主要包括芯片设计、样本处理、杂交和信号检测四个步骤。
芯片设计芯片设计是基因芯片技术的核心环节。
通过将感兴趣的DNA序列打印到芯片表面上,实现对这些DNA序列的同时检测。
芯片设计要考虑到实验的目的、样本来源、携带探针的芯片类型等因素。
样本处理样本处理是基因芯片技术中非常重要的一步。
首先,需要提取样本中的RNA,并转录成cDNA。
然后,对cDNA进行标记,常见的方法是采用荧光标记。
标记完成后,将标记的cDNA与芯片上的探针进行杂交。
杂交是将标记的cDNA与芯片上的DNA探针进行特异性结合的过程。
通过杂交反应,可以使标记的cDNA与芯片上的探针发生碱基配对,从而检测基因表达水平。
信号检测信号检测是基因芯片技术的最后一步。
常见的检测方法包括荧光扫描、激光检测和图像分析等。
这些方法可以量化样本中的基因表达水平,并生成可视化的热图或散点图,以方便科学家对数据进行分析和解读。
应用领域基因芯片技术在生物学、医学和农业等领域具有广泛的应用。
生物学研究基因芯片技术的高通量性能使其成为生物学研究的重要工具。
研究人员可以通过基因芯片技术分析不同组织、不同时间点或不同个体中的基因表达变化,探究基因在生物体发育、疾病发展等过程中的功能。
医学诊断基因芯片技术在医学诊断中有着重要的应用价值。
通过分析患者样本中的基因表达谱,可以为医生提供辅助诊断和治疗的信息。
基因芯片技术的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!基因芯片技术是一种高通量的基因检测技术,它可以同时检测成千上万个基因的表达水平或突变情况。
基因芯片技术及其应用随着生物学、生命科学的发展,基因芯片技术越来越受到关注。
基因芯片又称为DNA芯片,是一种利用微阵列技术来检测基因表达水平的高通量方法。
基因芯片技术的发展带来了许多应用领域的新成果,包括疾病预测、药物研发等。
本文将介绍基因芯片技术及其应用。
一、基因芯片技术的原理基因芯片技术是一种高通量的生物技术,它利用微阵列生物芯片来检测基因表达的水平。
这种技术利用了DNA分子的特异性与完整性,它可以在任何生物样品中高效地检测出其蛋白质表达水平和基因组变异情况。
基因芯片技术的工作原理基于蛋白质表达水平与基因组变异情况的探测。
首先,需要将基因DNA序列通过逆转录过程转换成mRNA序列,进而使用荧光标记标记mRNA序列。
接下来将标记好的mRNA序列通过微阵列技术固定到芯片上,并使用高通量扫描技术来观察标记后荧光强度的变化程度。
荧光值越高,则说明该基因表达水平越高。
基因芯片技术不仅可以检测基因表达水平,还可以检测基因序列的变异情况,用于了解某种疾病或细胞状态的基因组变化情况。
比如,可以用这种技术针对某种疾病相关的单核苷酸多态性位点检测基因变异情况。
二、基因芯片技术的应用1. 癌症筛查基因芯片技术可用于癌症筛查,将肿瘤组织中的RNA与正常细胞组织的RNA进行比较,寻找表达水平具有显著差别的基因,进而确定这些基因是否与癌症发展相关。
利用这种方法可以更加准确地判断某个癌症的种类、发展程度等。
2. 个性化药物设计基因芯片技术可用于个性化药物设计,通过基因芯片可以确定某个病人,是否会对某种药物产生不良反应,从而确定是否使用该药物。
同时,可以利用基因芯片技术根据病人的基因组变异情况,设计出一种更加适合该病人的药物。
3. 遗传疾病筛查基因芯片技术可用于遗传疾病筛查,利用基因芯片技术可以检测出某些基因的表达水平是否异常,从而确定在某些疾病中,基因的表达水平是否存在异常。
4. 农业和环保应用基因芯片技术不仅可以应用在医学领域,还可以应用于农业和环保领域,例如种植业、畜牧业、水产养殖业等。
基因芯片技术的原理和发展随着科技的不断发展,人们对于基因的研究也越来越深入,基因芯片技术作为一种迅速发展的生物技术,具有重要的理论意义和实践价值。
