二项式分布及其应用(教师版)
- 格式:doc
- 大小:159.00 KB
- 文档页数:11
二项分布及其应用教案定稿第一章:引言1.1 教学目标了解二项分布的背景和意义,理解二项分布的概念及其在实际问题中的应用。
1.2 教学内容1.2.1 二项分布的定义通过具体案例引入二项分布的概念,讲解二项分布的基本性质。
1.2.2 二项分布的概率质量函数推导二项分布的概率质量函数,讲解影响二项分布概率的因素。
1.3 教学方法采用案例分析法,通过具体案例引导学生理解二项分布的概念及其应用。
1.4 教学评估通过小组讨论和课堂练习,检查学生对二项分布的理解程度。
第二章:二项分布的概率质量函数2.1 教学目标掌握二项分布的概率质量函数的推导和运用。
2.2 教学内容2.2.1 二项分布的概率质量函数推导讲解二项分布的概率质量函数的推导过程,引导学生理解各个参数的含义。
2.2.2 二项分布的概率质量函数的应用通过具体案例,讲解如何运用二项分布的概率质量函数解决实际问题。
2.3 教学方法采用讲解法,结合具体案例,引导学生理解和运用二项分布的概率质量函数。
2.4 教学评估通过课堂练习和小组讨论,检查学生对二项分布概率质量函数的掌握程度。
第三章:二项分布的期望和方差3.1 教学目标掌握二项分布的期望和方差的计算方法及其应用。
3.2 教学内容3.2.1 二项分布的期望讲解二项分布的期望的计算方法,引导学生理解期望的含义。
3.2.2 二项分布的方差讲解二项分布的方差的计算方法,引导学生理解方差的概念。
3.3 教学方法采用讲解法,结合具体案例,引导学生理解和运用二项分布的期望和方差。
3.4 教学评估通过课堂练习和小组讨论,检查学生对二项分布的期望和方差的掌握程度。
第四章:二项分布的应用4.1 教学目标了解二项分布在不同领域的应用,提高学生解决实际问题的能力。
4.2 教学内容4.2.1 生物学领域的应用讲解二项分布在生物学领域的应用,如基因遗传等。
4.2.2 医学领域的应用讲解二项分布在医学领域的应用,如药物疗效等。
4.2.3 社会科学领域的应用讲解二项分布在社会科学领域的应用,如民意调查等。
二项分布及其应用教案定稿第一章:引言1.1 教学目标:了解二项分布的定义及意义。
掌握二项分布的概率质量函数和累积分布函数。
1.2 教学内容:引入二项分布的概念。
讲解二项分布的概率质量函数和累积分布函数的推导过程。
1.3 教学方法:采用讲授法,结合实例进行讲解。
引导学生通过小组讨论,探究二项分布的性质。
1.4 教学准备:PPT课件。
相关实例和练习题。
1.5 教学过程:1. 引入实例,让学生了解二项分布的实际应用背景。
2. 讲解二项分布的定义及数学表达式。
3. 引导学生推导二项分布的概率质量函数和累积分布函数。
4. 通过小组讨论,让学生探究二项分布的性质。
5. 布置练习题,巩固所学知识。
第二章:二项分布的概率质量函数2.1 教学目标:能够运用概率质量函数解决实际问题。
2.2 教学内容:讲解二项分布的概率质量函数的推导过程。
举例说明如何运用概率质量函数解决实际问题。
2.3 教学方法:采用讲授法,结合实例进行讲解。
引导学生通过小组讨论,探究概率质量函数的性质。
2.4 教学准备:PPT课件。
相关实例和练习题。
2.5 教学过程:1. 回顾上一章的内容,让学生复习二项分布的定义。
2. 讲解二项分布的概率质量函数的推导过程。
3. 通过实例,让学生了解如何运用概率质量函数解决实际问题。
4. 引导学生进行小组讨论,探究概率质量函数的性质。
5. 布置练习题,巩固所学知识。
第三章:二项分布的累积分布函数3.1 教学目标:掌握二项分布的累积分布函数的推导过程。
能够运用累积分布函数解决实际问题。
3.2 教学内容:举例说明如何运用累积分布函数解决实际问题。
3.3 教学方法:采用讲授法,结合实例进行讲解。
引导学生通过小组讨论,探究累积分布函数的性质。
3.4 教学准备:PPT课件。
相关实例和练习题。
3.5 教学过程:1. 回顾前两章的内容,让学生复习二项分布的概率质量函数和累积分布函数。
2. 讲解二项分布的累积分布函数的推导过程。
二项分布及其应用
一、教材分析
互相独立事件、n次独立重复试验的概率及条件概率是高考重点考察的内容,
在解答题中常和分布列的有关知识结合在一起考查,属中档题目。
条件概率和互相独立事件的这两个概念的引入,是为了更深刻地理解n次独立重复试验及二项分布模型。
二、学情分析
在最近的一次月考中,曾出现了“二项分布”的考题,学生答题情况并不理想,曾经出现各种的错误。
这说明学生对该节知识理解不深刻,掌握不好。
在此之前,学生已复习了互斥事件,对立事件,分布列,两点分布,超几何分布等知识。
因此,在复习过程中,应充分调动学生的积极性,通过学生自身的探究学习、互相合作,还有教师的适当引导之下复习
好本节知识。
此外,还要让学生加强“二项分布”与前面知识的区别与联系,构建知识网络,三、教学目标
1、知识目标:了解条件概率和两个事件互相独立的概念,理解n次独立重复试验的模
型及二项分布,并能解决一些简单的实际问题。
2、能力目标:在探究的过程中,培养学生使用概率知识分析和解决实际问题的能力,
体会分类讨论,转化等数学思想,增强数学的应用意识,提高学习数学的兴趣。
3、情感目标:通过学生的讨论探究,主动学习,培养他们勇于探索的治学精神。
四、重点难点
教学重点:理解n次独立重复试验及二项分布模型。
教学难点:利用互相独立事件和二项分布模型解决实际问题。
五、教学基本流程
六、教学设计。
二项分布及其应用教案定稿第一章:二项分布的概念及性质1.1 二项分布的定义引导学生回顾概率论的基础知识,引入随机变量的概念。
解释二项分布的定义,即在固定次数n的独立实验中,每次实验成功或失败的概率为p的随机变量的分布。
1.2 二项分布的性质引导学生了解二项分布的概率质量函数(PMF)及其表达式。
解释二项分布的期望、方差等统计量,并引导学生理解其含义。
第二章:二项分布的概率计算2.1 概率质量函数的推导引导学生使用二项分布的概率质量函数公式进行计算。
解释公式中各项的物理意义,如n次实验中成功k次的概率。
2.2 特定概率下的成功次数的计算引导学生使用概率质量函数计算特定概率下的成功次数。
举例说明如何计算概率质量函数的积分。
第三章:二项分布的应用3.1 抛硬币实验引导学生进行抛硬币实验,观察并记录实验结果。
引导学生使用二项分布的概念和概率计算方法,分析实验结果的概率分布。
3.2 药物有效性测试引导学生了解药物有效性测试的背景和目的。
引导学生使用二项分布的概念和概率计算方法,分析药物有效性测试的结果。
第四章:二项分布的参数估计4.1 参数估计的概念引导学生了解参数估计的概念和方法。
解释使用样本数据来估计总体参数的过程。
4.2 二项分布的参数估计方法引导学生使用样本均值和样本方差来估计二项分布的参数np和n(1-p)。
解释估计的准确性和可靠性,并引导学生了解置信区间的概念。
第五章:二项分布的假设检验5.1 假设检验的概念引导学生了解假设检验的概念和方法。
解释使用样本数据来对总体分布的假设进行检验的过程。
5.2 二项分布的假设检验方法引导学生使用二项分布的检验统计量进行假设检验。
解释检验的显著性水平和拒绝域的概念,并引导学生了解p值的计算方法。
第六章:二项分布与正态分布的关系6.1 正态分布的概念引导学生回顾正态分布的定义和性质。
解释正态分布与二项分布的关系,即当n足够大时,二项分布近似正态分布。
6.2 二项分布到正态分布的转换引导学生了解二项分布到正态分布的转换方法。
考点梳理1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (A ∩B )P (A ).在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (A ∩B )n (A ).(2)条件概率具有的性质: ①0≤P (B |A )≤1;② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立.(4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 3.独立重复试验与二项分布 (1)独立重复试验独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.考点自测1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ).A.34B.23C.35D.12解析 问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34.答案 A2.小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ).A.49B.29C.427D.227解析 所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49.答案 A3.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ).A .0.960B .0.864C .0.720D .0.576解析 P =0.9×[1-(1-0.8)2]=0.864. 答案 B4.如果X ~B ⎝⎛⎭⎪⎫15,14,则使P (X =k )取最大值的k 值为( ). A .3 B .4 C .5 D .3或4 解析 采取特殊值法.∵P (X =3)=C 315⎝ ⎛⎭⎪⎫143⎝ ⎛⎭⎪⎫3412,P (X =4)=C 415⎝ ⎛⎭⎪⎫144·⎝ ⎛⎭⎪⎫3411,P (X =5)=C 515⎝ ⎛⎭⎪⎫145⎝ ⎛⎭⎪⎫3410, 从而易知P (X =3)=P (X =4)>P (X =5). 答案 D5.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ).A.12B.14C.16D.18解析 法一 P (B |A )=P (AB )P (A )=1412=12.法二 A 包括的基本事件为{正,正},{正,反},AB 包括的基本事件为{正,正},因此P (B |A )=12.答案 A考向一 条件概率【例1】从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ).A.18B.14C.25D.12解析 P (A )=C 23+C 22C 25=410=25,P (A ∩B )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P (A ∩B )P (A )=110410=14.答案B【训练1】如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=________;(2)P (B |A )=________.解析 圆的面积是π,正方形的面积是2,扇形的面积是π4,根据几何概型的概率计算公式得P (A )=2π,根据条件概率的公式得P (B |A )=P (AB )P (A )=12π2π=14.答案 2π 14考向二 独立事件的概率【例2】根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率. 解 (1)设“购买甲种保险”事件为A ,“购买乙种保险”事件为B 由已知条件P (A )=0.5,P (B A )=0.3,∴P (B )P (A )=0.3,P (B )=0.3P (A )=0.6,因此,1位车主至少购买甲、乙两种保险中的一种的概率为1-P (A B )=1-P (A )P (B ) =1-(1-0.5)(1-0.6) =0.8.(2)一位车主两种保险都不购买的概率为P =P (A B )=0.2,因此3位车主中恰有1位车主甲、乙两种保险都不购买的概率为 C 13×0.2×0.82=0.384.【训练2】红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B ,丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ). 解 (1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D ,E ,F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5. 红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF . 由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知DE F ,D E F ,D EF 是两两互斥事件,且各盘比赛的结果相互独立,因此P (ξ=0)=P (DEF )=0.4×0.5×0.5=0.1,P (ξ=1)=P (DE F )+P (D E F )+P (D EF )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35, P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15. 