工程电磁场数值计算1(概述)
- 格式:ppt
- 大小:1.33 MB
- 文档页数:26
电磁场数值分析方法及其应用电磁场是无处不在的,它在我们的日常生活中也发挥着极其重要的作用,比如说电视、手机、电脑和家用电器等等。
由于电磁现象的特殊性质,使得电磁场的理论计算非常困难,因此需要引入数值计算方法,对电磁场进行模拟分析,这就是电磁场数值分析方法的基本概念。
一、电磁场数值分析方法简介1. 经典电磁场理论在介绍电磁场数值分析方法之前,我们需要先了解一下经典电磁场理论,也即麦克斯韦方程组。
麦克斯韦方程组描述了电磁场的本质规律,包括电场E、磁场B、电荷密度ρ和电流密度J等四个基本物理量。
这些物理量之间的关系是非常复杂的,因此对于麦克斯韦方程组的求解,需要引入数值计算方法。
2. 电磁场数值计算方法电磁场数值计算方法是指采用离散化方法,将复杂的连续介质分割成有限的、简单的小单元,通过在每个小单元内求解基本电磁场变量的数值解,再通过数值方法进行拼合,最终得到求解区域内的电磁场分布特征。
3. 数值计算方法分类目前常用的电磁场数值计算方法主要包括有限元法、时域有限差分法、频域有限差分法、矩量法等等。
这些方法各有特点,适用于不同的电磁问题求解。
二、电磁场数值分析方法应用1. 微波器件设计微波器件中电磁场的分布特征是十分重要的,它决定了微波器件的性能。
采用电磁场数值分析方法可以清晰地描述微波场的分布特征,从而进行优化和改进设计,提高微波器件的性能。
2. 汽车电磁兼容性分析汽车中各类电子设备的数量越来越多,它们之间的干扰和互相影响也越来越严重。
采用电磁场数值分析方法可以对汽车中的电磁问题进行深入分析,确定干扰成因,从而提出解决方案。
3. 太阳能电池板设计太阳能电池板在光电转化过程中,需要考虑光的反射、折射和吸收等问题。
而这些问题都涉及到电磁场的分布特征。
因此,采用电磁场数值分析方法可以对太阳能电池板的设计进行优化,并提高其能量转换效率。
三、结论电磁场数值分析方法是一种强大的工具,它可以帮助我们深入了解电磁场的本质规律,并对各类电磁问题进行分析和优化设计。
电磁场数值计算引言:电磁场是电荷和电流产生的物理现象,它在现代科技和工程中起着至关重要的作用。
对电磁场的数值计算是研究和应用电磁学的基础。
本文将介绍电磁场数值计算的原理和方法,并探讨其在实际问题中的应用。
一、电磁场的数值计算方法:电磁场的数值计算可以通过求解麦克斯韦方程组来实现,这是描述电磁场的基本方程。
麦克斯韦方程组包括四个方程,分别是电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培环路定律。
通过数值方法求解这些方程,可以得到电磁场在空间中的分布情况。
1. 有限差分法:有限差分法是一种常用的数值计算方法,通过将空间离散化为有限个点,时间离散化为有限个步骤,将偏微分方程转化为差分方程进行求解。
在电磁场计算中,可以将空间划分为网格,通过有限差分法计算电场和磁场在网格节点上的数值。
2. 有限元法:有限元法是一种广泛应用于工程领域的数值计算方法,它通过将计算域划分为许多小的有限元,将偏微分方程转化为代数方程组进行求解。
在电磁场计算中,可以将计算域划分为三角形或四边形网格,通过有限元法计算电场和磁场在每个有限元上的数值。
3. 边界元法:边界元法是一种适用于边界值问题的数值计算方法,它将偏微分方程转化为积分方程进行求解。
在电磁场计算中,可以通过边界元法计算电场和磁场在边界上的数值,然后利用边界条件求解整个计算域内的电磁场分布。
二、电磁场数值计算的应用:电磁场数值计算在科学研究和工程应用中具有广泛的应用价值,以下是一些常见的应用领域:1. 电磁场仿真:电磁场数值计算可以用于电磁场仿真,模拟和预测电磁场在不同结构和材料中的分布情况。