基因芯片技术是一种高通量和高标准化的分子生物学技术,可以用于基因表达、基因变异、蛋白质量、DNA甲基化等领域的研究。
1. 基因芯片技术的原理基因芯片技术是将DNA分子、RNA分子或蛋白质分子等多样化的生物大分子分子序列固定在一块小小的玻璃片或硅片上,然后利用微量的核酸或蛋白质的杂交反应来检测样品中这些生物大分子的存在或相对数量。
这些生物大分子的浓度水平可以用来衡量基因的表达情况、基因变异、蛋白质相互作用等生物学过程。
具体操作过程包括:1.1 表达谱芯片表达谱芯片是一种测量运用基因芯片技术研究基因表达的方法。
在表达谱芯片上可以固定多种类型的DNA序列,例如真核细胞DNA片段,互补DNA片段、探针、引物等。
对于鉴定被检测样品的物种,应选择特异而高丰度的探针或引物。
通过部分或大量存储的文献或数据库,研究人员首先确定所需的目标基因,然后通过设计合适的核酸杂交探针,将所需目标基因的序列在探针区域进行固定。
1.2 基因组芯片基因组芯片是一种利用基因芯片技术直接测量基因组中DNA 分子存在量的方法。
基因组芯片和其他一些技术类似,通常分三部分作用:建立样品库,设计并制备基因组芯片,通过基因芯片技术来测量DNA分子的存在量。
2. 基因芯片技术的发展基因芯片技术是一种非常年轻的生物技术,近年来其不断得到完善和发展,具有日益广泛的应用前景。
2.1 应用于生物医学基因芯片技术在生物医学领域得到广泛的应用,其中最具有代表性的应用是基因诊断和基因治疗。
通过基因芯片技术,可以对特定基因的表达情况和蛋白质质量进行分析和检测,为许多临床诊疗和治疗提供了关键方法。
2.2 应用于生态环境基因芯片技术也可以用于生态环境监测,特别是对于环境中的有害生物及其基因信息的监测。
基因芯片技术可以通过绿色监测来减轻生态环境对生物生态的影响。
基因芯片检测流程基因芯片检测是一种高通量的基因分析技术,可以同时检测大量基因的表达水平或基因组的变异情况。
该技术的流程主要包括样本准备、芯片处理、数据分析和结果解读等步骤。
首先,样本准备是基因芯片检测的关键步骤。
样本可以是组织、细胞、血液等。
首先,需要提取样本中的总RNA,然后利用逆转录酶将RNA转录成cDNA,并标记上荧光染料。
这一步骤可以通过不同的实验方法进行,如全基因组扩增、dscDNA合成等。
随后,将标记好的cDNA与芯片上的探针进行杂交反应。
其次,芯片处理是对标记好的cDNA进行杂交的步骤。
将标记好的cDNA溶液滴在芯片上,并利用温度控制设备进行加热、冷却等环境控制,促进标记物与芯片上的探针结合。
芯片上的探针可以是单链DNA、RNA或寡核苷酸等,可以选择特定的探针来检测特定基因。
然后,进行数据分析是基因芯片检测的重要步骤。
通过激光扫描芯片上的标记物,可以获取荧光强度信号。
这些信号表示了样本特定基因的表达水平。
通过对比不同样本之间的信号差异,可以分析某个基因在不同样本中的表达差异。
数据分析可以使用各种统计学方法和生物信息学工具进行,常用的包括聚类分析、差异表达分析、富集分析等。
最后,基因芯片检测的结果解读是整个流程的最终目标。
数据分析得到了许多的基因表达信息和差异表达基因,需要对这些数据进行解读和分析。
通过比对已有的数据库和研究结果,可以找出与特定疾病或生理过程相关的重要基因。
进一步的实验验证可以进一步证实芯片分析结果的可靠性。
综上所述,基因芯片检测流程是一个复杂且关键的分子生物学技术。
通过样本准备、芯片处理、数据分析和结果解读等步骤,可以对大量基因进行快速、高通量的检测和分析。
基因芯片检测在疾病诊断、生物学研究等领域具有重要的应用价值。
基因芯片技术的应用随着生物技术和基因研究的不断进展,基因芯片技术已经广泛应用于生物医学、农业、动植物繁殖、环境保护等领域。
本文将从基因芯片技术的原理、应用场景和前景展开阐述,探讨该技术的研究热点和发展趋势。
