电介质物理习题
- 格式:docx
- 大小:16.47 KB
- 文档页数:8
1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。
设无限远处的电势为零,则导体球的电势为 ( ) 20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。
所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B2 .Aεd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。
所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。
用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电o R d +q . 选择题3图选择题2图d荷为零,所以有)π4π4000Rq d qV εε-+=。
所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比R /r 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R 解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D )5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E 解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。
第一章 静电场中的电介质1-1 半径为a 的 球带电量为q ,电荷密度正比于距球心的居里。
求空间的电位和电场分布。
解: 由题意可知,可设kr =ρ再由于 ⎰=q dv ρ,代入可以求出常数k 即 ⎰=424ka krdr r ππ 所以 4a q k π= r a q 4πρ= 当 a r >.时 由高斯定理可知 024επqr E =⋅ ; 204rq E πε=⎰∞=⋅=rrq dr E U 04πε当 a r <<0时 由高斯定理可知 4042040024114aqr dr r r a q dv r E rrεππερεπ=⋅==⋅⎰⎰4024a qr E πε= dr r qr dr a qr dr E U a r ar⎰⎰⎰∞∞+=⋅=20240244πεπεaq r a a q 033404)(12πεπε+-=)4(123340r a a q -=πε1-2 电量为q 的8个点电荷分别位于边长为a 的立方体的各顶角。
求其对以下各点的电距:(1)立方体中心;(2)某一面的中心;(3)某一顶角;(4)某一棱的中点。
若8个点电荷中4个为正电荷、4个为负电荷,重新计算上述问题解 :由电矩的定义 ∑∑==ii i ii i r q r q μ(一)八个电荷均为正电荷的情形(1)立方体的在中心: 八个顶点相对于立方体中心的矢量和为∑==810i i r ,故0==∑ii i r q μ(2)某一面心: 该面的四个顶点到此面心的矢量和∑==410i i r ,对面的四个顶点到此点的矢量和∑==854i i a r故qa 4=μ;(3)某一顶角 :其余的七个顶点到此顶点的矢量和为:∑==7534i ia r故qa 34=μ;(4)某一棱的中心 ;八个顶点到此点的矢量和为∑==7524i i a r故qa 24=μ;(二)八个电荷中有四个正电荷和四个负电荷的情形与此类似; 1-3 设正、负电荷q 分别位于(0,0,l /2)、(0,0,-l /2),如图所示。
专业班级_____ ________学号________第七章静电场中的导体和电介质一、选择题:1,在带电体A旁有一不带电的导体壳B,C为导体壳空腔的一点,如下图所示。
则由静电屏蔽可知:[ B ](A)带电体A在C点产生的电场强度为零;(B)带电体A与导体壳B的外表面的感应电荷在C点所产生的合电场强度为零;(C)带电体A与导体壳B的表面的感应电荷在C点所产生的合电场强度为零;(D)导体壳B的、外表面的感应电荷在C点产生的合电场强度为零。
解答单一就带电体A来说,它在C点产生的电场强度是不为零的。
对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其部没有带电体)此感应电荷也是要在C点产生电场强度的。
由导体的静电屏蔽现象,导体壳空腔C点的合电场强度为零,故选(B)。
2,在一孤立导体球壳,如果在偏离球心处放一点电荷+q,则在球壳、外表面上将出现感应电荷,其分布情况为 [ B ](A)球壳表面分布均匀,外表面也均匀;(B)球壳表面分布不均匀,外表面均匀;(C)球壳表面分布均匀,外表面不均匀;(D)球壳的、外表面分布都不均匀。
解答 由于静电感应,球壳表面感应-q ,而外表面感应+q ,由于静电屏蔽,球壳部的点电荷+q 和表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感应电荷均匀分布,如图11-7所示。