由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4. 所以ξ的分布列为:因此E (ξ)=0×0.1+考向三 独立重复试验与二项分布【例3】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.解 (1)将通过每个交通岗看做一次试验,则遇到红灯的概率为13,且每次试验结果是相互独立的,故X ~B ⎝ ⎛⎭⎪⎫6,13. 所以X 的分布列为P (X =k )=C k 6⎝ ⎛⎭⎪⎫13k ·⎝ ⎛⎭⎪⎫236-k ,k =0,1,2,3,4,5,6.(2)由于Y 表示这名学生在首次停车时经过的路口数,显然Y 是随机变量,其取值为0,1,2,3,4,5,6.其中:{Y =k }(k =0,1,2,3,4,5)表示前k 个路口没有遇上红灯,但在第k +1个路口遇上红灯,故各概率应按独立事件同时发生计算.P (Y =k )=⎝ ⎛⎭⎪⎫23k ·13(k =0,1,2,3,4,5),而{Y =6}表示一路没有遇上红灯.故其概率为P (Y =6)=⎝ ⎛⎭⎪⎫236,因此Y(3){X ≥1}={X =1或X =2或…或X =6}, 所以其概率为P (X ≥1)=∑k =16P (X =k )=1-P (X =0)=1-⎝ ⎛⎭⎪⎫236=665729.【训练3】 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.解 (1)任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且P (A )=0.6,P (B )=0.75.所以,该下岗人员没有参加过培训的概率是P (A B )=P (A )·P (B )=(1-0.6)(1-0.75)=0.1.∴该人参加过培训的概率为1-0.1=0.9. (2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数X 服从二项分布X ~B (3,0.9),P (X =k )=C k 30.9k ×0.13-k,k =0,1,2,3, ∴X 的分布列是课堂练习一、选择题1.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ). A.12 B.512 C.14 D.16解析 记两个零件中恰好有一个一等品的事件为A ,则P (A )=P (A 1)+P (A 2)=23×14+13×34=512. 答案 B2.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ). A .0.12 B .0.42 C .0.46 D .0.88解析 由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12. ∴至少有一人被录取的概率为1-0.12=0.88. 答案 D3.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( ). A .[0.4,1] B .(0,0.4] C .(0,0.6] D .[0.6,1]解析 设事件A 发生的概率为p ,则C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,故选A. 答案 A4.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2.则( ). A .p 1=p 2 B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能 解析 p 1=1-⎝ ⎛⎭⎪⎫1-110010=1-⎝ ⎛⎭⎪⎫9910010=1-⎝⎛⎭⎪⎫9 80110 0005, p 2=1-⎝ ⎛⎭⎪⎫C 299C 21005=1-⎝ ⎛⎭⎪⎫981005则p 1<p 2. 答案 B5.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( ). A.⎝ ⎛⎭⎪⎫125B .C 25⎝ ⎛⎭⎪⎫125C .C 35⎝ ⎛⎭⎪⎫123D .C 25C 35⎝ ⎛⎭⎪⎫125解析 由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动两次,向上移动三次,故其概率为C 35⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫122=C 35⎝ ⎛⎭⎪⎫125=C 25⎝ ⎛⎭⎪⎫125,故选B.答案 B6.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( ). A.35 B.34 C.12D.310解析 在第一次取到白球的条件下,在第二次取球时,袋中有2个白球和2个黑球共4个球,所以取到白球的概率P =24=12,故选C.答案 C7.一个电路如图所示,A 、B 、C 、D 、E 、F为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( ). A.164 B.5564 C.18 D.116解析 设A 与B 中至少有一个不闭合的事件为T ,E 与F 至少有一个不闭合的事件为R , 则P (T )=P (R )=1-12×12=34,所以灯亮的概率P =1-P (T )P (R )P (C )P (D )=5564. 答案 B 二、填空题8.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________.解析 由题意得该篮球运动员两次罚球都命中的概率为1-1625=925,∴该队员每次罚球的命中率为35.答案359.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽,又成活为幼苗)出芽后的幼苗成活率为:P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72. 答案 0.7210.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 解析 设A =“两个闹钟至少有一个准时响”. ∴P (A )=1-P (A )=1-(1-0.80)(1-0.90) =1-0.2×0.1=0.98. 