2.2.二项分布及其应用
- 格式:ppt
- 大小:406.02 KB
- 文档页数:35
二项分布及其应用教案定稿第一章:引言1.1 教学目标了解二项分布的背景和意义,理解二项分布的概念及其在实际问题中的应用。
1.2 教学内容1.2.1 二项分布的定义通过具体案例引入二项分布的概念,讲解二项分布的基本性质。
1.2.2 二项分布的概率质量函数推导二项分布的概率质量函数,讲解影响二项分布概率的因素。
1.3 教学方法采用案例分析法,通过具体案例引导学生理解二项分布的概念及其应用。
1.4 教学评估通过小组讨论和课堂练习,检查学生对二项分布的理解程度。
第二章:二项分布的概率质量函数2.1 教学目标掌握二项分布的概率质量函数的推导和运用。
2.2 教学内容2.2.1 二项分布的概率质量函数推导讲解二项分布的概率质量函数的推导过程,引导学生理解各个参数的含义。
2.2.2 二项分布的概率质量函数的应用通过具体案例,讲解如何运用二项分布的概率质量函数解决实际问题。
2.3 教学方法采用讲解法,结合具体案例,引导学生理解和运用二项分布的概率质量函数。
2.4 教学评估通过课堂练习和小组讨论,检查学生对二项分布概率质量函数的掌握程度。
第三章:二项分布的期望和方差3.1 教学目标掌握二项分布的期望和方差的计算方法及其应用。
3.2 教学内容3.2.1 二项分布的期望讲解二项分布的期望的计算方法,引导学生理解期望的含义。
3.2.2 二项分布的方差讲解二项分布的方差的计算方法,引导学生理解方差的概念。
3.3 教学方法采用讲解法,结合具体案例,引导学生理解和运用二项分布的期望和方差。
3.4 教学评估通过课堂练习和小组讨论,检查学生对二项分布的期望和方差的掌握程度。
第四章:二项分布的应用4.1 教学目标了解二项分布在不同领域的应用,提高学生解决实际问题的能力。
4.2 教学内容4.2.1 生物学领域的应用讲解二项分布在生物学领域的应用,如基因遗传等。
4.2.2 医学领域的应用讲解二项分布在医学领域的应用,如药物疗效等。
4.2.3 社会科学领域的应用讲解二项分布在社会科学领域的应用,如民意调查等。
高中数学选修2-3《2.2二项分布及其应用》测试卷解析版一.选择题(共6小题)1.三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,按图种方式接入电路,电路正常工作的概率是()A.B.C.D.【分析】电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,由此利用相互独立事件乘法公式和对立事件概率公式能求出电路正常工作的概率.【解答】解:∵三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,图种方式接入电路,∴电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,∴电路正常工作的概率:P=(1﹣)=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件乘法公式和对立事件概率计算公式的合理运用.2.抛掷3枚质地均匀的硬币,A={既有正面向上又有反面向上},B={至多有一个反面向上},则A与B关系是()A.互斥事件B.对立事件C.相互独立事件D.不相互独立事件【分析】由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B是相互独立的,从而得出结论.【解答】解:由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B 是相互独立的,故选:C.【点评】本题主要考查相互独立事件的定义,属于基础题.3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选:C.【点评】本题考查相互独立事件的概率计算,解题的关键在于正确理解P(ε=3)的意义.6.已知P(B|A)=,P(A)=,则P(AB)=()A.B.C.D.【分析】根据条件概率的公式,整理出求事件AB同时发生的概率的表示式,代入所给的条件概率和事件A的概率求出结果.【解答】解:∵P(B/A)=,P(A)=,∴P(AB)=P(B/A)•P(A)==,故选:D.【点评】本题考查条件概率与独立事件,本题解题的关键是记住并且会利用条件概率的公式,要正确运算数据,本题是一个基础题.二.填空题(共1小题)7.为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为10.【分析】本题可运用平均数公式求出平均数,再运用方差的公式列出方差表达式,再讨论样本数据中的最大值的情况,即可解决问题.【解答】解:设样本数据为:x1,x2,x3,x4,x5,平均数=(x1+x2+x3+x4+x5)÷5=7;方差s2=[(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2]÷5=4.从而有x1+x2+x3+x4+x5=35,①(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2=20.②若样本数据中的最大值为11,不妨设x5=11,则②式变为:(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2=4,由于样本数据互不相同,这是不可能成立的;若样本数据为4,6,7,8,10,代入验证知①②式均成立,此时样本数据中的最大值为10.故答案为:10.【点评】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.三.解答题(共9小题)8.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.