故选(B )。
3. 当一个带电导体达到静电平衡时:[ D ](A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高。
(C)导体部的电势比导体表面的电势高。
(D)导体任一点与其表面上任一点的电势差等于零。
4. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一、外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳半径为r 的P 点处的场强和电势为: [ D ](A )E=r Q U r Q 0204,4πεπε=(B )E=0,104r Q U πε= (C )E=0,rQ U 04πε=(D )E=0,204r Q U πε=5. 关于高斯定理,下列说法中哪一个是正确的? [ C ](A )高斯面不包围自由电荷,则面上各点电位移矢量D为零。
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
参考答案第一章1. 电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现束缚电荷的现象称为电介质的极化。
其宏观参数是介电系数ε。
2. 在电场作用下平板介质电容器的介质表面上的束缚电荷所产生的、与外电场方向相反的电场,起削弱外电场的作用,所以称为退极化电场。
退极化电场:平均宏观电场:充电电荷产生的电场:3. 计算氧的电子位移极化率:按式代入相应的数据进行计算。
4.氖的相对介电系数:单位体积的粒子数:,而所以:5.洛伦兹有效电场:εr与α的关系为:介电系数的温度系数为:6.时,洛伦兹有效电场可表示为:7. 克----莫方程赖以成立的条件:E”=0。
其应用范围:体心立方、面心立方,氯化钠型以及金刚石型结构的晶体;非极性及弱极性液体介质。
8.按洛伦兹有效电场计算模型可得:E”=0 时,所以9. 温度变化1度时, 介电系数的相对变化率称为介电系数的温度系数.10. 如高铝瓷, 其主要存在电子和离子的位移极化, 而掺杂的金红石和钛酸钙瓷除了含有电子和离子的位移极化以外, 还存在电子和离子的松弛极化。
极性介质在光频区将会出现电子和离子的位移极化, 在无线电频率区可出现松弛极化、偶极子转向极化和空间电荷极化。
11. 极化完成的时间在光频范围内的电子、离子位移极化都称为瞬间极化。
而在无线电频率范围内的松弛极化、自发式极化都称为缓慢式极化。
电子、离子的位移极化的极化完成的时间非常短,在秒的范围内,当外电场的频率在光频范围内时,极化能跟得上外电场交变频率的变化,不会产生极化损耗;而松弛极化的完成所需时间比较长,当外电场的频率比较高时,极化将跟不上交变电场的频率变化,产生极化滞后的现象,出现松弛极化损耗。
12.参照书中简原子结构模型中关于电子位移极化率的推导方法。
13.“-”表示了E ji的方向性。
14.参考有效电场一节。
15.求温度对介电系数的影响,可利用,对温度求导得出:。
由上式可知,由于电介质的密度减小,使得电子位移极化率及离子位移极化率所贡献的极化强度都减小,第一项为负值;但温度升高又使离子晶体的弹性联系减弱,离子位移极化加强,即第二项为正值;然而第二项又与第一项相差不多。
《电介质物理》练习题1.基本概念1) 介电性能的物理本质;2) 电介质的微观极化机理;3) 微波频段仍起作用的极化机理;4) 物质对外电场的响应方式;5) 弱电场中电介质中电流的主要起因。
6) 强电场中电介质中电流的主要起因;7) 电介质中空间电荷的主要来源;8) 电介质中空间电荷会产生的效应有哪些?9)固态电介质的介电击穿类型;10) 铁电效应只出现于何种晶体中?11) 电致伸缩效应出现于何种晶体中?12) 铁电体的微结构特征是什么?13) 铁电相变的类型;14) 何谓n级相变?15) 介电常数随频率变化的基本趋势是什么?为什么?16) 晶体物性张量非零分量数目决定于什么?17)热释电性的本质是什么?18) 铁电陶瓷只有在经过何种处理后才具有热释电性?19)压电效应;20)压电效应只出现于何种(对称性)晶体中?21) 机电偶合系数的物理意义;2.基本概念判断(每组选一个正确答案)1) 铁电体a) 不具有自发电矩;b) 具有可随磁场反转的自发磁矩;c) 具有可随电场反转的自发电矩。
2)折射率n 是二阶张量(a);不是二阶张量(b);是否二阶张量需视情况而定(c)。
3) 介电常数是a)二阶张量;b) 一阶张量; c) 标量。
4) 铁电体的微结构特征为存在a)磁畴;b)电畴;c)铁弹畴。
5) 二级相变的判据是状态函数的a)一阶导数连续、二阶导数不连续;b) 二阶导数连续、三阶导数不连续;c)满足前述条件的任一条。
6) 反铁电体在T c 之下,a)顺电相为稳定相; b)极性相为稳定相; c) 极性相为亚稳相。
7) 晶体的Frenkel 与Schottky 缺陷为a)本征点缺陷;b)非本征点缺陷;c)线缺陷。
8) 反铁电相变为a)马氏体相变;b)电场诱导相变;c)应力诱导相变。
9) 奇数阶张量性质a)出现在所有晶体中;b)只出现在非中心对称的晶体中;c)只出现在中心对称的晶体中。
