2022-2023学年沪科版七年级数学上册第一次月考测试题(附答案)
- 格式:docx
- 大小:49.19 KB
- 文档页数:8
2022-2023学年七年级数学上《一元一次方程》一.选择题(共8小题)1.(2022春•嵩县期中)下列各式中是方程的是()A.2x﹣3B.2+4=6C.x﹣2>1D.2x﹣1=3 2.(2022春•兰考县期中)下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b2 3.(2021秋•临西县校级月考)关于式子①2x=3和②1﹣3=﹣2,下列说法正确的是()A.①、②均是方程B.①是方程,②不是方程C.①不是方程,②是方程D.①、②均不是方程4.(2020秋•饶平县校级期末)下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=1 5.(2022春•北碚区校级期中)已知正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2,关于这个四元方程下列说法正确的个数是()①a=1,b=2,c=3,d=4是该四元方程的一组解;②连续的四个正整数一定是该四元方程的解;③若a<b<c<d<10,则该四元方程有21组解;④若a+b+c+d=2022,则该四元方程有504组解.A.1B.2C.3D.46.(2021秋•渝中区校级期末)下列选项是一元一次方程的是()A.x+2y=0B.3x+1C.3x2+1=0D.2x=1 7.(2022春•临汾月考)下列属于方程的是()A.2x=3B.2x>﹣1C.1﹣3=﹣2D.7y﹣1 8.(2021秋•遵化市期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4二.多选题(共2小题)(多选)9.(2021秋•乳山市期末)下列变形错误的是()A.由﹣3+2x=1,得2x=1﹣3B.由3y=﹣4,得C.由3=x+2,得x=3+2D.由x﹣4=9,得x=9+4(多选)10.(2021秋•潍坊期中)下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若,则x=y D.若,则2a=3b三.填空题(共6小题)11.(2021秋•渌口区期末)写出一个解为x=3的方程:.12.(2017秋•左贡县校级期末)如果x=5是方程ax+5=10﹣4a的解,那么a=.13.(2013秋•嘉峪关校级期末)在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有(填序号)14.1:2x﹣1;2:2x+1=3x;3:﹣3;4:t+1=3中,代数式有,方程有(填入式子的序号).15.(2020秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是.16.(2021秋•龙泉驿区校级期末)关于x的方程3(k﹣2)x5﹣2|k|﹣2k=16是一元一次方程,那么k=.四.解答题(共4小题)17.(2022春•开福区校级月考)方程的解的定义:使方程两边相等的未知数的值.如果一个方程的解都是整数,那么这个方程叫做“立信方程”.(1)若“立信方程”2x+1=1的解也是关于x的方程1﹣2(x﹣m)=3的解,则m=;(2)若关于x的方程x2+3x﹣4=0的解也是“立信方程”6x+2x2﹣3﹣n=0的解,则n =;(3)若关于x的方程ax=2a3﹣3a2﹣5a+4的解也是关于x的方程9x﹣3=kx+14的解,且这两个方程都是“立信方程”,求符合要求的正整数a和正整数k的值.18.指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x﹣1;(2)x+2y=7;(3)x2+5x﹣1=5;(4)x2=y2+2y;(5)x﹣π=3;(6)3m+5=﹣4;(7)﹣=1.19.判断下列各式是不是方程,如果是,指出未知数;如果不是,说明理由.(1)3+5x﹣4x2;(2)2x﹣y=1;(3)=1;(4)3x﹣11>0.20.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)2022-2023学年七年级数学上《一元一次方程》参考答案与试题解析一.选择题(共8小题)1.(2022春•嵩县期中)下列各式中是方程的是()A.2x﹣3B.2+4=6C.x﹣2>1D.2x﹣1=3【考点】方程的定义.