【分析】(I)根据题意知每位乘客在第2层下电梯的概率都是,至少有一名乘客在第2层下电梯的对立事件是没有人在第二层下电梯,根据对立事件和相互独立事件的概率公式得到结果.(II)由题意知X的可能取值为0,1,2,3,4,由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,得到变量符合二项分布,根据二项分布的公式写出分布列和期望.【解答】解:(Ⅰ)设4位乘客中至少有一名乘客在第2层下电梯的事件为A,…(1分)由题意可得每位乘客在第2层下电梯的概率都是,…(3分)则.…(6分)(Ⅱ)X的可能取值为0,1,2,3,4,…(7分)由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,所以,.…(9分)X01234P…(11分).…(13分)【点评】本题看出离散型随机变量的分布列和期望,本题解题的关键是看出变量符合二项分布的特点,后面用公式就使得运算更加简单9.为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.(Ⅰ)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.【分析】(1)根据频率分步直方图中小正方形的面积是这组数据的频率,用长乘以宽得到面积,即为频率.(II)根据所有的频率之和是1,列出关于x的方程,解出x的值做出样本容量的值,即调查中随机抽取了50个学生的百米成绩.(III)本题是一个古典概型,试验发生所包含的事件是从第一、五组中随机取出两个成绩,满足条件的事件是成绩的差的绝对值大于1秒,列举出事件数,根据古典概型概率公式得到结果.【解答】解:(Ⅰ)百米成绩在[16,17)内的频率为0.32×1=0.32,则共有1000×0.32=320人;(Ⅱ)设图中从左到右前3个组的频率分别为3x,8x,19x依题意,得3x+8x+19x+0.32+0.08=1,∴x=0.02设调查中随机抽取了n个学生的百米成绩,∴n=50∴调查中随机抽取了50个学生的百米成绩.(Ⅲ)百米成绩在第一组的学生数有3×0.02×1×50=3,记他们的成绩为a,b,c 百米成绩在第五组的学生数有0.08×1×50=4,记他们的成绩为m,n,p,q.则从第一、五组中随机取出两个成绩包含的基本事件有{a,b},{a,c},{a,m},{a,n},{a,p},{a,q},{b,c},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},{m,n},{m,p},{m,q},{n,p},{n,q},{p,q},共21个其中满足成绩的差的绝对值大于1秒所包含的基本事件有{a,m},{a,n},{a,p},{a,q},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},共12个,∴P=【点评】本题考查样本估计总体,考查古典概型的概率公式,考查频率分布直方图等知识,考查数据处理能力和分析问题、解决问题的能力.10.某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,(1)请列出X的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.【分析】(1)本题是一个超几何分步,用X表示其中男生的人数,X可能取的值为0,1,2,3,4.结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和数学期望.(2)选出的4人中至少有3名男生,表示男生有3个人,或者男生有4人,根据第一问做出的概率值,根据互斥事件的概率公式得到结果.【解答】解:(1)依题意得,随机变量X服从超几何分布,随机变量X表示其中男生的人数,X可能取的值为0,1,2,3,4..∴所以X的分布列为:X01234P(2)由分布列可知至少选3名男生,即P(X≥3)=P(X=3)+P(X=4)=+=.【点评】本小题考查离散型随机变量分布列和数学期望,考查超几何分步,考查互斥事件的概率,考查运用概率知识解决实际问题的能力.11.某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X的概率分布列与期望.【分析】设该批产品中次品有x件,由已知,可求次品的件数(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为;(2)取出的3件产品中次品的件数X可能为0,1,2,求出相应的概率,从而可得概率分布列与期望.【解答】解:设该批产品中次品有x件,由已知,∴x=2…(2分)(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为…(4分)(2)∵X可能为0,1,2∴…(10分)∴X的分布为:X012P则…(13分)【点评】本题以实际问题为载体,考查等可能事件的概率,考查随机变量的期望与分布列,难度不大.12.某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求:(1)抽到他能答对题目数的分布列;(2)他能通过初试的概率.【分析】(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X服从超几何分布,根据超几何分步的概率公式写出概率和分布列.(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,即答对两道和答对三道,这两种情况是互斥的,根据上一问的计算可以得到.【解答】解:(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X 服从超几何分布,分布列如下:X0123P即X0123P(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,这两种情况是互斥的,根据上一问的计算可以得到【点评】本题考查超几何分布,本题解题的关键是看出变量符合超几何分布,这样可以利用公式直接写出结果.13.甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里再取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.【分析】(1)根据甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜,可得甲获胜的概率,再利用基本不等式,可得x,y的值;(2)由题意知取出的3个球中红球个数ξ的取值为1,2,3,4,分别求出其发生的概率,进而求出次数ξ的数学期望【解答】解:(1)由题意,;∴,当且仅当x=y=2时“=”成立所以当红球与白球各2个时甲获胜的概率最大(2)取出的3个球中红球个数ξ=0,1,2,3,所以【点评】本题以摸球为素材,考查等可能事件的概率,考查离散型随机变量的期望,考查基本不等式的运用,解题的关键是理解题意,搞清变量的所有取值.14.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.【分析】(Ⅰ)由题设知ξ的可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P (ξ=2),P(ξ=3),由此能求出随机变量ξ的分布列和数学期望E(ξ).(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,分别求出P(A),P(AB),再由P(B/A)=,能求出结果.【解答】解:(Ⅰ)由题设知ξ的可能取值为0,1,2,3,P(ξ=0)=(1﹣)(1﹣)(1﹣)=,P(ξ=1)=(1﹣)(1﹣)+(1﹣)××(1﹣)+(1﹣)(1﹣)×=,P(ξ=2)=++=,P(ξ=3)==,∴随机变量ξ的分布列为:ξ01 2 3P数学期望E(ξ)=0×+1×+2×+3×=.(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,则P(A)=++=,P(AB)==,P(B|A)===.【点评】本题考查离散型随机变量的期分布列和数学期望,考查条件概率的求法,是历年高考的必考题型之一,解题时要注意排列组合知识的合理运用.15.如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为,.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.【分析】(1)利用二项分布即可得出;(2)利用相互独立事件的概率计算公式及离散型随机变量的期望计算公式即可得出;(3)由于走路线L1时服从二项分布即可得出期望,比较走两条路的数学期望的大小即可得出要选择的路线.【解答】解:(1)设“走L1路线最多遇到1次红灯”为事件A,包括没有遇到红灯和只遇到红灯一次两种情况.则,所以走L1路线,最多遇到1次红灯的概率为.(2)依题意,X的可能取值为0,1,2.,,.随机变量X的分布列为:X012P所以.(3)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布Y~,所以.因为EX<EY,所以选择L2路线上班最好.【点评】熟练掌握二项分布列、相互独立事件的概率计算公式及离散型随机变量的期望计算公式及其意义是解题的关键.16.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为.(1)求这支篮球队首次获胜前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好获胜3场的概率;(3)求这支篮球队在6场比赛中获胜场数的期望.【分析】(1)首次获胜前已经负了两场说明已经比赛三场,前两场输,第三场嬴,用乘法公式即可求得概率;(2)6场比赛中恰好获胜3场的情况有C63,比赛六场胜三场,故用乘法公式即可.(3)由于X服从二项分布,即X~B(6,),由公式即可得出篮球队在6场比赛中获胜场数的期望.【解答】解:(1)这支篮球队首次获胜前已经负了两场的概率为P==(2)6场比赛中恰好获胜3场的情况有C63,故概率为C63×=20××=(3)由于X服从二项分布,即X~B(6,),∴EX=6×=2【点评】本题考查二项分布与n次独立重复试验的模型,考查根据所给的事件类型选择概率模型的方法,以及用概率模型求概率与期望的能力。
二项分布及其应用教案定稿第一章:引言1.1 教学目标:了解二项分布的定义及意义。
掌握二项分布的概率质量函数和累积分布函数。
1.2 教学内容:引入二项分布的概念。
讲解二项分布的概率质量函数和累积分布函数的推导过程。
1.3 教学方法:采用讲授法,结合实例进行讲解。
引导学生通过小组讨论,探究二项分布的性质。
1.4 教学准备:PPT课件。
相关实例和练习题。
1.5 教学过程:1. 引入实例,让学生了解二项分布的实际应用背景。
2. 讲解二项分布的定义及数学表达式。
3. 引导学生推导二项分布的概率质量函数和累积分布函数。
4. 通过小组讨论,让学生探究二项分布的性质。
5. 布置练习题,巩固所学知识。
第二章:二项分布的概率质量函数2.1 教学目标:能够运用概率质量函数解决实际问题。
2.2 教学内容:讲解二项分布的概率质量函数的推导过程。
举例说明如何运用概率质量函数解决实际问题。
2.3 教学方法:采用讲授法,结合实例进行讲解。
引导学生通过小组讨论,探究概率质量函数的性质。
2.4 教学准备:PPT课件。
相关实例和练习题。
2.5 教学过程:1. 回顾上一章的内容,让学生复习二项分布的定义。
2. 讲解二项分布的概率质量函数的推导过程。
3. 通过实例,让学生了解如何运用概率质量函数解决实际问题。
4. 引导学生进行小组讨论,探究概率质量函数的性质。
5. 布置练习题,巩固所学知识。
第三章:二项分布的累积分布函数3.1 教学目标:掌握二项分布的累积分布函数的推导过程。
