体细胞无性系变异
- 格式:pdf
- 大小:1.28 MB
- 文档页数:49
第十二章植物体细胞无性系变异与体细胞遗传第一节 植物体细胞无性系变异概念与应用一、植物体细胞无性系及其变异概念体细胞无性系和体细胞无性系变异(somaclone and somaclonal variation ):植物细胞、组织、器官在无菌条件下进行离体人工培养,经过脱分化和再分化过程,重新形成愈伤组织和完整植株,称为体细胞无性系。
其所产生的变异称为体细胞无性系变异。
二、植物体细胞无性系变异的应用1、体细胞无性系变异与抗病育种2、体细胞无性系变异与抗非生物胁迫(耐盐、耐铝、耐旱、抗除草剂、抗虫;种子品质改良;外源基因的整合)。
3、遗传研究4、发育生物学研究5、生化代谢途径研究第二节 植物体细胞无性系变异的遗传学基础与特点一、遗传学基础1、染色体数目变化大量研究表明,染色体变异是植物组织培养的一个基本特点。
培养时间的长短(时间延长染色体变化明显) 愈伤组织细胞染色体数目 植物种类不同而不同同一物种不同基因型同一基因型不同外植体(细胞、原生质体、器官) 同一外植体不同生理年龄李士生和张玉玲(1991)以小麦幼穗为外植体于不同培养基和不同培养时间研究愈伤组织染色体的变化如下表:培养时间延长,各培养基上愈伤组织中正常二倍体细胞的频率有逐渐上升趋势。
细胞和原生质体培养较难,尤其是禾本科植物,因此有关他们的染色体数变化的详细报道还很少,有待进一步研究。
2、染色体结构变化染色体断裂与重组。
在马铃薯、黑麦草和燕麦的体细胞无性系变异中发现染色体易位。
在黑麦草和大麦等体细胞无性系变异中发现染色体缺失、重复、到位以及其它的微小的染色体重组。
3、单基因突变4、细胞质遗传上的改变5、DNA序列的选择性扩增和丢失与核的变化6、转座子激活7、DNA甲基化8、非正常有丝分裂二、影响体细胞无性系变异的因素1.供体植物供体植物的倍性、基因型、外植体等2.培养基及培养方式不同激素浓度与染色体倍性。
3.继代培养的次数一般而言,离体培养时间越长,继代次数越多,细胞变异的几率就越高。
植物体细胞无性系变异及其育种上的应用在Schleiden和Schwann的细胞学基础上,1902年德国Haberlandt提出植物细胞具有全能性(totipotent)的理论,直到二十世纪四十年代,组织培养得以建立。
经众多科学家和学者的不断努力,植物组织培养技术得以完善,被应用于植物生产的众多领域。
植物组织培养(plant tissue culture)是指植物的一个细胞、器官或组织,在无菌条件下,经人工培养,使其最终形成完整的新植株的过程。
虽然植物细胞、器官或组织具有分化成完整的植株的能力已广为人知,但是在未来的几十年里,这仍然被视为科学界的重大问题之一[1]。
1980年,Shepard等[2]发现利用可无性繁殖的植物——马铃薯(Solanumtuberosum)栽培品种“Russet Burbank”的叶肉原生质体培养,可获得突变频率较高的突变体。
随后,Larkin和Scowcroft[3]将这种现象命名为体细胞无性系变异(somaclonal variation)来描述植物细胞组织培养过程中的再生细胞存在的大量变异现象,为体细胞无性系的筛选和新变异来源做了铺垫。
目前,对于体细胞无性系变异的研究已有很多,但仍有许多没有研究清楚的地方,有待后人在这一方面做出更多贡献,并大规模推广应用。
1.体细胞无性系变异的遗传基础体细胞无性系变异是具有遗传基础的,具体表现在染色体变异、基因突变以及转座子激活等方面[4]。
在水稻[5]、小麦[6]和大蒜[7]等植物愈伤组织培养过程中,均发现了染色体数目倍性变异的现象;组培大蒜愈伤组织[8],再生黑麦根尖细胞[9],均发现其中发生了不同类型的染色体结构变异。
袁云香等[10]用含Ac/Ds转座元件的愈伤组织组培,结果6%的再生植株仅含Ac,而Ds因切离而丢失,表明组织培养可获得突变体。
此外,组织培养还会造成植物DNA甲基化的变异,经组织培养的香蕉[11]和豌豆[12]等,研究表明其DNA甲基化水平上升;而在大豆[13]、大麦[14]和草莓[15]上发现,DNA甲基化水平降低。
从总体上讲,组织培养后植株变异的原因有三:一是由源植株中预先存在的变异的表达,二是组织培养过程中引起的可遗传的变异(DNA改变),三是由外遗传及生理作用引起。
(一)外植体中预先存在变异的表达研究表明,某些体细胞无性系变异是由于外植体中细胞预先存在的变异的表达。
一般说来,除非采用单细胞或原生质体,否则,对由不同类型细胞组成的多细胞外植体进行培养会导致再生植株表型的不一致性。
预先存在变异包括内复制造成的细胞间染色体倍性差异,体细胞突变及DNA甲基化状态的变化等。
由不定芽再生导致的嵌合体的分离(破坏、丢失或重排)是最明显的预先存在变异的表现。
嵌合体一般可分为扇形嵌合体、部分周缘嵌合体和周缘嵌合体三种。
前两种在常规繁殖中不稳定,而周缘嵌合体在常规繁殖中较为稳定,但即使是周缘嵌合体,利用组织培养进行快速繁殖或不定繁殖时,也会引起大部分嵌合体破坏(>30%)。
颜色、形态和生理习性嵌合体是可见的,而细胞嵌合体(染色体或染色体组不同的细胞)通常是难以直接观察到的,只对植株的营养价值、同工酶谱等表现有很小的影响。
另一方面,由于病毒在植物体内不均匀分布,利用植物组织培养手段(分生组织培养、不定芽再生或原生质体培养等)可脱除植物病毒,从而也可引起性状的改变。
通常植物(指二倍体植物)的分生组织中都是二倍体细胞,所以采用顶端分生组织或幼嫩组织或器官作外植体进行启动培养,再生植株表型和倍性水平的稳定性远大于其他类型外植体培养获得的植株。
(二)培养中诱导产生的变异培养中诱导产生的变异主要受培养类型(或植株再生方式)、外植体类型(或组织来源)、生长调节物质、培养物的年龄(或继代培养时间)、遗传组成(或基因型)等因素的影响。
1. 培养类型(或植株再生方式)一般而言,一个已分化的细胞经历变化剧烈的脱分化和再分化很容易产生变异,因而愈伤组织培养常与体细胞无性系变异联系在一起;另一方面,愈伤组织通常从切口处产生,因而与活体中的伤口反应极为类似,容易激发转座子的活动,以及胁迫刺激诱导产生某种酶类或特异性附产物。