10) 随着晶体对称性的增加,晶体的张量性质之非零分量个数a) 增加;b)减少;c)不变。
工程电介质物理学练习题李盛涛2002年4月4日第1章习题1-1当离子键能"(X)为离子间相斥作用势能b和库仑势能—_i—47V£0X" 4-TVS Q X 之和时,试表示出为在原子之间距离x=a处形成稳定结合,n所需附加的条件。
1-2如果气体粒子体系的速度分布服从麦克斯韦速度分布,试证明粒子动1 3能的平均值一“帀2 =-kT.2 21-3在波尔理论中,试证明电子轨道的圆周是电子波长的整数倍,并求基态氢原子的电子圆周速度。
1-4试说明化学键的种类。
1-5试说明麦克斯韦一波耳兹曼统计、费米一狄拉克统计以及玻色一爱因斯坦统计。
1-6在室温(kT=0.024eV)中,将比费米能级高0.12eV的状态采用近似式E-E F矿,其误差程度有多少?1-7试从能带理论比较金属、半导体和绝缘体。
(r>/)2- 1半径为a 的球带电量g,电荷密度正比于距球心的距离。
求空间的电位、电场分布。
2- 2电量为q 的8个点电荷分别位于边长为a 的立方体各顶角。
求其 对以下各点的电场:(1)立方体 中心;⑵某一面中心;⑶某一 棱的中点。
若8个点电荷中4个 为正,4个为负,重新计算上述问题。
2- 3设正、负电荷q 分别位于(0,0,%)、(0,0,—%),如图所示。
求场点P 处的电势。
若用多 项展开式的前两项作为场点P 处 电势计算的近似表达式,试计算 场点(0,0,%)、(0,0,%)处电 势的近似值,并与实际值相比较。
2-4试证明位于(0,0,/)的电偶极子(方向沿Z 轴方向)〃在场点戸的电位0的厂展开式为co 严-1 0(")= 翫 £"〒此(心0)T ■〃乙 o n=0 1 2- 5⑴试证明电偶极子〃(=/)在 电场左中的转矩叼和势能“分 别为 M =/jx E ; u = -/j- E ;(2) 指出偶极子在电场中的平衡 位置、稳态平衡位置;(3)当〃和左的夹角从01变到仇 时,求电场力所做的功和偶极子势能的变化。
20XX年复习资料大学复习资料专业:班级:科目老师:日期:导体与电介质的静电场(一)20XXXX-1-1. 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则(A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小.(C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ] 20XXXX-1-2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A)N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ]20XXXX-1-3. 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+ ,则在导体板B 的两个表面1和2上的感生电荷面密度为:(A) 1 = -, 2 = +.(B) 1 =σ21-, 2 =σ21+. (C) 1 =σ21-, 1 =σ21-. (D) 1 = -, 2 = 0. [ ]20XXXX-1-4. 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ ] 20XXXX-1-5. 一长直导线横截面半径为a ,导线外同轴地套一半径为b 的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+,并设地的电势为零,则两导体之间的P 点( OP = r )的场强大小和电势分别为:q 0PM N A B +σ12(A) 204r E ελπ=,a b U ln 20ελπ=. (B) 204r E ελπ=,r b U ln 20ελπ=. (C) r E 02ελπ=,ra U ln 20ελπ=. (D) r E 02ελπ=,rb U ln 20ελπ=. [ ] 20XXXX-1-6. 如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 02εσ. (C) 0εσh . (D) 02εσh . [ ] 20XXXX-1-7. 一带电大导体平板,平板二个表面的电荷面密度的代数和为 ,置于电场强度为0E 的均匀外电场中,且使板面垂直于0E 的方向.设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为:(A) 002εσ-E ,002εσ+E . (B) 002εσ+E ,002εσ+E . (C) 002εσ+E ,002εσ-E . (D) 002εσ-E ,002εσ-E . [ ] 20XXXX-1-8. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B板接地,则AB 间电场强度的大小E 为 (A) S Q 012ε . (B) SQ Q 0212ε-. (C) S Q 01ε. (D) SQ Q 0212ε+. [ ] 20XXXX-1-9. 