能够运用累积分布函数解决实际问题。
3.2 教学内容:举例说明如何运用累积分布函数解决实际问题。
3.3 教学方法:采用讲授法,结合实例进行讲解。
引导学生通过小组讨论,探究累积分布函数的性质。
3.4 教学准备:PPT课件。
相关实例和练习题。
3.5 教学过程:1. 回顾前两章的内容,让学生复习二项分布的概率质量函数和累积分布函数。
2. 讲解二项分布的累积分布函数的推导过程。
2.2.2 事件的相互独立性课后导练基础达标1.若A 与B 相互独立,则下面不相互独立事件有( )A.A 与AB.A 与BC.A 与B D A 与B解析:由定义知,易选A.答案:A2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.42解析:P=(1-0.3)(1-0.4)=0.42.答案:D3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是( )A.P 1P 2B.P 1(1-P 2)+P 2(1-P 1)C.1-P 1P 2D.1-(1-P 1)(1-P 2)解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p 1(1-p 2)+p 2(1-p 1).答案:B4.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.901 C.54 D. 95 解析:P=901516131=⨯⨯. 答案:B.5.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为____________. 解析:P=2411413221433121433221=⨯⨯+⨯⨯+⨯⨯. 答案:2411. 综合运用6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31,那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_______________.解析:因为这位司机在第一,二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=(1-31)(1-31)×31=274. 答案:274 7.(2006四川高考,18)某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三人该课程考核都合格的概率(结果保留三位小数).解析:记“甲理论考核合格”为事件A 1;“乙理论考核合格”为事件A 2;“丙理论考核合格”为事件A 3;记i A 为A i 的对立事件,i=1,2,3;记“甲实验考核合格”为事件B 1;“乙实验考核合格”为事件B 2;“丙实验考核合格”为事件B 3.(1)记“理论考核中至少有两人合格”为事件C ,记C 为C 的对立事件P (C )=P (A 1A 23A +A 12A A 3+1A A 2A 3+A 1A 2A 3)=P(A 1A 23A )+P(A 12A A 3)+P(1A A 2A 3)+P(A 1A 2A 3)=0.9×0.8×0.3+0.9×0.2×0.7+0.1×0.8×0.7+0.9×0.8×0.7=0.902(2)记“三人该课程考核都合格”为事件DP (D )=P[(A 1·B 1)·(A 2·B 2)·(A 3·B 3)]=P (A 1·B 1)·P(A 2·B 2)·P(A 3·B 3)=P (A 1)·P(B 1)·P(A 2)·P(B 2)·P(A 3)·P(B 3)=0.9×0.8×0.7×0.8×0.7×0.90.254 016≈0.254所以,这三人该课程考核都合格的概率为0.2548.外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解析:设事件A :从第一个盒子中取得一个标有字母A 的球;事件B :从第一个盒子中取得一个标有字母B 的球,则A 、B 互斥,且P (A )=107,P (B )=103;事件C :从第二号盒子中取一个红球,事件D :从第三号盒子中取一个红球,则C 、D 互斥,且P (C )=21,P (D )=54108 . 显然,事件A·C 与事件B·D 互斥,且事件A 与C 是相互独立的,B 与D 也是相互独立的.所以试验成功的概率为P=P(A·C+B·D)=P(A·C)+P(B·D)=P(A)·P(C)+P(B)·P(D)=10059.∴本次试验成功的概率为10059. 9.如图,用A 、B 、C 、D 四类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 、D 都正常工作时,系统N 1正常工作;当元件A 、B 至少有一个正常工作,且C 、D 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 、D 正常工作的概率依次为0.80、0.90、0.90、0.70,分别求系统N 1、N 2正常工作的概率P 1、P 2.解析:N 1正常工作等价于A 、B 、C 、D 都正常工作,N 2正常工作等价于A 、B 中至少一个正常工作,且C 、D 中至少有一个正常工作.且A 、B 、C 、D 正常工作的事件相互独立.分别记元件A 、B 、C 、D 正常工作为事件A 、B 、C 、D ,由已知P (A )=0.80,P (B )=0.90,P (C )=0.90,P (D )=0.70.(1)P 1=P(A·B·C·D)=P(A)P(B)P(C)·P(D)=0.80×0.90×0.90×0.70=0.453 6.(2)P 2=P(1-A ·B )·P(1-C ·D )=[1-P(A )·P(B )][1-P(C )·P(D )]=(1-0.2×0.1)×(1-0.1×0.3)=0.98×0.97=0.950 6.拓展探究10.