【专题】一次方程(组)及应用;符号意识.【分析】根据方程的定义:含有未知数的等式叫方程可得答案.【解答】解:A.2x﹣3含有未知数,但不是等式,所以不是方程,故不符合题意;B.2+4=6不含有未知数,且不是等式,所以不是方程,故不符合题意;C.x﹣2>1不是等式,所以不是方程,故不符合题意;D.2x﹣1=3符合方程的定义,故符合题意.故选:D.【点评】此题主要考查了方程的定义.方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.2.(2022春•兰考县期中)下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b2【考点】方程的定义.【专题】常规题型.【分析】根据方程的定义即可求出答案.【解答】解:方程是指含有未知数的等式.故选:B.【点评】本题考查方程的定义,解题的关键是熟练运用方程的定义,本题属于基础题型.3.(2021秋•临西县校级月考)关于式子①2x=3和②1﹣3=﹣2,下列说法正确的是()A.①、②均是方程B.①是方程,②不是方程C.①不是方程,②是方程D.①、②均不是方程【考点】方程的定义.【专题】符号意识.【分析】根据方程的定义进行判定.【解答】解:①2x=3是含有未知数的等式,属于方程;②1﹣3=﹣2中不含有未知数,不是方程.观察选项,选项B符合题意.故选:B.【点评】本题主要考查了方程的定义,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.4.(2020秋•饶平县校级期末)下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=1【考点】方程的定义.【专题】一次方程(组)及应用.【分析】根据方程的定义:含有未知数的等式叫方程,可得出正确答案.【解答】解:A、不是等式,错误;B、是一元一次方程,正确;C、不是等式,错误;D、不含未知数,错误;故选:B.【点评】本题考查了方程的定义,含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).5.(2022春•北碚区校级期中)已知正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2,关于这个四元方程下列说法正确的个数是()①a=1,b=2,c=3,d=4是该四元方程的一组解;②连续的四个正整数一定是该四元方程的解;③若a<b<c<d<10,则该四元方程有21组解;④若a+b+c+d=2022,则该四元方程有504组解.A.1B.2C.3D.4【考点】方程的解.【专题】方程与不等式;推理能力.【分析】(1)将a=1,b=2,c=3,d=4代入检验即可;(2)设a=n,则b=n+1,c=n+2,d=n+3,代入方程检验即可判断;(3)根据正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2中连续的四个正整数一定是该四元方程的解即可写出四元方程的解,进而可判断;(4)设a=n,则b=n+1,c=n+2,d=n+3,则a+b+c+d=4n+6,进而可得n的值,即可判断.【解答】解:∵a=1,b=2,c=3,d=4,∴a+b+c+d=1+2+3+4=10,d2﹣c2+b2﹣a2=42﹣32+22﹣12=16﹣9+4﹣1=10,∴a+b+c+d=d2﹣c2+b2﹣a2,∴a=1,b=2,c=3,d=4是该四元方程的一组解;故①正确;设a=n,则b=n+1,c=n+2,d=n+3,∴a+b+c+d=4n+6,d2﹣c2+b2﹣a2=4n+6,∴a+b+c+d=d2﹣c2+b2﹣a2,∴连续的四个正整数一定是该四元方程的解;故②正确;∵正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2中连续的四个正整数一定是该四元方程的解;∴a=1,b=2,c=3,d=4;a=2,b=3,c=4,d=5;a=3,b=4,c=5,d=6;a=4,b=5,c=6,d=7;a=5,b=6,c=7,d=8;a=6,b=7,c=8,d=9;∴当a<b<c<d<10,则该四元方程有6组解;故③错误;∵连续的四个正整数一定是该四元方程的解,设a=n,则b=n+1,c=n+2,d=n+3,∴a+b+c+d=n+n+1+n+2+n+3=4n+6,∵a+b+c+d=2022,∴4n+6=2022,∴n=504,∴a=504,b=505,c=506,d=507是该四元方程的一组解,并非有504组解,故④错误;综上所述,①②正确.