答案 0.9811.将一枚硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________.解析 由题意知,正面可以出现6次,5次,4次,所求概率P =C 66⎝ ⎛⎭⎪⎫126+C 56⎝ ⎛⎭⎪⎫126+C 46⎝ ⎛⎭⎪⎫126=1+6+1564=1132.答案113212.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.解析 由已知条件第2个问题答错,第3、4个问题答对,记“问题回答正确”事件为A ,则P (A )=0.8,P =P ⎣⎡⎦⎤(A ∪A )A AA=(1-P (A )] P (A ) P (A )=0.128. 答案 0.128 三、解答题13.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是13.(1)求这支篮球队首次胜场前已经负了两场的概率; (2)求这支篮球队在6场比赛中恰好胜了3场的概率; (3)求这支篮球队在6场比赛中胜场数的期望和方差. 解 (1)P =⎝⎛⎭⎪⎫1-132×13=427.所以这支篮球队首次胜场前已负两场的概率为427; (2)6场胜3场的情况有C 36种, ∴P =C 36⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫1-133=20×127×827=160729. 所以这支篮球队在6场比赛中恰胜3场的概率为160729; (3)由于ξ服从二项分布,即ξ~B ⎝ ⎛⎭⎪⎫6,13,∴E (ξ)=6×13=2,D (ξ)=6×13×⎝⎛⎭⎪⎫1-13=43.所以在6场比赛中这支篮球队胜场的期望为2,方差为43.14.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率. 解 (1)该公司决定对该项目投资的概率为P =C 23⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫23+C 33⎝ ⎛⎭⎪⎫133=727. (2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:P (A )=C 33⎝ ⎛⎭⎪⎫133=27, P (B )=C 13⎝ ⎛⎭⎪⎫133=19,P (C )=C 13C 12⎝ ⎛⎭⎪⎫133=29,P (D )=C 13⎝ ⎛⎭⎪⎫133=19.∵A 、B 、C 、D 互斥,∴P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=1327. 15.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (1)求在1次游戏中, (ⅰ)摸出3个白球的概率; (ⅱ)获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).解 (1)(ⅰ)设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3),则P (A 3)=C 23C 25·C 12C 23=15. (ⅱ)设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3.又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2. 由于X 服从二项分布,即X ~B ⎝⎛⎭⎪⎫3,710. ∴P (X =0)=⎝ ⎛⎭⎪⎫1-7102=9100, P (X =1)=C 12710×⎝⎛⎭⎪⎫1-710=2150,P (X =2)=⎝ ⎛⎭⎪⎫7102=49100.所以X 的分布列是X 的数学期望E (X )=0×100+1×50+2×100=5.Welcome !!! 欢迎您的下载,资料仅供参考!。
2.2.3 独立重复试验与二项分布一、教学目标知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。
二、重难点教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算三、教学过程复习引入:1. 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件。
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作()P A。
3. 概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。
4.概率的性质:必然事件的概率为1 ,不可能事件的概率为0 ,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形。
5 基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。
讲授新课:1 独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验。
2 独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(。
它是[](1)nP P -+展开式的第1k +项。
3离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下: ξ 01 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - …0q p C n n n 由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p为参数,并记k n k k n q p C -=b (k ;n ,p ).例题讲解:例1.某射手每次射击击中目标的概率是0 。
二项分布及其应用
20130513
一、教材分析
互相独立事件、n次独立重复试验的概率及二项分布是高考重点考察的内容,在解答题中常和分布列的有关知识结合在一起考查,属中档题目.在此之前,学生已学习了互斥事件,对立事件,分布列,两点分布,超几何分布,条件概率等知识,因此要加强“二项分布”与前面知识的区别与联系,构建知识网络.