一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为 (A) 104R q επ . (B) 204R q επ . O P r a b d b a hh σ 0E +Q 1 +Q 2 A B q q R 1 R 2(C) 102R q επ . (D) 20R qε2π . [ ] 20XXXX-1-20XXXX. 两个同心薄金属球壳,半径分别为R 1和R 2 (R 2 > R 1 ),若分别带上电荷q 1和q 2,则两者的电势分别为U 1和U 2 (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为(A) U 1. (B) U 2.(C) U 1 + U 2. (D) )(2121U U +. [ ]20XXXX-1-20XXXX. 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为(A) 0 . (B) dq 04επ. (C)R q 04επ-. (D) )11(40R d q -πε. [ ]20XXXX-1-20XXXX. 三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为1和2,如图所示.则比值1 / 2为(A) d 1 / d 2. (B) d 2 / d 1.(C) 1. (D) 2122/d d . [ ]20XXXX-1-20XXXX. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.[ ]20XXXX-1-20XXXX. 一半径为R 的薄金属球壳,带电荷-Q .设无穷远处电势为零,则球壳内各点的电势U 可表示为: (041επ=K ) (A) R Q K U -<. (B) RQ K U -=. R O d +q d 1 d 2 σ2 σ1P(C) R Q K U ->. (D) 0<<-U RQ K . [ ] 20XXXX-1-20XXXX. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:(A) 球壳内、外场强分布均无变化.(B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ ] 20XXXX-1-20XXXX. 在带有电荷+Q 的金属球产生的电场中,为测量某点场强E ,在该点引入一电荷为+Q/3的点电荷,测得其受力为F .则该点场强E 的大小(A) Q F E 3=. (B) QF E 3>. (C) QF E 3<. (D) 无法判断. [ ] 20XXXX-1-20XXXX. 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀.(B) 内表面不均匀,外表面均匀.(C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ ]20XXXX-1-20XXXX. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D 通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]20XXXX-1-20XXXX. 关于静电场中的电位移线,下列说法中,哪一个是正确的?(A) 起自正电荷,止于负电荷,不形成闭合线,不中断.(B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D) 电位移线只出现在有电介质的空间. [ ]20XXXX-1-20XX. 一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为(A) 0 E . (B) 0 r E .(C) r E . (D) (0 r -0)E . [ ]导体与电介质的静电场(二)20XXXX-2-1. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强0E 相比较,应有(A) E > E 0,两者方向相同. (B) E = E 0,两者方向相同.(C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ ]20XXXX-2-2. 设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2.(C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ ]20XXXX-2-3. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ]20XXXX-2-4. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 保持不动. (B) 向上运动.(C) 向下运动. (D) 是否运动不能确定. [ ]20XXXX-2-5. 