射线:如X-射线及γ-射线
激光
微波
离子束
化学诱变
烷化剂
包括EMS、EI、NEU、NMU、DES、MNNG、NTG等 通过与核苷酸中的磷酸、嘌呤和嘧啶等分子直接反应,在碱基 许多位置上增加了烷基来诱发突变 如5-溴尿嘧啶(BU)和2-氨基嘌呤(AP ) 与DNA正常碱基结构类似的化合物,能在DNA复制时取代正常 碱基掺入并与互补碱基配对。使AT转换为GC碱基对
染色体的结构变异
主要包括缺失、重复、倒位及易位等 结构变异频率随染色体的不同而不同
基因突变(Gene mutation)
由于DNA分子中发生碱基对的增添、缺失或改变, 而引起的基因结构的改变,就叫做基因突变 狭义仅指“点突变” 按照基因结构改变的类型,突变可分为碱基置换、 移码、缺失和插入4种。 按照遗传信息的改变方式,突变又可分为错义、无 义两类 按照表型效应,突变型可以区分为形态突变型、生 化突变型以及致死突变型等,对于基础理论研究及 遗传改良具有重要意义
2 常用的诱变措施
物理诱变 化学诱变 空间技术诱变 复合诱变
物理诱变
紫外线
波长260nm的紫外辐射最有效,使DNA分子形成嘧啶二聚体, 即两个相邻的嘧啶共价连接,减弱双键间氢键的作用,并引起 双链结构扭曲变形,阻碍碱基间的正常配对 电离作用,因而能直接或间接地改变DNA结构 激光是异于自然光的辐射光,能量高度集中。通过光效应、热 效应和电磁效应的综合作用,能使生物的染色体断裂或形成片 断,甚至易位和基因重组 微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范 围在300MHz~300GHz,对生物体具有热效应和非热效应 离子束注入的离子与生物体大分子发生一系列碰撞,而生物大 分子逐步获得能量进而发生键断裂