例如,可以通过数值计算预测电磁波在天线中的传播情况,从而优化天线设计和布局。
2. 电磁场辐射:电磁场数值计算可以用于估计电磁场辐射对人体和环境的影响。
例如,可以通过数值计算评估电磁辐射对人体健康的潜在风险,从而制定相应的防护措施。
3. 电磁场感应:电磁场数值计算可以用于分析电磁感应现象,研究电磁场对电路和设备的影响。
工程电磁场数值计算大作业报告一、大作业要求运用FEM法求解算题5—8,删去要求(2),设其具有平行平面磁场分布的特征。
作业题目如下所示:二、问题分析及建立模型根据P149对平行平面场的静电场和磁场统一的数学模型的描述我们可以得到此问题对应的偏微分方程及相应的定解问题为:322220000300;;0;ρρμρϕ===⎧∂∂+=⎪∂∂⎪⎪==⎨⎪∂⎪=⎪∂⎩-y x H A A s y A A Ain x n进而可以求得此题对应的泛函及等价的变分问题为:2422221()221min(0;0)2S l l S A A A F A JA dxdy dl x y n A A A dxdy J x y n μ+⎡⎤⎛⎫∂∂∂⎛⎫=+--⎢⎥ ⎪ ⎪∂∂∂⎝⎭⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫∂∂∂⎛⎫=+===⎢⎥ ⎪ ⎪∂∂∂⎝⎭⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰⎰00;==y A 3003;ρρμρϕ==-H sin A根据以上条件,我们可以把此题与例5-2作比较,他们的边界条件形式已经基本一致了,所以我们可以利用EMF2D的程序对此题进行计算。
下面所以下我们的主要解题思路。
1、由于是一个圆形区域,且是对称的,所以我们只需求1/4圆周即可。
我们运用圆域剖分程序CAMG对整个区域进行剖分。
这里我们需要注意的是最外层的边界条件,我们选用选定10倍半径,即1米,进行三段剖分。
2、运用程序EMF2D,把圆域剖分出来的结果当作此程序的输入。
需要注意的是需要对剖分出来的最外层的点,进行“手动输入”。
我们需要注意两个程序的输入输出的格式进行统一,修改EMF2D 的强制边界条件程序FB。
三、程序及结果1、圆域剖分我们并没有改变什么CAMG程序,程序如下我们的输入数据如下:由输入可以知道我们内环分7段,中环分8段,外环分6段。
得到的输出结果CAMGOUT结果如下:前面表示节点坐标,后面表示每个三角元的顶点编号。
根据结果,我们得知了内环剖分了1~49个节点,中环剖分了49~169个节点,外环剖分了169~190的节点。
研究生课程论文 (2015—2016学年第1学期)课程名称: 工程电磁场数值分析 课程类型: 专业必修课授课教师: *****学 时: 36 学 分: 2.0 论文得分 批阅人签字批阅意见:论文题目:工程电磁场课程报告姓名: ** 学号: ************ 年级: ****级专业: 电气工程 学院: 电气学院注意事项:河南理工大学研究生学处制1、 以上各项由研究生本人认真填写;2、 研究生课程论文应符合一般学术规范,具有一定学术价值,严禁抄袭或应付;凡学校检查或抽查不合格者,一律取消该门课程成绩和学分,并按有关规定追究相关人员责任;3、 论文得分由批阅人填写,并签字确认;批阅人应根据作业质量客观、公正的签写批阅意见(原则上不少于50字);4、 原则上要求所有课程论文均须用A4纸打印,加装本封面,左侧装订;5、 课程论文由学生所在学院(系)统一保存,以备查用。