两只电容器,C 1 = 8 F ,C 2 = 2 F ,分别把它们充电到 20XXXX00 V ,然后将它们反接(如图所示),此时两极板间的电势差为:(A) 0 V . (B) 20XX0 V .(C) 600 V . (D) 20XXXX00V . [ ]20XXXX-2-6. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 20XXXX 、电场强度的大小E 、电场能量W 将发生如下变化:(A)U 20XXXX 减小,E 减小,W 减小.(B) U 20XXXX 增大,E 增大,W 增大.(C) U 20XXXX 增大,E 不变,W 增大.(D) U 20XXXX 减小,E 不变,W 不变. [ ] E E 0+q mC 1 C 220XXXX-2-7. C 1和C 2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C 2中插入一电介质板,则 (A) C 1极板上电荷增加,C 2极板上电荷增加.(B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷减少. [ ]20XXXX-2-8. C 1和C 2两空气电容器串联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示. 则 (A) C 1上电势差减小,C 2上电势差增大.(B) C 1上电势差减小,C 2上电势差不变.(C) C 1上电势差增大,C 2上电势差减小.(D) C 1上电势差增大,C 2上电势差不变. [ ]20XXXX-2-9. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则(A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷不变.(D) C 1极板上电荷减少,C 2极板上电荷不变. [ ]20XXXX-2-10. C 1和C 2两空气电容器,把它们串联成一电容器组.若在C 1中插入一电介质板,则(A) C 1的电容增大,电容器组总电容减小.(B) C 1的电容增大,电容器组总电容增大. (C) C 1的电容减小,电容器组总电容减小. (D) C 1的电容减小,电容器组总电容增大. [ ]20XXXX-2-11. C 1和C 2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示, 则 (A) C 1和C 2极板上电荷都不变.(B) C 1极板上电荷增大,C 2极板上电荷不变.(C) C 1极板上电荷增大,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷增大. [ ]20XXXX-2-12. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关.(B) 使电容减小,且与介质板相对极板的位置有关.(C) 使电容增大,但与介质板相对极板的位置无关.(D) 使电容增大,且与介质板相对极板的位置有关. [ ]C 1 C 2C 1 C 2C 1 C 212C 1 C 220XXXX-2-13. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为:(A) 使电容减小,但与金属板相对极板的位置无关.(B) 使电容减小,且与金属板相对极板的位置有关.(C) 使电容增大,但与金属板相对极板的位置无关.(D) 使电容增大,且与金属板相对极板的位置有关. [ ]20XXXX-2-14. 如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的(A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ ]20XXXX-2-15. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ]20XXXX-2-16. 用力F 把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将(A) 都增加.(B) 都减少.(C) (a)增加,(b)减少.(D) (a)减少,(b)增加. [ ]20XXXX-2-17. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑.(B) E ↓,C ↑,U ↓,W ↓.(C) E ↓,C ↑,U ↑,W ↓.(D) E ↑,C ↓,U ↓,W ↑. [ ]20XXXX-2-18. 两个完全相同的电容器C 1和C 2,串联后与电源连接.现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小.(B) C 1上的电荷大于C 2上的电荷.(C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. [ ]20XXXX-2-19. 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两qF F 充电后仍与电源连接 充电后与电源断开C 1C 2极板间距离拉大,则极板上的电荷Q、电场强度的大小E和电场能量W将发生如下变化(A) Q增大,E增大,W增大.(B) Q减小,E减小,W减小.(C) Q增大,E减小,W增大.(D) Q增大,E增大,W减小.[]20XXXX-2-20. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能.[]。