二、学情分析
在最近的一次月考中,曾出现了“二项分布”的考题,学生答题情况并不理想,曾经出现各种的错误.这说明学生对该“二项分布”的特点理解不深刻,换一个背景,学生就不知道考核什么知识点了,或者公式中缺少k
C,从而造成失分.因此,在复习过程中,应充分调动学生的积极性,通
n
过学生自身的探究学习、互相合作,还有教师的适当引导之下复习好本节知识.
三、教学目标
1、知识目标:了解两个事件互相独立的概念,理解n次独立重复试验的模型及二项分布,并能
解决一些简单的实际问题.
?2、能力目标:在探究的过程中,培养学生使用概率知识分析和解决实际问题的能力,体会分类讨论,转化等数学思想,增强数学的应用意识,提高学习数学的兴趣.
?3、情感目标:通过学生的讨论探究,主动学习,培养他们勇于探索的治学精神.
四、重点难点
教学重点:理解n次独立重复试验及二项分布模型.
教学难点:利用互相独立事件和二项分布模型解决实际问题.
五、教学基本流程。
【高二】新人教A版选修2 32.2二项分布及其应用教案二【高二】新人教a版选修2-32.2二项分布及其应用教案二第2.2.1条概率目标:知识和技能:通过分析具体情况来理解概率的定义。
过程与方法:掌握一些简单的条概率的计算。
情感、态度和价值观:通过实例分析进行简单应用。
重点:条概率定义的理解教学难点:概率计算公式的应用授类型:新授时间:1:00教具:多媒体、实物投影仪教学设想:引导学生形成“自主学习”、“合作学习”等良好的学习方法。
教学过程:一、回顾介绍:探究:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.如果中奖彩票是用“Y”绘制的,而不是用“”绘制的,那么三名学生的抽奖结果有三种可能:Y、Y和Y。
用B表示“最后一名学生绘制了中奖彩票”,那么B只包含一个基本内容。
Y.根据经典概率计算公式,最后一名学生获得中奖的概率为思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一个同学没有抽彩票,所以可能出现的基本情况只有y和y。
而“最后一个同学抽彩票”中包含的基本情况仍然是y。
这可以从经典的概率公式中看出。
最后一位同学抽彩票的概率为,可以记录为P(BA),其中a表示“第一位同学没有抽彩票”已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一个学生没有中彩票相当于知道事情a将会发生,并且可能发生的基本事情必须发生在事情a中,从而影响事情B的概率,因此P(BA)≠ P(b)思考:对于上面的事a和事b,p(ba)与它们的概率有什么关系呢?它由三个基本事件组成,即={y,y,y}。
因为已知事件A必须发生,所以我们只需要在A= {y,y }的范围内考虑这个问题,也就是说,只有两个基本事件Y和Y。
事件A发生时,事件B发生,相当于事件A和事件B同时发生,也就是AB发生。
事件AB只包含一个基本事件y==.其中,n(a)和n(AB)分别表示事件a和事件AB中包含的基本事件的数量。
【高二】2.2二项分布及其应用教案三(新人教A版选修2-3)2.2.2事的相互独立性目标:知识与技能:理解两个事相互独立的概念。
过程与方法:能进行一些与事独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
重点:独立事同时发生的概率教学难点:有关独立事发生的概率计算授类型:新授时安排:2时教具:多媒体、实物投影仪教学过程:一、复习引入:1 事的定义:随机事:在一定条下可能发生也可能不发生的事;必然事:在一定条下必然发生的事;不可能事:在一定条下不可能发生的事2.随机事的概率:一般地,在大量重复进行同一试验时,事发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事的概率,记作.3.概率的确定方法:通过进行大量的重复试验,用这个事发生的频率近似地作为它的概率;4.概率的性质:必然事的概率为,不可能事的概率为,随机事的概率为,必然事和不可能事看作随机事的两个极端情形5 基本事:一次试验连同其中可能出现的每一个结果(事)称为一个基本事6.等可能性事:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事的概率都是,这种事叫等可能性事7.等可能性事的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事包含个结果,那么事的概率8.等可能性事的概率公式及一般求解方法9.事的和的意义:对于事A和事B是可以进行加法运算的10 互斥事:不可能同时发生的两个事.一般地:如果事中的任何两个都是互斥的,那么就说事彼此互斥11.对立事:必然有一个发生的互斥事.12.互斥事的概率的求法:如果事彼此互斥,那么=探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事:甲掷一枚硬币,正面朝上;事:乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事:从甲坛子里摸出1个球,得到白球;事:从乙坛子里摸出1个球,得到白球问题(1)、(2)中事、是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事(或)是否发生对事(或)发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事A为“第一名同学没有抽到中奖奖券”, 事B为“最后一名同学抽到中奖奖券”. 事A的发生会影响事B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事A的发生不会影响事B 发生的概率.于是P(B A)=P(B),P(AB)=P( A ) P ( B A)=P(A)P(B).二、讲解新:1.相互独立事的定义:设A, B为两个事,如果 P ( AB ) = P ( A ) P ( B ) , 则称事A与事B相互独立(mutually independent ) .事(或)是否发生对事(或)发生的概率没有影响,这样的两个事叫做相互独立事若与是相互独立事,则与,与,与也相互独立2.相互独立事同时发生的概率:问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事,它的发生,就是事,同时发生,记作.(简称积事)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有种等可能的结果同时摸出白球的结果有种所以从这两个坛子里分别摸出1个球,它们都是白球的概率.另一方面,从甲坛子里摸出1个球,得到白球的概率,从乙坛子里摸出1个球,得到白球的概率.显然.这就是说,两个相互独立事同时发生的概率,等于每个事发生的概率的积一般地,如果事相互独立,那么这个事同时发生的概率,等于每个事发生的概率的积,即.3.对于事A与B及它们的和事与积事有下面的关系:三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事A, “第二次抽奖抽到某一指定号码”为事B ,则“两次抽奖都抽到某一指定号码”就是事AB.