1 总结有限元法计算电磁场问题的步骤,并说明什么叫正问题和逆问题?(20分) 答:① 用 ANSYS 处理电磁场问题一般分为以下五个步骤 :(1)创建物理环境。
设置G UT 菜单过滤 ,定义分析标题 ,定义单元类型及其选项 ,定义单元坐标系及局部坐标系, 设置实常数和单位制 , 定义材料属性。
(2)建立模型、对模型的不同区域赋予不同的特性、划分网格。
(3)加边界条件和载荷(激励)。
(4)求解。
(5)后处理。
可以对计算结果云图显示, 矢量图显示,对路径上的物理量曲线显示 ② 电磁场的正问题:给定场的计算区域,各区域的材料的组成和特性,以及激励源的特性,求场域中场量随时间、空间分布的规律。
即由源求场。
电磁场的逆问题:给定电磁装置理想的性能指标和参数、场型分布等,通过对装置的优化设计来实现这一目标。
实际上就是电磁装置的综合设计问题。
即由场溯源。
2 设计一个高压点火器,用分析其电场分布,说明影响点火器起火的主要参数,并说明怎样改变参数可以容易地点火?(20分) 解:第一步:设计模型点火器是由两个等腰梯形的绝缘架和两个等腰三角形的金属尖以及气隙组成。
电磁场数值计算方法引论计算电磁学:现代数学方法、现代电磁场理论与现代计算机相结核的一门新兴学科。
目的:求解电磁场分布以及计算电磁场与复杂目标的相互作用。
电磁场计算方法分类分类方法按数学模型:微分方程、积分方程、变分方程。
按求解域:频域、时域法。
按近似性:解析法、半解析法、渐进法和数值法。
1、解析法求出电磁分布的数学表达式。
其优点:(1)、精确(2)、参数改变时不要重新推导(3)、解中包含了对某些参数的依赖关系,容易发现规律性主要方法有:分离变量法、级数展开法、格林函数法、保角变换法和积分变换法。
缺点:只有个别情况才能用解析法解决,一般情况较难应用。
2、渐进法由求解物体的线度l与波长λ的关系可以划分为(1)、低频区。
lλ≈(2)、谐振区。
lλ(3)、高频区。
lλ低频区:静态场近似,电路近似(等效电路)高频区:光学近似。
GO 几何光学法 GTD 几何绕射光学UTD 一般几何绕射 UAT 一致渐进理论PTD 衍射的物理理论 STD 衍射谱理论缺点:求解复杂系统的电磁场问题时可能引起大的误差,只能应用于简单的电大系统。
3、数值法把数学方程离散化,把连续问题化为离散问题,把解析方程化为代数方程。
把连续连续的场分布转换为计算离散点的场值或者表达场的级数表达式的数值化系数。
(1)、有限差分法——求解电磁场满足的微分方程。
(麦氏方程、泊松方程以及波动方程)△、用差商近似代替导数,用查分近似代替微分。
△、把微分方程转化为差分方程(代数方程)。
特点:简单,物理概念明确。
(2)、矩量法——求解电磁场积分方程。
△、把未知函数展开为选定基函数表示的级数,存在未知函数。
△、把求解未知函数问题转变为求解系数问题。
△、再选择合适权函数,计算加权平均意义下的误差。
△、令误差为零,积分方程变为关于系数的代数方程。
△、矩量法在应用时若直接采用分解法和迭代法求解则计算量非常大,例如计算电大目标散射问题的计算,为解决这个问题,产生了一系列的快速算法。
电磁场的数值计算方法与应用引言:电磁场是物理学中一个重要的研究领域,它涉及到电磁波、电磁感应等多个方面。
为了更好地理解和应用电磁场,科学家们开发了各种数值计算方法。
本文将介绍电磁场的数值计算方法及其应用。
一、有限差分法有限差分法是一种常用的数值计算方法,它将连续的电磁场问题离散化为离散的网格点问题。
通过在网格点上近似计算电场和磁场的导数,可以得到电场和磁场在空间中的分布情况。
有限差分法的优点是简单易懂,适用于各种电磁场问题的求解。
例如,可以利用有限差分法计算电磁波在介质中的传播,或者计算导体中的电磁感应现象。