一、基因芯片技术的原理基因芯片是一种利用高通量技术同时检测成千上万个基因表达的工具。
它通过利用DNA技术将成千上万的基因DNA序列固定在玻璃芯片上,并可检测目标样本中RNA或cDNA的水平。
基因芯片技术主要包括以下步骤:1. 设计芯片:确定目标基因序列,利用计算机技术进行芯片设计,制备出针对目标基因甚至全基因组的芯片。
2. 样本制备:提取RNA或cDNA,并借助反转录技术将RNA 转化成cDNA,再对其进行扩增。
3. 杂交:采用特殊设备将目标样本中的cDNA标记为不同颜色的探针,与芯片表面的DNA序列杂交。
4. 扫描和分析:利用激光扫描装置对芯片表面进行扫描,测量复合体的强度,并进行统计和分析。
这样,我们就能够在一张小芯片上探测到成千上万个基因,分析并比较样本之间的差异,从而揭示出基因调控、信号传递和代谢途径等生物学特征。
二、基因芯片技术的应用场景基因芯片技术的应用范围极广,以下列举几种典型场景:1. 生物医学基因芯片技术在生物医学领域中主要用于诊断和治疗基因相关疾病。
例如,我们能够将基因芯片应用于肿瘤分型和分级、遗传性疾病的基因筛查、药物研发等方面。
此外,基因芯片技术还可以为个体化医学提供技术支持,为临床医生制定精准个体化治疗方案提供重要依据。
2. 农业基因芯片技术的应用在土地的病虫害监测、作物品种鉴定、转基因食品检测等方面具有重要意义。
例如,在生产实践中,农民们经常遭受由于病虫害带来的经济损失,而基因芯片技术能够帮助他们快速诊断设备,确定病虫害的种类和数量,从而更好地进行管理和防范。
3. 环境保护环境污染问题已经成为全球性的挑战,而基因芯片技术则为环境保护带来了新的手段。
例如,通过检测微生物的基因组DNA,我们可以了解大气、水环境以及土壤中的微生物种类组成状况,协助我们了解生态系统的状况和进行环境监测。
基因芯片的基本原理
基因芯片(Gene Chip,DNA Chip),又称DNA微阵列(DNA Micorarray),是指按照预定位置固定在固相载体上很小面积内的千万个核酸分子所组成的微点阵阵列。
在一定条件下,载体上的核酸分子可以与来自样品的序列互补的核酸片段杂交。
如果把样品中的核酸片段进行标记,在专用的芯片阅读仪上就可以检测到杂交信号。
基因芯片技术主要包括四个主要步骤:芯片制备、样品制备、杂交反应和信号检测和结果分析。
1、芯片制备-目前制备芯片主要以玻璃片或硅片为载体,采用原位合成和微矩阵的方法将寡核苷酸片段或cDNA作为探针按顺序排列在载体上。
芯片的制备除了用到微加工工艺外,还需要使用机器人技术。
以便能快速、准确地将探针放置到芯片上的指定位置。
2、样品制备-生物样品往往是复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片反应,有时样品的量很小。
所以,必须将样品进行提取、扩增,获取其中的蛋白质或DNA、RNA,然后用荧光标记,以提高检测的灵敏度和使用者的安全性。
3、杂交反应-杂交反应是荧光标记的样品与芯片上的探针进行的反应产生一系列信息的过程。
选择合适的反应条件能使生物分子间反应处于最佳状况中,减少生物分子之间的错配率。
4、信号检测和结果分析-杂交反应后的芯片上各个反应点的荧光位置、荧光强弱经过芯片扫描仪和相关软件可以分析图像,将荧光转换成数据,即可以获得有关生物信息。
目前,基因芯片主要由寡核苷酸芯片和cDNA芯片两大类组成。
基因芯片第三章基因芯片的制作方法基因芯片是一种用于检测和分析基因表达的工具,它可以同时测量上千至上百万个基因的表达水平。
基因芯片的制作方法主要包括芯片设计、探针合成、芯片加工和芯片测试等步骤。
下面将详细介绍基因芯片的制作方法。
第一步:芯片设计芯片设计是基因芯片制作的关键步骤,它决定了芯片上每个位置的探针序列。
