考基联动
考向导析 规范解答系列 阅卷报告系列 限时规范训练
解法三:∵D=A+B,且 A 与 B 独立. ∴P(D)=P(A+B)=P(A)+P(B)-P(A· B)=0.8+0.9-0.8×0.9=0.98. 故目标被击中的概率是 0.98. (4)设 E={至多有 1 人击中目标}, ∵E=A·B +B·A + A ·B , 且 A 与 B 、B 与 A 、 A 与 B 独立, A·B 、B·A 、 A ·B 彼此互斥, ∴P(E)=P(A·B +B·A + A ·B )=P(A·B )+P(B·A )+P( A ·B ) =P(A)· B )+P(B)· A )+P( A )· B )=0.8×0.1+0.9×0.2+0.1×0.2=0.28. P( P( P( 故至多有 1 人击中目标的概率为 0.28.
考基联动
考向导析
规范解答系列
阅卷报告系列
限时规范训练
(2)由于 Y 表示这名学生在首次停车时经过的路口数,显然 Y 是随机变量,其取值为 0,1,2,3,4,5,6. 其中:{Y=k}(k=0,1,2,3,4,5)表示前 k 个路口没有遇上红灯,但在第 k+1 个路口遇 上红灯,故各概率应按独立事件同时发生计算. 2 1 P(Y=k)= k·(k=0,1,2,3,4,5), 3 3 而{Y=6}表示一路没有遇上红灯. 2 6 故其概率为 P(Y=6)= , 3 因此 Y 的分布列为: Y P Y P 0 1 3 1 12 · 33 4 1 24 · 3 3
考基联动
考向导析
规范解答系列
阅卷报告系列
限时规范训练
(2)设事件 C={两人中恰有 1 人击中目标},则 C=A·B +B·A ∴A·B 与 B·A 互斥,且 A 与 B 独立, ∴P(C)=P(A·B +B·A ) =P(A·B )+P(B·A ) =P(A)· B )+P(B)· A ) P( P( =P(A)· [1-P(B)]+P(B)· [1-P(A)] =0.8×0.1+0.9×0.2=0.26, 即两人中恰有 1 人击中目标的概率为 0.26. (3)设 D={目标被击中}={两人中至少有 1 人击中目标},本问有三种解题思路: