电磁场数值计算.共101页
- 格式:ppt
- 大小:8.75 MB
- 文档页数:101
电磁场数值分析电和磁现象在自然界普遍存在,两者相互依存形成一个不看分割的整体。
电能产生磁,磁能生电。
很早以前人们就注意到电现象和磁现象,但是两者之间的这种相互联系在很长的一段时间内都没有被人们认识。
直到奥斯特首先发现了通电直导线周围存在磁场这一现象人们才开始把电和磁放在一起来研究。
然而这个时候人们依然没有办法揭示电和磁中间的秘密,只是停留在实验研究阶段,没有形成科学的理论。
1831年法拉第发现了电磁感应定律,从此电和磁的计算可以量化了,人类历史也开启了一个新的时代—电气时代。
由于法拉第的杰出工作,电和磁不再是不可触摸的了,人们已经掌握了运用它的钥匙。
在法拉第之后,另一位杰出的科学家麦克斯韦则更进一步,建立了麦克斯韦方程组,电和磁的理论已经到了相当完美的程度。
现代电机,不管结构多么复杂,都是基于法拉第电磁感应定律和麦克斯韦方程组的原理来运行的,其电和磁的相关量都可以利用这两个定律来进行精确地分析,在设计电机时,我们也是基于这两个定律对电机的电磁过程来进行精确的设计,从而设计出理想的电机。
学会电磁场分析,主要是基于麦克斯韦方程组的相关计算,对电机的学习非常重要。
它为我们今后的学习打下基础。
在学习过程中,主要要把握以下几个度之间的关系:梯度、旋度、散度,这三者的变换正体现了电和磁之间的转换。
一基本原理电磁场的内在规律由电磁场基本方程组—麦克斯韦(Maxwell )方程组表达。
这些方程是由麦克斯韦对大量实验结果及基本概念进行了数学加工和推广归纳而成的。
麦克斯韦方程组是分析和计算电磁场问题的出发点,它既可写成微分形式,又可写成积分形式。
微分形式的麦克斯韦方程组为 t DJ H ∂∂+=⨯∇(1) t BE ∂∂-=⨯∇(2) 0=⋅∇B(3) ρ=⋅∇D (4)式中,E 为电场强度(V/m );B 为磁感应强度(T );D 为电位移矢量(C/m 2);H 为磁场强度(A/m );J 为电流密度(A/m 2);ρ为电荷密度(C/m 2)。
2015-2016学年研究生工程电磁场数值计算试题1 总结有限元法计算电磁场问题的步骤,并说明什么叫正问题和逆问题?(20分)答:基本步骤分为三大步:前处理(Preprocession ),求解(Solution ),后处理(Postprocession )。
前处理主要包括:单元选择,材料定义,几何模型,网络划分,模型局部调整和施加荷载。
求解主要包括:分析问题的类型,设定分析参数,添加荷载条件,建立荷载工况和求解。
后处理主要包括:结果的文字输出(Result list ),结果的云图输出(Result contour ),结果的矢量输出(Result vector ),结果的路径输出(Result mapping ),Element Table 的提取,Load Case 及组合。
正文题:已知场源、边界和媒质,计算场量。
给定场的计算区域、各区域的材料组成和特性,以及激励源的特性,求场域中的场量随时间、空间的分布规则。
逆问题:根据场量分布要求,求取场源。
根据电磁装置设定的场量值及其有关的特性的要求,求解该装置的的结构、尺寸、媒质性能参数和激励参数等。
2 设计一个高压点火器,用分析其电场分布,说明影响点火器起火的主要参数,并说明怎样改变参数可以容易地点火?(20分) 建立模型如图选择两个尖端为路径,电位图和电场强度图如下图所示 程序如下:/BATCH /COM,ANSYS RELEASE 12.0.1 UP 21:32:18 01/14/2016 /input,menust,tmp,'',,,,,,,,,,,,,,,,1 /GRA,POWER /GST,ON /PLO,INFO,3 /GRO,CURL,ON /CPLANE,1 /REPLOT,RESIZE WPSTYLE,,,,,,,,0 /REPLOT,RESIZE /FILNAME,T2,0 /PREP7 !* /NOPR /PMETH,OFF,1 KEYW,PR_SET,1 KEYW,PR_STRUC,0 KEYW,PR_THERM,0 KEYW,PR_FLUID,0 KEYW,PR_ELMAG,1 KEYW,MAGNOD,0 KEYW,MAGEDG,0 KEYW,MAGHFE,0 KEYW,MAGELC,1 KEYW,PR_MULTI,0 KEYW,PR_CFD,0 /GO !* /COM, /COM,Preferences for GUI filtering have been set to display: /COM, Electric !* !* ET,1,PLANE121 !* !* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,PERX,1,,1 MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,RSVX,1,,1e+10FLST,3,1,8FITEM,3,0,0.1E-02,0K, ,P51XFLST,3,1,8FITEM,3,-0.1E-02,0.2E-02,0 K, ,P51XFLST,3,1,8FITEM,3,-0.1E-02,0.4E-02,0 K, ,P51XFLST,3,1,8FITEM,3,-0.3E-02,0.4E-02,0 K, ,P51XFLST,3,1,8FITEM,3,-0.3E-02,-0.4E-02,0 K, ,P51XFLST,3,1,8FITEM,3,-0.1E-02,-0.4E-02,0 