探针可以是DNA或RNA分子,用于与待测样品中的RNA结合。
探针的设计需要考虑到基因序列的特异性,以及探针长度、探针间隔等参数的选择。
设计好的探针序列将被用于后续的探针合成。
第二步:探针合成探针的合成常常采用固相合成技术。
通过在固相合成反应中逐步添加不同的核苷酸单元(A、T、G、C),可以合成出具有特定序列的寡核苷酸。
合成好的探针需要经过纯化和检测,确保其质量符合要求。
第三步:芯片加工芯片加工是将探针固定在芯片表面的过程。
目前常用的芯片加工技术有光刻和喷墨技术。
光刻技术是通过在芯片表面涂覆光敏材料,然后使用掩膜和紫外线照射,将探针序列的图案直接写入芯片表面。
喷墨技术则是将合成好的探针溶液喷洒在芯片表面,并利用喷嘴的高精度控制,将探针序列分别定位到芯片上的每个位置。
第四步:芯片测试芯片测试是基因芯片制作的最后一步,也是评估芯片质量和性能的重要环节。
通过将待测RNA样品与芯片上固定的探针进行杂交反应,可以检测每个位置的探针与RNA的结合情况。
一般采用荧光探针或放射性标记物等技术,将杂交信号转化为可测的荧光强度或放射性强度。
通过对杂交信号的分析和比较,可以得到样品中各个基因的表达水平。
总结起来,基因芯片的制作方法包括芯片设计、探针合成、芯片加工和芯片测试等步骤。
这些步骤的顺序和操作都对基因芯片质量和性能有重要影响,因此需要严格控制每个步骤的条件和参数。
随着技术的发展,基因芯片的制作方法也在不断更新与改进,以满足对基因芯片在生物医学和生命科学领域的研究应用需求。
基因芯片技术简介及应用随着基因组学研究的不断深入,人类已进入一个崭新的生物世纪,基因芯片在基因功能研究、临床诊断及新药开发等方面显示了巨大的威力,被誉为基因功能研究领域最重要的技术之一。
一、基因芯片技术基本原理基因芯片的创意来自于计算机芯片。
它和计算机芯片一样,具有超微化、高度集成、信息贮存量大等特点,所不同的是,计算机芯片采用的是半导体集成电路,而基因芯片是以基因片段作为“探针”来进行工作的。
(一)基因芯片的定义基因芯片(gene chip)又称DNA芯片,是指将许多特定的寡核苷酸片段或基因片段作为探针,有规律地排列固定于支持物上,样品DNA或RNA通过PCR扩增、体外转录等技术掺入荧光等标记分子,然后按碱基配对原理与固定的探针杂交,再通过荧光检测系统等对芯片进行扫描,通过计算机系统对每一探针的信号进行处理,从而迅速得出所需要的信息。
基因芯片技术工作原理与经典的核酸分子杂交是一致的,都是应用已知核酸序列作为探针与互补的靶核苷酸序列杂交,通过随后的信号检测进行定性与定量分析。
在一块1cm2大小的基因芯片上,根据需要可固定数以千计甚至万计的基因片段,以此形成一个密集的基因方阵,与标记的样品分子进行杂交,实现对成千上万个基因的高通量同步检测(见文末彩图-1)。
图-1 经荧光扫描后的芯片图示(二)基因芯片技术的主要特点基因芯片技术归纳起来,具有高并行性、多样性、微型化和自动化这四大特点。
高并行性有利于基因芯片所示图谱的快速对照和阅读,效率大为提高;多样性则提供了样品的多指标测定,每块芯片上都含有成百上千种的寡核苷酸探针或cDNA探针,能够用于基因突变、单核苷酸多态性(SNP)、细菌分型等需要高通量的检测;微型化的好处在于对样品的需要量非常少,而且还能节省试剂用量,降低检测成本;自动化使得人力、物力投入减少,检测时间缩短并保证了质量。
同时,它还具有操作简便、信息综合处理能力强、结果可靠和仪器配套齐全等优势,因而备受青睐。
基因芯片的操作流程及步骤基因芯片是一种用于检测和分析基因表达的高通量技术。
它能够同时检测上万个基因,在生物医学研究、生物工程和临床诊断等领域具有重要的应用价值。
基因芯片的操作流程主要包括前处理、杂交、显像和数据分析等步骤。
下面是详细的操作流程及各步骤的介绍。