故选:B.【点评】本题主要考查方程的解,解题关键是理解方程的解的定义.6.(2021秋•渝中区校级期末)下列选项是一元一次方程的是()A.x+2y=0B.3x+1C.3x2+1=0D.2x=1【考点】一元一次方程的定义.【专题】一次方程(组)及应用;符号意识.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,据此即可判断.【解答】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程,则不是一元一次方程,选项错误.C、x的次数是2,不是一元一次方程,选项错误;D、是一元一次方程,选项正确.故选:D.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.7.(2022春•临汾月考)下列属于方程的是()A.2x=3B.2x>﹣1C.1﹣3=﹣2D.7y﹣1【考点】方程的定义.【专题】一次方程(组)及应用;符号意识.【分析】含有未知数的等式叫方程,据此可得出正确答案.【解答】解:A、是含有未知数的等式,所以是方程,故符合题意;B、不是等式,所以不是方程,故不符合题意;C、是等式,但不含有未知数,所以不是方程,故不符合题意;D、含有未知数,但不是等式,所以不是方程,故不符合题意.故选:A.【点评】本题主要考查的是方程的定义,方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).8.(2021秋•遵化市期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【考点】方程的解.【专题】一次方程(组)及应用.【分析】把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.二.多选题(共2小题)(多选)9.(2021秋•乳山市期末)下列变形错误的是()A.由﹣3+2x=1,得2x=1﹣3B.由3y=﹣4,得C.由3=x+2,得x=3+2D.由x﹣4=9,得x=9+4【考点】等式的性质.【专题】一次方程(组)及应用;运算能力.【分析】根据等式的性质逐个判断即可.【解答】解:A.∵﹣3+2x=1,∴2x=1+3,错误;B.∵3y=﹣4,∴y=﹣,错误;C.∵3=x+2,∴3﹣2=x,即x=3﹣2,错误;D.∵x﹣4=9,∴x=9+4,正确;故选:ABC.【点评】本题考查了等式的性质,能熟记等式的性质是解此题的关键,①等式的性质1、等式的两边都加(或减)同一个数或式子,等式仍成立,②等式的性质2、等式的两边都乘同一个数,等式仍成立,等式的两边都除以同一个不等于0的数,等式仍成立.(多选)10.(2021秋•潍坊期中)下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若,则x=y D.若,则2a=3b【考点】等式的性质.【专题】一次方程(组)及应用;运算能力.【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、根据等式性质1,x=y两边同时加5得x+5=y+5,原变形错误;B、根据等式性质2,等式两边都乘以c,即可得到ac=bc,原变形正确;C、根据等式性质2,等式两边同时乘1+m得x=y,原变形正确;D、根据等式性质2,等式两边同时乘6c得3a=2b,原变形错误.故选:BC.【点评】本题主要考查等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.三.填空题(共6小题)11.(2021秋•渌口区期末)写出一个解为x=3的方程:x﹣3=0(答案不唯一).【考点】方程的解.【专题】一次方程(组)及应用.【分析】方程的解是指使方程两边相等的未知数的值,根据方程解的定义进行填空即可.【解答】解:∵方程的解为x=3,∴方程为x﹣3=0,故答案为:x﹣3=0(答案不唯一).【点评】本题考查了方程的解,掌握方程解的定义是解题的关键.12.(2017秋•左贡县校级期末)如果x=5是方程ax+5=10﹣4a的解,那么a=.【考点】方程的解.【专题】计算题;转化思想.【分析】方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=5代入方程,就得到关于a的方程,就可求出a的值.