第一章什么是电介质的极化?表征介质极化的宏观参数是什么? 什么叫退极化电场?如何用极化强度 P 表示一个相对介电常数为的平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电电荷 所产生的电场。
氧离子的半径为1.32 10 J0m ,计算氧的电子位移极化率。
在标准状态下,氖的电子位移极化率为0.43 10J0F m 2。
试求出氖的相 对介电常数。
试写出洛伦兹有效电场表达式。
适合洛伦兹有效电场时,电介质的介电 常数;和极化率「有什么关系?其介电常数的温度系数的关系式又如何 表示。
若用E 1表示球内极化粒子在球心所形成的电场,试表示洛伦兹有效电场 中巳=0时的情况。
试述K - M 方程赖以成立的条件及其应用范围有一介电常数为;的球状介质,放在均匀电场E 中。
假设介质的引入 不改变外电场的分布,试证:E e如何定义介电常数的温度系数?写出介电常数的温度系数、电容量温度 系数的数学表达式列举一些介质材料的极化类型,以及举出在给中不同的频率下可能发生 的极化形式。
什么是瞬间极化、缓慢式极化?它们所对应的微观机制各代表什么?设一原子半径为R 的球体,电子绕原子核均匀分布,在外电场E 作用下, 原子产生弹性位移极化,试求出其电子位移极化率。
答案参考课本简原子结构 模型中关于电子位移极化率的推导方法。
1.11.2 1.31.4 1.5 1.6 1.71.8 1.91.10 1.111.121.13 一平行板真空电容器,极板上的自由电荷密度为「现充以介电系数为的介质。
若极板上的自由电荷面密度保持不变,则真空时:平行板电容器的场强E = ________,电位移D二_______ ,极化强度P _______ ;充以介质时:平行板电容器的场强E二_________ ,电位移D二________ ,极化强度P _____ ,极化电荷所产生的场强________ 01.14 为何要研究电介质中的有效电场?有效电场指的是什么?它由哪几部分组成?写出具体的数学表达式。
1.15 氯化钠型离子晶体在电场作用下将发生电子、离子的位移极化。
试解释温度对氯化钠型离子晶体的介电常数的影响。
1.16 试用平板介质电容器的模型(串、并联形式),计算复合介质的介电系数(包括双组分、多组分)。
1.17 一平行板真空电容器,极板上的电荷面密度为二=1.77 10》C/m2。
现充以相对介电常数乜的介质,若极板上的自由电荷密度保持不变,计算真空和介质中的E、P、D为多少?束缚电荷产生的场强为多少?1.18 一平行板介质电容器,其板间距离d =1cm,s=10cm2,介电系数;=2, 外界1.5V的恒压电源。
求电容器的电容量C;极板上的自由电荷q;束缚电荷q ;极化强度P;总电矩」;真空时的电场E o以及有效电场Ee。
1.19 边长为10mm、厚度为1mm的方形平板介质电容器,其电介质的相对介电系数为2000,计算相应的电容量。
若电容器外接200V的电压,计算:(1)电介质中的电场;(2)每个极板上的总电量;(3)存储在介质电容器中的能量。
1.20 试说明为什么TiO2晶体具有较高的;r。
1.21列举一些材料的极化类型以及在各种频率下所能发生的极化形式。
2.1 具有弛豫极化的电介质,加上电场以后,弛豫极化强度与时间的关系式如何描述?宏观上表征出来的是一个什么电流?2.2 在交变电场的作用下,实际电介质的介电常数为什么要用复介电常数来描述。
2.3 介质的德拜方程为- ,回答下列问题:1 +i oi(1)给出「和;"的频率关系式;(2)作出在一定温度下的「和「的频率关系曲线,并给出「和tg;.的极值频率;(3)作出在一定频率下的「和「温度关系曲线。
2.4 依德拜理论,具有单一弛豫时间.的极性介质,在交流电场作用下,求得极化强度:(X i “)P = P P2 1XE1 +i on式中:X-亠匹1 +心X1, X2分别为位移极化和转向极化的极化率。
试求复介电常数的表达式,tg:为多少?tg:出现最大值的条件,tg-F ax等多少?并作出t^ ~ - 的关系曲线。
2.5 如何判断电介质是具有弛豫极化的介质?2.6 某介质的.=10,;::「2,- =10”s,画出;~lg「的关系曲线,标出厂的峰值位置,;max等于多少?;“~匕’的关系曲线下的面积是多少?2.7 根据德拜理论,请用图描述在不同的温度下,「、;”、tg与频率的相关性。
2.8 根据德拜理论,在温度为已知函数的情况下,「、;”、tg:与频率的关系如何?2.9 在单.的情况下,飞=12 , = =3。
请写出「〜;”的关系式,画出Cole —Cole 图。