由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A )U( B)表示.由于事A 与 B互斥,根据概率加法公式和相互独立事的定义,所求的概率为P (A )十P( B)=P(A)P()+ P()P(B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A )U( B)表示.由于事 AB , A 和 B 两两互斥,根据概率加法公式和相互独立事的定义,所求的概率为 P ( AB ) + P(A )+ P( B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:(1)人都射中目标的概率;(2)人中恰有人射中目标的概率;(3)人至少有人射中目标的概率;(4)人至多有人射中目标的概率?解:记“甲射击次,击中目标”为事,“乙射击次,击中目标”为事,则与,与,与,与为相互独立事,(1)人都射中的概率为:,∴ 人都射中目标的概率是.(2)“ 人各射击次,恰有人射中目标”包括两种情况:一种是甲击中、乙未击中(事发生),另一种是甲未击中、乙击中(事发生)根据题意,事与互斥,根据互斥事的概率加法公式和相互独立事的概率乘法公式,所求的概率为:∴ 人中恰有人射中目标的概率是.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为.(法2):“2人至少有一个击中”与“2人都未击中”为对立事,2个都未击中目标的概率是,∴“两人至少有1人击中目标”的概率为.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,故所求概率为:.(法2):“至多有1人击中目标”的对立事是“2人都击中目标”,故所求概率为例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率解:分别记这段时间内开关,,能够闭合为事,,.由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事的概率乘法公式,这段时间内3个开关都不能闭合的概率是∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是.答:在这段时间内线路正常工作的概率是.变式题1:如图添加第四个开关与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率()变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:方法二:分析要使这段时间内线路正常工作只要排除开且与至少有1个开的情况例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k门高炮击中的事为 (k=1,2,3,4,5),那么5门高炮都未击中敌机的事为.∵事,,,,相互独立,∴敌机未被击中的概率为=∴敌机未被击中的概率为.(2)至少需要布置门高炮才能有0.9以上的概率被击中,仿(1)可得:敌机被击中的概率为1-∴令,∴两边取常用对数,得∵ ,∴∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、堂练习:1.在一段时间内,甲去某地的概率是,乙去此地的概率是,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )2.从甲口袋内摸出1个白球的概率是,从乙口袋内摸出1个白球的概率是,从两个口袋内各摸出1个球,那么等于()2个球都是白球的概率 2个球都不是白球的概率2个球不都是白球的概率 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是()0.128 0.096 0.104 0.3844.某道路的、、三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45 秒,某辆车在这条路上行驶时,三处都不停车的概率是()5.(1)将一个硬币连掷5次,5次都出现正面的概率是;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是.6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为;此穴无壮苗的概率为.(2)每穴播三粒,此穴有苗的概率为;此穴有壮苗的概率为.7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0 .79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1,其中恰有 1废品的概率是多少?9 .甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1) (2)6.(1) , (2) ,7. P=8. P=9. 提示:五、小结:两个事相互独立,是指它们其中一个事的发生与否对另一个事发生的概率没有影响一般地,两个事不可能即互斥又相互独立,因为互斥事是不可能同时发生的,而相互独立事是以它们能够同时发生为前提的相互独立事同时发生的概率等于每个事发生的概率的积,这一点与互斥事的概率和也是不同的六、后作业:本58页练习1、2、3 第60页习题 2. 2A组4. B组1七、板书设计(略)八、教学反思:1. 理解两个事相互独立的概念。
考点梳理1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (A ∩B )P (A ).在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (A ∩B )n (A ).(2)条件概率具有的性质: ①0≤P (B |A )≤1;② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立.(4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 3.独立重复试验与二项分布 (1)独立重复试验独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.考点自测1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ).A.34B.23C.35D.12解析 问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34.答案 A2.小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ).A.49B.29C.427D.227解析 所求概率P =C 13·⎝⎛⎭⎫131·⎝⎛⎭⎫1-133-1=49. 答案 A3.