K, ,P51XFLST,3,1,8FITEM,3,-0.1E-02,-0.2E-02,0 K, ,P51XFLST,3,1,8FITEM,3,0,-0.1E-02,0K, ,P51XFLST,3,1,8FITEM,3,0.1E-02,-0.2E-02,0 K, ,P51XFLST,3,1,8FITEM,3,0.1E-02,-0.4E-02,0 K, ,P51XFLST,3,1,8FITEM,3,0.3E-02,-0.4E-02,0 K, ,P51XFLST,3,1,8FITEM,3,0.3E-02,0.4E-02,0 K, ,P51XFLST,3,1,8FITEM,3,0.1E-02,0.4E-02,0 K, ,P51XFLST,3,1,8FITEM,3,0.1E-02,0.2E-02,0 K, ,P51X LSTR, 1, 2LSTR, 3, 2LSTR, 4, 3LSTR, 5, 4LSTR, 6, 5LSTR, 7, 8LSTR, 6, 7LSTR, 9, 8LSTR, 10, 11LSTR, 9, 10LSTR, 12, 13LSTR, 12, 11LSTR, 13, 14LSTR, 14, 1FLST,2,14,4FITEM,2,4FITEM,2,3FITEM,2,2FITEM,2,1FITEM,2,6FITEM,2,7FITEM,2,5FITEM,2,10FITEM,2,9FITEM,2,8FITEM,2,12FITEM,2,11FITEM,2,13FITEM,2,14AL,P51XALLSEL,ALLCM,_Y,AREAASEL, , , , 1CM,_Y1,AREACMSEL,S,_Y!*CMSEL,S,_Y1AATT, 1, , 1, 0, CMSEL,S,_YCMDELE,_YCMDELE,_Y1!*SMRT,6SMRT,1MSHAPE,0,2D MSHKEY,0 !*CM,_Y,AREAASEL, , , , 1 CM,_Y1,AREA CHKMSH,'AREA' CMSEL,S,_Y !*AMESH,_Y1 !*CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2 !*ALLSEL,ALL FINISH /SOL !*ANTYPE,0/REPLOT,RESIZE /REPLOT,RESIZEFLST,2,4,4,ORDE,4 FITEM,2,1 FITEM,2,-2 FITEM,2,13 FITEM,2,-14 /GO !*DL,P51X, ,VOLT,0FLST,2,4,4,ORDE,3 FITEM,2,6 FITEM,2,-8 FITEM,2,10 /GO !*DL,P51X, ,VOLT,7000 /REPLOT,RESIZE /REPLOT,RESIZE /STATUS,SOLU SOLVE FINISH /POST1 !*/EFACET,1 PLNSOL, VOLT,, 0 !*/VSCALE,1,1,0 ! !*PLVECT,EF, , , ,VECT,ELEM,ON,0 PATH,1,2,30,20,PPATH,1,0,0,0.001,0,0, PPATH,2,0,0,-0.001,0,0, /PBC,PATH,1 /REPLOT /PBC,PATH,0 !* !*PDEF, ,EF,SUM,AVG /PBC,PATH, ,0 !*PLPATH,EFSUM PLPATH,S FINISH ! /EXIT,ALL(3)分析可得,物体击穿放电主要与材料,形状,所加电压有关。
[收稿时间]2019-12-18[基金项目]哈工大(威海)研究生教育教学改革研究项目(WH2019014);哈工大研究生教改研究项目(JGYJ-2019036)。
[作者简介]周洪娟(1980-),女,山东烟台人,博士,副教授,主要从事电磁理论方面的教学和研究工作。
[摘要]电磁场边值问题的求解是电磁理论教学中的难点和重点。
课题组以简单的静态二维电场边值问题为例,同时采用解析法和数值法求解,基于Matlab 仿真平台编程实现,从解析法和数值法的结论互相呼应的角度来逐层次地设计实验,使学生对电磁场边值问题求解方法、抽象复杂的数学结论以及唯一性定理产生感性认识。
[关键词]电磁场边值问题;唯一性定理;解析法;数值法[中图分类号]O411.1[文献标识码]A [文章编号]2095-3437(2021)02-0004-042021年2University Education“电磁场理论”或“电磁场与电磁波”是工科院校电子信息、无线电技术类专业的一门重要基础课,其涉及的矢量微积分公式繁多、概念抽象,需要学生具备较为扎实的数学和物理基础,学生普遍反映难度大。
“电磁场理论”这门课的教学虽然要侧重电磁场、电磁波的基础理论,但也要注重与工程实践的结合,为工科院校的学生在相关课程以及方向的学习研究提供较为直接的理论指导。
这其中,电磁场边值问题的求解就是联系电磁场麦克斯韦方程等基础理论与各种复杂工程实践,如天线设计、电磁干扰与电磁兼容以及雷达散射截面积等相关应用的桥梁[1-7],但由于其涉及数理方程等复杂数学理论,使之成为本科教学中的难点。
电磁场边值问题指的是满足特定偏微分方程和边值条件的数理方程,静态电、磁场的边值问题的求解是指满足泊松方程或拉普拉斯方程和指定边值条件的数理方程的求解。
电磁场边值问题的求解方法主要分为解析法和数值法两大类。
解析法是指能从电磁理论出发通过公式推导可直接得到所求解问题的精确表达式的方法,该类方法通常只适合一些边界形状简单的特殊边值问题的求解,如边界形状为规则的平面状、球状或圆柱状。