2.10 分析实际电介质中的损耗角正切tg「.〜「(T)之间的关系。
2.11 为什么在工程技术中表征电介质的介质损耗时不用损耗功率W,而用损耗角正切tg「. ?为何在实验中得到的tg「.〜•,关系曲线中往往没有峰值出现?且作图表示。
2.12 用什么方法可以确定极性介质的弛豫时间是分布函数。
2.13 为何在电子元器件的检测时,要规定检测的条件?3.1 画出并分析气体介质的伏-安特性曲线。
3.2 根据电流倍增效应计算模型作图,推导在外界电离因素作用下,气体介质产生碰撞电离,达到阳极时的电流密度J o是多少?3.3 什么是电晕放电、刷形放电和飞弧?在均匀电场和不均匀电场中这几种放电现象有什么不同?3.4 详细分析气体介质的碰撞电离理论(汤逊理论)。
如何解释气体介质的发生自持放电的条件。
3.5 气体介质的碰撞电离系数、表面电离系数一:的物理意义是什么?3.6 气体介质的自持放电的条件是什么?3.7 依气体介质的碰撞电离理论,要使气体分子电离必需满足什么条件?3.8 固体电介质中,导电载流子有哪几种类型?说明其对电导的影响及与温度的关系。
3.9 固体电介质的电导率与温度的关系式为二Ae』/T,或者二°e at式中:o是温度为0o C时的电导率,A为比例系数,B二U/kT, U为激活能量,k为波尔兹曼常数,T为绝对温度,a为电导率的温度系数,a二B/2732,t为摄氏温度。
据以上关系式,给出计算导电载流子的激活能U的方法,并作出简图。
3.10 离子的位移极化、热离子的弛豫极化、离子电导的区别在那几个方面?3.11 固体电介质大的热击穿的原因是什么?固体电介质热击穿电压与那些因素有关?关系如何?如何提高固体电介质的热击穿电压?3.12 根据瓦格纳的热击穿电压的计算公式,解释能否利用增加固体电介质的厚度来增加固体电介质的热击穿电压,为什么?3.13 固体介质的击穿有哪几种类型?与气体介质相比有何区别?3.14 什么是固体介质在空气中的沿面放电?沿面放电有何特点和危害?如何防止高压、大功率的电子陶瓷器件在空气中的沿面放电。
3.15 固体电介质的体积电导和表面电导有何区别?体积电导率和表面电导率用数学式如何描述?3.16 固体电介质的电导主要有几种类型。
其电导率与温度的关系如何?3.17 试用能带理论解释金属、半导体和绝缘体的导电性质。
固体电介质中产生导电电子的机构有那些?3.18 直径为10mm、厚度为1mm的介质电容器,其电容为2000pF,损耗角正切为0.02。
计算:电介质的相对介电系数;损耗因子-tg、;;在交变电场的频率为50Hz、50MHz时的交流电导;外加10V、1kHz正弦电压时的泄漏电流。
3.19 如何用气体介质的碰撞电离理论解释固体介质中的电击穿?固体介质发生电击穿的判断依据是什么?3.20 纯晶体电击穿和含杂晶体的电击穿有何不同?击穿电压与温度的关系如何?3.21 流经介质电容器的电流由哪几部分组成?4.1 铁电晶体是指那一类型的晶体?电畴的概念是什么?4.2 铁电晶体的热释电效应如何描述?若有一圆片状的铁电晶体,两电极面与电流表相联,能有什么方法判断这一晶体是热释电晶体?4.3 铁电晶体的自发应变(电致伸缩)是指什么?对于180°畴,其自发应变与什么有关?与极化强度的关系如何?4.4 如何判断晶体是具有自发极化的铁电晶体?具有自发极化的铁电晶体的显著特征有哪些?4.5 在居里温度电附近,铁电陶瓷的介电常数与温度的关系服从Juli —Weiss 定律,请写出Juli —Weiss定律的数学表达式,并说明如何用实验的方法确定有关的常数?4.6 具有自发极化的铁电晶体,其极化强度P与电场强度E的之间呈非线性关系,构成电滞回线,请画出电滞回线的测试图,并标出实验样品与串联电容的位置;画出电滞回线图;标出矫顽场强、剩余极化强度、饱和极化强度的位置。
4.7 铁电晶体和反铁电晶体的最大区别在什么地方?如何解释反铁电晶体中出现的双电滞回线。
4.8 试画出四种介质在交流电场作用下P〜E回线示意图:线性无损耗介质、线性有损耗介质、非线性污损耗介质、非线性有损耗介质。
4.9 在BaTiO s晶体中,假定Ti4离子在非简谐势阱丄-aX2bX4作非谐振动,式中a,b为常数。
且假定晶体的内电场巳和极化强度P有如下关系:巳=rP=rNqX,式中r为比例系数,N为单位体积中的Ti4•离子数,q为Ti4•离子所带电荷,X为Ti4离子平衡位置的距离。
试推导BaTiO s晶体发生自发极化的条件。
4.10 何为铁电晶体的一级相变、二级相变?分别举例说明在居里点和相变点晶格参数、自发极化强度、介电系数随温度的变化关系14.11 假定BaTiO s晶体的晶格参数为0.4mm,内电场系数J ,且发生了自3 发极化,自发极化是由于Ti4•离子位移引起的,计算Ti4•离子的极化率。
4.12 按照热力学相变理论,铁电体在不考虑应力作用时,自用能可写成:F -:P2 1 -P4 1 P6 ...........................2 4 8式中八- 是温度弱变函数,P为极化强度,在一级相变二:■■-0,:::: 0,0的情况下,求:(1)T = Tc 平衡时,Ps=?(2)系数之间的关系;(3)设〉=A(Tc-T°),求Tc与八>的关系式。