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ).A .0.960B .0.864C .0.720D .0.576解析 P =0.9×[1-(1-0.8)2]=0.864. 答案 B4.如果X ~B ⎝⎛⎭⎫15,14,则使P (X =k )取最大值的k 值为( ). A .3 B .4 C .5 D .3或4 解析 采取特殊值法.∵P (X =3)=C 315⎝⎛⎭⎫143⎝⎛⎭⎫3412,P (X =4)=C 415⎝⎛⎭⎫144·⎝⎛⎭⎫3411,P (X =5)=C 515⎝⎛⎭⎫145⎝⎛⎭⎫3410, 从而易知P (X =3)=P (X =4)>P (X =5).答案 D5.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ).A.12B.14C.16D.18解析 法一 P (B |A )=P (AB )P (A )=1412=12.法二 A 包括的基本事件为{正,正},{正,反},AB 包括的基本事件为{正,正},因此P (B |A )=12.答案 A考向一 条件概率【例1】从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ).A.18B.14C.25D.12解析 P (A )=C 23+C 22C 25=410=25,P (A ∩B )=C 22C 25=110. 由条件概率计算公式,得P (B |A )=P (A ∩B )P (A )=110410=14.答案 B【训练1】如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=________;(2)P (B |A )=________.解析 圆的面积是π,正方形的面积是2,扇形的面积是π4,根据几何概型的概率计算公式得P (A )=2π,根据条件概率的公式得P (B |A )=P (AB )P (A )=12π2π=14.答案 2π 14考向二 独立事件的概率【例2】根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率. 解 (1)设“购买甲种保险”事件为A ,“购买乙种保险”事件为B 由已知条件P (A )=0.5,P (B A )=0.3,∴P (B )P (A )=0.3,P (B )=0.3P (A )=0.6,因此,1位车主至少购买甲、乙两种保险中的一种的概率为1-P (A B )=1-P (A )P (B )=1-(1-0.5)(1-0.6) =0.8.(2)一位车主两种保险都不购买的概率为P =P (A B )=0.2,因此3位车主中恰有1位车主甲、乙两种保险都不购买的概率为 C 13×0.2×0.82=0.384. 【训练2】红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B ,丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ). 解 (1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D ,E ,F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5. 红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF . 由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知DE F ,D E F ,D EF 是两两互斥事件,且各盘比赛的结果相互独立,因此P (ξ=0)=P (DEF )=0.4×0.5×0.5=0.1,P (ξ=1)=P (DE F )+P (D E F )+P (D EF )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35, P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15. 由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4. 所以ξ的分布列为:因此E (ξ)=0×0.1+1考向三 独立重复试验与二项分布【例3】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.解 (1)将通过每个交通岗看做一次试验,则遇到红灯的概率为13,且每次试验结果是相互独立的,故X ~B ⎝⎛⎭⎫6,13. 所以X 的分布列为P (X =k )=C k 6⎝⎛⎭⎫13k ·⎝⎛⎭⎫236-k ,k =0,1,2,3,4,5,6. (2)由于Y 表示这名学生在首次停车时经过的路口数,显然Y 是随机变量,其取值为0,1,2,3,4,5,6.其中:{Y =k }(k =0,1,2,3,4,5)表示前k 个路口没有遇上红灯,但在第k +1个路口遇上红灯,故各概率应按独立事件同时发生计算.P (Y =k )=⎝⎛⎭⎫23k ·13(k =0,1,2,3,4,5), 而{Y =6}表示一路没有遇上红灯.故其概率为P (Y =6)=⎝⎛⎭⎫236, 因此Y(3){X ≥1}={X =1或X =2或…或X =6}, 所以其概率为P (X ≥1)=∑k =16P (X =k )=1-P (X =0)=1-⎝⎛⎭⎫236=665729.【训练3】 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列. 解 (1)任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且P (A )=0.6,P (B )=0.75.所以,该下岗人员没有参加过培训的概率是P (A B )=P (A )·P (B )=(1-0.6)(1-0.75)=0.1.∴该人参加过培训的概率为1-0.1=0.9.(2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数X 服从二项分布X ~B (3,0.9),P (X =k )=C k 30.9k ×0.13-k,k =0,1,2,3, ∴X 的分布列是课堂练习一、选择题1.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ). A.12 B.512 C.14 D.16解析 记两个零件中恰好有一个一等品的事件为A ,则P (A )=P (A 1)+P (A 2)=23×14+13×34=512. 答案 B2.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ). A .0.12 B .0.42 C .0.46 D .0.88解析 由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12. ∴至少有一人被录取的概率为1-0.12=0.88. 答案 D3.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( ). A .[0.4,1] B .