一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为P ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率;(2)能进行通讯的概率.解析:记“第一套通讯设备能正常工作”为事件A ,“第二套通讯设备能正常工作”为事件B.由题意知P (A )=p 3,P(B)=p 3, P(A )=1-p 3,P(B )=1-p 3. (1)恰有一套设备能正常工作的概率为P(A·B +A ·B)=P(A ·B )+P(A ·B)=p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为P(A·B)=P(A)·P(B)=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为 P(A·B +A ·B)+P(A·B)=2p 3-2p 6+p 6=2p 3-p 6. 方法二:两套设备都不能正常工作的概率为 P(A ·B )=P(A )·P(B )=(1-p 3)2. 至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P(A ·B )=1-P(A )·P(B )=1-(1-p 3)2=2p 3-p 6. 答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6.备选习题11.从甲袋中摸出一个红球的概率是31,从乙袋内摸出1个红球的概率是21,从两袋内各摸出1个球,则32等于( ) A.2个球不都是红球的概率 B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰好有1个红球的概率 答案:C12.某人有一串8把外形相同的钥匙,其中只有一把能打开家门,一次该人醉酒回家每次从8把钥匙中随便拿一把开门,试用后又不加记号放回,则该人第三次打开家门的概率是____________.解析:(87)2×81=51249. 答案:51249 13.下列各对事件(1)运动员甲射击一次,“射中9环”与“射中8环”;(2)甲、乙二运动员各射击一次,“甲射中10环”与“乙射中9环”;(3)甲、乙二运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”.(4)甲、乙二运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”.是互斥事件的有____________;是相互独立事件的有____________.解析:(1)甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件.(2)甲、乙各射击一次,“甲射中10环”发生与否,对“乙射中9环”的概率没有影响,二者是相互独立事件.(3)甲、乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不可能同时发生,二者是互斥事件.(4)甲、乙各射击一次,“至少有1人射中目标”与“甲射中目标,但乙没有射中目标”可能会同时发生,二者构不成互斥事件,也不可能是相互独立事件.答案:(1),(3);(2)14.现有四个整流二极管可串联或并联组成一个电路系统,已知每个二极管的可靠度为0.8(即正常工作的概率),请你设计一种四个二极管之间的串并联形式的电路系统,使得其可靠度大于0.85.画出你的设计图并说明理由.解析:(1)P=1-(1-0.8)4=0.998 4>0.85;(2)P=1-(1-0.82)2=0.870 4>0.85;(3)P=[1-(1-0.8)2]2=0.921 6>0.85;(4)P=1-(1-0.8)(1-0.83)=0.902 4>0.85;(5)P=1-(1-0.8)2(1-0.82)=0.985 6>0.85.以上五种之一均可.15.某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解析:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B .于是P (A )=53106=,P (A )=52; P(B)=104=52,P(B )=53. 由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P(B )=53·25652=. 答:两人都抽到足球票的概率是256. (2)甲、乙两人均未抽到足球票(事件B A ∙发生)的概率为P (B A ∙)=P (A )·P(B )=2565352=∙. ∴两人中至少有1人抽到足球票的概率为 P=1-P(B A ∙)=1-256=2519. 答:两人中至少有1人抽到足球票的概率是2519. 16.(2005全国高考卷3,文18)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.DBBCA ,CCBCD ,BA18.解析:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A、B、C,则A、B、C相互独立.由题意得P(AB)=P(A)·P(B)=0.05P(AC)=P(A)·P(C)=0.1,P(BC)=P(B)·P(C)= 0.125解得P(A)=0.2;P(B)=0.25;P(C)=0.5所以,甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5 (Ⅱ)∵A、B、C相互独立,∴A、B、C相互独立∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为P(A·B·C)=P(A)P(B)P(C)=0.8×0.75×0.5=0.3∴这个小时内至少有一台需要照顾的概率为p=1-P(A·B·C)=1-0.3=0.7。