【解答】解:把x=5代入方程,得:5a+5=10﹣4a,解得:a=.故填:.【点评】本题主要考查了方程解的定义,已知x=5是方程的解实际就是得到了一个关于a的方程.13.(2013秋•嘉峪关校级期末)在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有②,③(填序号)【考点】方程的定义.【分析】根据含有未知数的等式叫方程,可得答案.【解答】解:∵①不含未知数,①不是方程;∵②、③含有未知数的等式,②、③是方程;④不是等式,④不是方程,故答案为:②、③.【点评】本题考查了方程,方程是含有未知数的等式,注意不含未知数的等式不是方程,含有字母的代数式不是方程.14.1:2x﹣1;2:2x+1=3x;3:﹣3;4:t+1=3中,代数式有1,3,方程有2,4(填入式子的序号).【考点】方程的定义.【分析】本题主要考查的是方程的定义,对照方程的两个特征解答.【解答】解:1不是方程,因为它不是等式而是代数式;2是方程,x是未知数;3不是方程,因为它不是等式而是代数式;4是方程,未知数是t.【点评】解题关键是依据方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).15.(2020秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是2.【考点】方程的解.【专题】一次方程(组)及应用;运算能力.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得4+▲=6,解得▲=2.故答案为:2.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.(2021秋•龙泉驿区校级期末)关于x的方程3(k﹣2)x5﹣2|k|﹣2k=16是一元一次方程,那么k=﹣2.【考点】一元一次方程的定义;绝对值.【专题】一次方程(组)及应用;符号意识.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由题意,得:5﹣2|k|=1且k﹣2≠0,解得k=﹣2,故答案为:﹣2.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.四.解答题(共4小题)17.(2022春•开福区校级月考)方程的解的定义:使方程两边相等的未知数的值.如果一个方程的解都是整数,那么这个方程叫做“立信方程”.(1)若“立信方程”2x+1=1的解也是关于x的方程1﹣2(x﹣m)=3的解,则m=1;(2)若关于x的方程x2+3x﹣4=0的解也是“立信方程”6x+2x2﹣3﹣n=0的解,则n =5;(3)若关于x的方程ax=2a3﹣3a2﹣5a+4的解也是关于x的方程9x﹣3=kx+14的解,且这两个方程都是“立信方程”,求符合要求的正整数a和正整数k的值.【考点】方程的解.【专题】新定义;一次方程(组)及应用;运算能力.【分析】(1)根据“立信方程”的定义解答即可;(2)先求出x2+3x﹣4=0的解,再把其中的解代入求解即可求n的解;(3)利用“立信方程”以及a和k为正整数求解.【解答】(1)∵2x+1=1,解得x=0;把x=0代入1﹣2(x﹣m)=3,得:1﹣2(0﹣m)=3,∴1+2m=3,解得:m=1;(2)解方程x2+3x﹣4=0,(x﹣1)(x+4)=0,解得:x1=1或x2=﹣4,把x1=1代入6x+2x2﹣3﹣n=0得:6×1+2×12﹣3﹣n=0,解得:n=5;把x2=﹣4代入6x+2x2﹣3﹣n=0得:6×(﹣4)+2×(﹣4)2﹣3﹣n=0,解得:n=5;故满足条件的n的值为5.(3)因a为正整数,则a≠0,又∵ax=2a3﹣3a2﹣5a+4,∴,∵两方程均为立信方程,∴x的值为整数,∴为整数,∴此时a可取1,4,2,﹣1,﹣4,﹣2,∴x=﹣2,16,﹣1,﹣4,38,7,同理9x﹣3=kx+14,∴(9﹣k)x=17,显然,此时k≠9,则x=,∴9﹣k可取8,﹣810,26,∴此时x=17,1,﹣17,﹣1,∴两方程相同的解为x=﹣1,此时对应的a=2,k=26,故符合要求的正整数a的值为2,k的值为26.【点评】本题考查了一元一次方程的解的应用,能理解立信方程的意义是解此题的关键.18.指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x﹣1;(2)x+2y=7;(3)x2+5x﹣1=5;(4)x2=y2+2y;(5)x﹣π=3;(6)3m+5=﹣4;(7)﹣=1.