1.前处理:a.提取RNA:从细胞或组织中提取总RNA,可以使用常规的酚/氯仿法或者商业化的RNA提取试剂盒等方法。
b.反转录:使用反转录酶将RNA逆转录成cDNA,以便进一步扩增和检测。
这一步骤可以使用随机引物或专用的引物结合反转录酶进行。
2.样品标记:a.样品标记:将cDNA样品标记为荧光基团,例如使用荧光染料dCTP 或其他标记物。
b.去除杂交物:通过水解或其他方法去除未反应的标记试剂,并纯化标记后的cDNA样品。
3.制备探针:a.设计探针:选择适当的探针序列,通常是与待检测基因的特定片段互补的DNA片段,用于检测基因表达。
b.生产探针:使用DNA合成技术或PCR等方法合成大量的探针,通常是固定在玻片上的寡核苷酸序列。
4.杂交:a.样品混合:将标记后的cDNA样品与探针混合,可以加入包含缓冲液、杂交解聚剂等的杂交液。
b.杂交反应:在恒温条件下,将混合物进行杂交反应,使探针与标记的cDNA靶标发生互补反应,形成探针-靶标复合物。
5.洗涤:a.洗涤:使用一系列含有不同浓度盐或洗涤缓冲液的溶液,去除没有结合的或非特异结合的探针-靶标复合物。
b.除去二级结构和非特异结合:使用高盐浓度的洗涤缓冲液或其他特定条件洗涤,去除可能形成的非特异结合和二级结构。
6.显像:a.扫描:使用光学设备测量芯片上的荧光强度,将探针-靶标复合物的检测结果转化为数字信号。
b.校准:对每个荧光信号进行校准,以消除技术偏差和背景噪声。
7.数据分析:a.数据提取:将荧光强度数据转化为基因表达的相对量,通常是使用专门的数据分析软件进行。
b.统计分析:使用统计学方法对基因表达数据进行分析,包括聚类分析、差异表达分析和信号通路分析等。
图1基因芯片技术林晓强16307100046基因芯片又叫DNA 芯片是负责检测和分析基因的。
一.技术原理:基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法。
双链DNA 在高温等条件下双螺旋解开形成两条互补的单链,当消除变性条件后,变性DNA 两条互补链可以重新结合,利用DNA 的这种特性,将两个以上不同来源的多核苷酸链之间由于互补而使它们在复性过程中形成异源杂合分子的过程称为杂交。
双链DNA 加热变性成为单链,作为探针,将多个探针点在芯片上,然后将用同位素标记的靶基因接触基因芯片,在消除变性条件下,靶基因与互补的探针结合(如图1),最后通过确定荧光强度最强的探针位置(如图2),获得一组序列完全互补的探针序列。
据此可重组出靶核酸的序列。
这个原理看似简单,实际有几个技术难点1.如何将探针“点”在芯片上?以及芯片种类?其一:固定在聚合物基片(尼龙膜,硝酸纤维膜等)表面上的核酸探针或cDNA 片段,图2通常用同位素标记的靶基因与其杂交,通过放射显影技术进行检测。
优点:技术比较成熟缺点:芯片上探针密度不高,样品和试剂的需求量大,定量检测存在较多问题。
其二:用点样法固定在玻璃板上的DNA探针阵列,通过与荧光标记的靶基因杂交进行检测。
优点:点阵密度可有较大的提高,各个探针在表面上的结合量也比较一致缺点:标准化和批量化生产方面仍有不易克服的困难。
其三:在玻璃等硬质表面上直接合成的寡核苷酸探针阵列,与荧光标记的靶基因杂交进行检测。
优点:该方法把微电子光刻技术与DNA化学合成技术相结合,可以使基因芯片的探针密度大大提高,减少试剂的用量,实现标准化和批量化大规模生产。
2.如何通过探针序列重组出靶核酸序列?在一块基片表面固定了序列已知的八核苷酸的探针(如图)。
当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置,获得一组序列完全互补的探针序列。
生物芯片技术介绍生物芯片技术是一种在微小尺度上对生物分子进行大规模并行检测和分析的技术。