二、有限元法有限元法是一种广泛应用于工程领域的数值计算方法,它可以用于求解各种复杂的电磁场问题。
有限元法将电磁场问题离散化为一系列的小区域,称为有限元。
通过在每个有限元上近似计算电场和磁场的分布,可以得到整个电磁场的数值解。
有限元法的优点是适用于各种不规则形状的区域,可以处理复杂的边界条件和材料特性。
例如,可以利用有限元法分析电磁场在电机中的分布,或者计算电磁屏蔽结构的性能。
三、边界元法边界元法是一种特殊的数值计算方法,它将电磁场问题转化为在边界上求解的问题。
边界元法通过在边界上近似计算电场和磁场的分布,可以得到整个电磁场的数值解。
边界元法的优点是可以减少计算的自由度,提高计算效率。
例如,可以利用边界元法计算电磁波在散射体上的散射现象,或者计算导体表面的电磁场分布。
四、数值计算方法在电磁场问题中的应用数值计算方法在电磁场问题中有着广泛的应用。
例如,在通信领域中,可以利用数值计算方法分析电磁波在天线和传输线中的传播特性,以及在无线通信系统中的传播损耗和干扰现象。
在电力系统中,可以利用数值计算方法分析电磁场对输电线路和变压器的影响,以及计算电力设备的电磁兼容性。
在电子设备设计中,可以利用数值计算方法分析电磁场对电路元件的耦合和干扰,以及计算电磁屏蔽结构的性能。
总之,数值计算方法在电磁场问题的研究和应用中发挥着重要的作用。
电磁场的数值计算方法:数值计算方法是一种研究并解决数学问题数值近似解的方法,广泛运用于电气、军事、经济、生态、医疗、天文、地质等众多领域。
本文综述了电磁场数值计算方法的发展历史、分类,详细介绍了三种典型的数值计算方法—有限差分法、有限元法、矩量法, 对每种方法的解题思路、原理、步骤、特点、应用进行了详细阐述, 并就不同方法的区别进行了深入分析, 最后对电磁场数值计算方法的应用前景作了初步探讨。
关键词:电磁场;数值计算;有限差分法;有限元法;矩量法引言自从1864 年Maxwell 建立了统一的电磁场理论,并得出著名的Maxwell 围绕电磁分布边值问题的求解国内外专家学者做了大量的工作。
在数值计算方法之前, 电磁分布的边值问题的研究方法主要是解析法,但其推导过程相当繁琐和困难,缺乏通用性,可求解的问题非常有限。
上个世纪六十年代以来,伴随着电子计算机技术的飞速发展,多种电磁场数值计算方法不断涌现,并得到广泛地应用,相对于解析法而言,数值计算方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。
但各种数值计算方法都有一定的局限性,一个复杂的问题往往难以依靠一种单一方法解决,因此如何充分发挥各种方法的优势,取长补短, 将多种方法结合起来解决实际问题,即混合法的研究和应用已日益受到人们的关注。
本文综述电磁场的数值计算方法,对三种常用的电磁场数值计算方法进行分类和比较。
电磁场数值计算方法的发展历史在上世纪四十年代,就有人试探用数值计算的方法来求解具有简单边界的电磁场问题,如采用Ritz ,以多项式在整个求解场域范围内整体逼近二阶偏微分方程在求解域中的解。
五十年代,采用差分方程近似二阶偏微分方程,诞生了有限差分数值计算方法,开始是人工计算,后来采用机械式的手摇计算机计算,使简单、直观的有限差分法得到应用和发展,该方法曾在欧、美风行一时。
1964 年美国加州大学学者Winslow 以矢量位为求解变量,用有限差分法在计算机上成忻州师范学院物理系本科毕业论文(设计)1965年,Winslow 首先将有限元法从力学界引入电气工程中,1969 年加拿大MeGill 大学P. Silvester运用有限元法成功地进行了波导的计算Chari合作将有限元法应用于二维非线性磁场的计算,成功地计算了直流电机、同步电机的恒定磁场。