【考点】方程的定义;一元一次方程的定义.【分析】依据方程的相关概念和一元一次方程的定义回答即可.【解答】解:(1)未知数是x,方程的左边是3,方程的右边是2x﹣1,它是一元一次方程;(2)未知数是x、y,方程的左边是x+2y,方程的右边是7,它不是一元一次方程;(3)未知数是x,方程的左边是x2+5x﹣1,方程的右边是5,它不是一元一次方程;(4)未知数是x,y,方程的左边是x2,方程的右边是y2+2y,它不是一元一次方程;(5)未知数是x,方程的左边是x﹣π,方程的右边是3,它是一元一次方程;(6)未知数是m,方程的左边是3m+5,方程的右边是﹣4,它是一元一次方程;(7)未知数是a,方程的左边是﹣,方程的右边是1,它是一元一次方程.【点评】本题主要考查的是方程的概念,掌握方程的相关概念是解题的关键.19.判断下列各式是不是方程,如果是,指出未知数;如果不是,说明理由.(1)3+5x﹣4x2;(2)2x﹣y=1;(3)=1;(4)3x﹣11>0.【考点】方程的定义.【专题】整式;符号意识.【分析】根据方程的定义对各小题进行逐一分析即可.【解答】解:(1)3+5x﹣4x2,不是等式,所以不是方程;(2)2x﹣y=1,是方程;(3)=1,是方程;(4)3x﹣11>0,不是方程,是不等式.【点评】本题考查的是方程的定义,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.20.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)【考点】方程的定义.【分析】设x年后爸爸的年龄是小明年龄的2倍,再根据x年后两人的年龄是2倍关系列出方程即可.【解答】解:设x年后爸爸的年龄是小明年龄的2倍,根据题意得,36+x=2(12+x),x=12.【点评】本题考查了列一元一次方程,需要注意父子二人的年龄都增加x.。
沪科版七年级数学上册第1章达标测试卷一、选择题(每题3分,共30分)1.下列各数中,最小的数是( )A.-3 B.0 C.1 D.2 2.既是分数,又是负数的是( )A.-5 B.415C.0 D.-6133.对于任何有理数a,下列各式中一定为负数的是( )A.-()-3+a B.-a C.-|a+1| D.-|a|-1 4.下列各数与-(-2 021)相等的是( )A.-2 021 B.2 021 C.-|-2 021| D.-1 2 0215.设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a,b,c 三数之和为( )A.-1 B.0 C.1 D.26.观察算式(-4)×17×(-25)×28,在解题过程中,能使运算变得简便的运算律是( )A.乘法交换律B.乘法结合律C.乘法交换律和乘法结合律D.分配律7.在文化旅游大融合的背景下,享受文化成为旅游业的新趋势.今年“五一”假期,某市为游客和市民提供了丰富多彩的文化享受,各艺术表演馆、美术馆、公共图书馆、群众文化机构、非遗机构及文物机构累计接待游客18.25万人次,将18.25万用科学记数法表示为( )A.1.825×105B.1.825×106C.1.825×107D.1.825×108 8.如图,乐乐将-3,-2,-1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a,b,c分别表示其中的一个数,则a-b+c的值为( )(第8题)A.-1 B.0 C.1 D.39.如果有理数a,b满足||a=9,||b=5,且a+b<0,那么a-b的值是( ) A.-4或14 B.4或-14 C.4或14 D.-4或-14 10.甲用1 000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙.甲在上述股票交易中( )A.不赚不赔B.盈利1元C.盈利9元D.亏本1.1元二、填空题(每题3分,共18分)11.点A 在数轴上位于原点的左侧,距离原点3个单位长度,若将点A 先向右移动4个单位长度,再向左移动2个单位长度,此时点A 表示的数是________.12.把有理数311 800按四舍五入法精确到千位的近似数是________.13.已知□和△表示有理数,□的绝对值为5,△的绝对值为4,且□>△,则2×□-△÷(-2)的值为________.14.