(0,0.4] C .(0,0.6] D .[0.6,1]解析 设事件A 发生的概率为p ,则C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,故选A. 答案 A4.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2.则( ). A .p 1=p 2 B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能 解析 p 1=1-⎝ ⎛⎭⎪⎫1-110010=1-⎝ ⎛⎭⎪⎫9910010=1-⎝ ⎛⎭⎪⎫9 80110 0005,p 2=1-⎝ ⎛⎭⎪⎫C 299C 21005=1-⎝ ⎛⎭⎪⎫981005 则p 1<p 2. 答案 B5.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( ). A.⎝ ⎛⎭⎪⎫125B .C 25⎝ ⎛⎭⎪⎫125C .C 35⎝ ⎛⎭⎪⎫123D .C 25C 35⎝ ⎛⎭⎪⎫125 解析 由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动两次,向上移动三次,故其概率为C 35⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫122=C 35⎝ ⎛⎭⎪⎫125=C 25⎝ ⎛⎭⎪⎫125,故选B. 答案 B6.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( ). A.35B.34C.12 D.310解析 在第一次取到白球的条件下,在第二次取球时,袋中有2个白球和2个黑球共4个球,所以取到白球的概率P =24=12,故选C. 答案 C7.一个电路如图所示,A 、B 、C 、D 、E 、F为6个开关,其闭合的概率都是12,且是相互独立的, 则灯亮的概率是( ). A.164 B.5564 C.18 D.116解析 设A 与B 中至少有一个不闭合的事件为T , E 与F 至少有一个不闭合的事件为R , 则P (T )=P (R )=1-12×12=34,所以灯亮的概率P =1-P (T )P (R )P (C )P (D )=5564. 答案 B 二、填空题8.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 解析 由题意得该篮球运动员两次罚球都命中的概率为1-1625=925,∴该队员每次罚球的命中率为35. 答案 359.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽,又成活为幼苗)出芽后的幼苗成活率为:P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72. 答案 0.7210.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 解析 设A =“两个闹钟至少有一个准时响”. ∴P (A )=1-P (A )=1-(1-0.80)(1-0.90) =1-0.2×0.1=0.98. 答案 0.9811.将一枚硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________.解析 由题意知,正面可以出现6次,5次,4次,所求概率 P =C 66⎝ ⎛⎭⎪⎫126+C 56⎝ ⎛⎭⎪⎫126+C 46⎝ ⎛⎭⎪⎫126=1+6+1564=1132. 答案 113212.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.解析 由已知条件第2个问题答错,第3、4个问题答对,记“问题回答正确”事件为A ,则P (A )=0.8,P =P [](A ∪A )A AA =(1-P (A )] P (A ) P (A )=0.128. 答案 0.128 三、解答题13.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是13. (1)求这支篮球队首次胜场前已经负了两场的概率; (2)求这支篮球队在6场比赛中恰好胜了3场的概率; (3)求这支篮球队在6场比赛中胜场数的期望和方差. 解 (1)P =⎝ ⎛⎭⎪⎫1-132×13=427. 所以这支篮球队首次胜场前已负两场的概率为427;(2)6场胜3场的情况有C 36种,∴P =C 36⎝ ⎛⎭⎪⎫133⎝⎛⎭⎪⎫1-133=20×127×827=160729. 所以这支篮球队在6场比赛中恰胜3场的概率为160729; (3)由于ξ服从二项分布,即ξ~B ⎝ ⎛⎭⎪⎫6,13,∴E (ξ)=6×13=2,D (ξ)=6×13×⎝ ⎛⎭⎪⎫1-13=43.所以在6场比赛中这支篮球队胜场的期望为2,方差为43.14.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.解 (1)该公司决定对该项目投资的概率为 P =C 23⎝⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫23+C 33⎝ ⎛⎭⎪⎫133=727. (2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:P (A )=C 33⎝ ⎛⎭⎪⎫133=127, P (B )=C 13⎝ ⎛⎭⎪⎫133=19, P (C )=C 13C 12⎝ ⎛⎭⎪⎫133=29, P (D )=C 13⎝ ⎛⎭⎪⎫133=19. ∵A 、B 、C 、D 互斥,∴P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=1327.15.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (1)求在1次游戏中, (ⅰ)摸出3个白球的概率; (ⅱ)获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).解 (1)(ⅰ)设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3),则P (A 3)=C 23C 25·C 12C 23=15.(ⅱ)设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3.又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2.由于X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫3,710. ∴P (X =0)=⎝ ⎛⎭⎪⎫1-7102=9100, P (X =1)=C 12710×⎝ ⎛⎭⎪⎫1-710=2150, P (X =2)=⎝ ⎛⎭⎪⎫7102=49100. 所以X 的分布列是 X 的数学期望E (X )=0×9100+1×2150+2×49100=75.。