它涉及将大量生物分子(如DNA、蛋白质、细胞等)附着在固态芯片表面,通过与这些生物分子相互作用,实现对生物分子的快速、高效、并行检测。
生物芯片技术最早可以追溯到20世纪90年代初,当时科学家们开始研究如何将DNA片段固定在玻璃或其他固体支持物上。
随着技术的不断发展,生物芯片技术已经成为生物医学领域的一种重要工具,被广泛应用于基因组学、蛋白质组学、细胞生物学、药物筛选等多个领域。
生物芯片技术的基本流程包括以下几个步骤:1.样品制备:将待检测的生物分子(如DNA、蛋白质等)制备成能够与芯片进行相互作用的溶液。
2.芯片制备:将支持物(如玻璃、硅等)表面进行处理,使其适合固定生物分子。
接着将待检测的生物分子固定在支持物表面,形成一个有序的生物分子阵列。
3.样品与芯片的相互作用:将样品溶液与芯片进行混合,让样品中的生物分子与芯片上的生物分子进行相互作用。
4.信号检测与分析:通过特定的检测技术(如荧光检测、化学发光检测等)对相互作用后的芯片进行信号检测,并将信号转化为数据。
这些数据可以进行进一步分析,如序列比对、蛋白质功能预测等。
5.数据处理与解释:对收集到的数据进行处理、分析和解释,以获得有关生物分子的有用信息,如基因序列、蛋白质功能等。
生物芯片技术有多种分类,常见的包括基因芯片、蛋白质芯片和细胞芯片。
基因芯片主要用于基因表达谱分析、基因突变和基因组测序等方面;蛋白质芯片则主要用于蛋白质表达谱分析、免疫应答检测和药物筛选等;细胞芯片则用于研究细胞生长、分化、迁移和凋亡等生物学过程。
生物芯片技术的应用范围非常广泛。
在基础研究领域,它可以用于基因组学和蛋白质组学研究,帮助科学家们发现新的生物标记物和治疗靶点。
在临床诊断领域,它可以用于疾病诊断和治疗监测,提高诊断准确性和效率。
在药物筛选领域,它可以用于高通量药物筛选和毒性测试,加速药物研发进程。
基因芯片的原理与应用基因芯片(gene chip)是一种高通量基因分析技术,可以快速、准确地检测和分析上千种基因在一些生物体内的表达情况。
基因芯片的原理是利用光刻技术将上千种基因序列固定在芯片上,然后通过杂交、加标和扫描等步骤,得到样本中各个基因的表达水平。
基因芯片的基本结构包括探针、阵列和读取系统。
探针是芯片上固定的DNA或RNA片段,可以与样本中的基因序列互补配对。
阵列是指将上千种探针有序排列在芯片上的格点状结构。
读取系统包括光源和光电探测器,用于探测芯片上每个探针与样本中目标基因的结合情况。
1.基因表达分析:基因芯片可以同时检测上千种基因在一些生物体内的表达情况,帮助研究者了解基因表达的调控机制。
通过比较不同状态下的基因表达差异,可以发现与疾病、发育和环境有关的基因。
2.基因突变检测:基因芯片可以检测一些生物体中基因的突变情况,帮助研究者发现与疾病相关的突变基因。
通过与正常基因序列比对,可以识别出基因中的缺失、替代或插入等突变。
3.药物研发:基因芯片可以在药物研发中发挥重要作用。
研究者可以将细胞或组织在不同处理条件下进行基因表达分析,从而筛选出对药物敏感的基因或靶标,并用于新药的靶标验证和效果评估。
4.个体化医学:基因芯片可以为个体化医学提供基因信息。
通过基因芯片分析,可以了解一个人在基因水平上的个体差异,为个体化的健康管理和疾病预防提供依据。
此外,在临床诊断中,基因芯片也可以协助医生筛选出与患者疾病相关的基因。
5.遗传学研究:基因芯片可以用于遗传学研究。
通过比较不同物种或个体之间的基因表达差异,可以揭示基因在进化、发育和适应性演化中的作用。
同时,基因芯片也可以进行基因型和表型的关联研究,帮助揭示一些遗传疾病的发病机制。
基因芯片技术的发展为生命科学领域带来了革命性的突破。
其快速、高通量、高灵敏度的特点使得基因芯片成为研究基因表达和生物信息的重要工具之一、未来,随着基因芯片技术的进一步发展,相信它在生命科学研究和医学应用中的作用会更加广泛和深远。
基因芯片技术的诞生为生物技术工作人员打开了一道科研的便利之门,曾被评为1998年年度十大科技进展之一。
本文对基因芯片的实验原理、技术基础、分类、用途、操作主要环节等内容做详细的介绍。
基因芯片技术的诞生为生物技术工作人员打开了一道科研的便利之门,曾被评为1998年年度十大科技进展之一。
本文对基因芯片的实验原理、技术基础、分类、用途、操作主要环节等内容做详细的介绍。
1.基本原理和技术基础基因芯片以DNA杂交为基本原理,基于A和T、G和C的互补关系。
它是在探针的基础上研制出的。
所谓探针是一段人工合成或筛选出的已知顺序的碱基序列,样品分子上连接有一些cy3、cy5等可检测的物质。
经激光共聚焦荧光显微镜检出杂交或反应信号,通过计算机处理、分析,即可获得所需信息。
例如,用红、绿荧光分别标记实验样本和对照样本的cDNA,混合后与微阵列杂交,可显示实验样本和对照样本基因的表达强度(显示红色、绿色或黄色),由此可在同一微阵列上同时检测两样本的基因表达差异。
在基因芯片工作过程中,固定位点使用不同分子生物学技术和碱基互补配对原则与待测基因片段杂交,并通过自动阅读设备分析杂交结果,达到定性、定量分析的目的。
基因芯片通过应用平面微细加工技术和超分子自组装技术,把大量分子检测单元集成在一个微小的固体基片表面,可同时对大量的核酸等生物分子实现高效、快速、低成本的检测和分析。
基因芯片的检测主要建立在放射标记技术、荧光标记技术、质谱分析、化学发光等技术上。
使用荧光标记的基因芯片需要专用的荧光扫描仪。
对于高密度的基因芯片,目前最常用的是激光共聚焦显微镜和高性能的冷却CCD。
目前专用于荧光扫描的扫描仪大致分为两类:一类是基于CCD(charge-coupled device,电荷耦合装置)的检测光子;另一类则是基于PMT(photomultiplier tube,光电倍增管)的检测系统。
生物芯片的发展得益于微细加工技术和现代分子生物技术的结合。
基因芯片技术基本过程
1 DNA方阵的构建
选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;(2)或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片。
2 样品DNA或mRNA的准备。
从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅
读灵敏度。
Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速。
在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。
3 分子杂交
样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。
如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反。
芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。
美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟(6)。
德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。
4 杂交图谱的检测和分析
用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。
不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到有关基因图谱。
目前,如质谱法、化学发光法、光导纤维法等更灵敏`、快速,有取代荧光法的趋势。