如图,数轴上点A ,B ,C 对应的有理数分别是a ,b ,c ,OA =OC =2OB ,且a +2b +c =-4,则|a -b |+|b -c |=________.(第14题)15.观察:(-2)1=-2,(-2)2=4,(-2)3=-8,(-2)4=16,(-2)5=-32,(-2)6=64,(-2)7=-128,…,用发现的规律写出(-2)2 021的末位数字是________.16.已知一列数:1,-2,3,-4,5,-6,7,…,将这列数排成下列形式:第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10第5行 11 -12 13 -14 15 … …按照上述规律排下去,那么第10行从左边数第5个数是________. 三、解答题(17题12分,18题6分,19,20题每题8分,其余每题9分,共52分) 17.计算.(1)(-12)÷4×(-6)÷2; (2)(-0.5)-⎝ ⎛⎭⎪⎫-314+2.75-⎝⎛⎭⎪⎫+712;(3)-32×16-(-4)÷|-2|3;(4)(-2)2-|-7|-3÷⎝ ⎛⎭⎪⎫-14+(-3)3×⎝ ⎛⎭⎪⎫-132.18.运用简便方法计算.(1)⎝ ⎛⎭⎪⎫79+56-1118÷⎝ ⎛⎭⎪⎫-162; (2)15×34-(-15)×12+15×14.19.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:克) -5 -2 0 1 3 6 袋数 1 4 3 4 5 3(1)这20袋食品的质量比标准质量多还是少?多或少几克? (2)若每袋标准质量为450克,则这20袋食品的总质量是多少?20.对于有理数a ,b ,定义一种新运算“⊗”,规定a ⊗b =|a +b |-|a -b |. (1)计算(-3)⊗2的值;(2)当a ,b 在数轴上对应的点的位置如图所示时,化简a ⊗b .(第20题)21.某检修小组乘一辆汽车在东西走向的公路上检修线路,约定向东走为正,某天从A 地出发到收工时的行走记录如下(单位:km):+15,-2,+5,-1,+10,-13,-2,+12,-5,+4,+6.(1)收工时检修小组是否回到A 地?如果回到A 地,请说明理由;如果没有回到A 地,请说明检修小组最后的位置; (2)距离A 地最近的是哪一次?距离多远?(3)若汽车每千米耗油3升,开工时储油180升,到收工时,中途是否需要加油,若加油最少加多少升?若不需要加油,到收工时,还剩多少升油?(假定汽车可以开到油量为0)22.有三个有理数x,y,z,x=2(-1)n-1,且x与y互为相反数,y是z的倒数.(1)当n为奇数时,你能求出x,y,z这三个数吗?当n为偶数时,你能求出x,y,z这三个数吗?若能,请直接写出结果;若不能,请说明理由.(2)根据(1)的结果计算xy-y3-(y-z)2 021的值.答案一、1.A 2.D 3.D 4.B 5.B 6.C 7.A 8.C9.D 10.B 二、11.-1 12.3.12×105 13.12或8 14.8 15.2 16.-50 三、17.解:(1)原式=12×14×6×12=9.(2)原式=-12+314+234-712=-2.(3)原式=-9×16+4÷8=-32+12=-1.(4)原式=4-7+12-27×19=6.18.解:(1)原式=⎝ ⎛⎭⎪⎫79+56-1118×36=79×36+56×36-1118×36 =28+30-22 =36.(2)原式=15×⎝ ⎛⎭⎪⎫34+12+14=15×32=2212.19.解:(1)根据题意,得-5×1-2×4+0×3+1×4+3×5+6×3=-5-8+0+4+15+18=24(克).所以这20袋食品的质量比标准质量多,多24克. (2)根据题意,得20×450+24=9 024(克). 所以这20袋食品的总质量是9 024克. 20.解:(1)(-3)⊗2=|(-3)+2|-|(-3)-2| =1-5 =-4.(2)由数轴可得,b<0<a,|b|>|a|,所以a⊗b=|a+b|-|a-b|=-(a+b)-(a-b)=-a-b-a+b=-2a.21.解:(1)15-2+5-1+10-13-2+12-5+4+6=29(km).答:收工时,检修小组没有回到A地,最后在A地东面29 km处.(2)15-2+5-1+10-13-2=12(km).答:第七次距离A地最近,距离A地12 km.(3)|+15|+|-2|+|+5|+|-1|+|+10|+|-13|+|-2|+|+12|+|-5|+|+4|+|+6|=75(km),75×3>180,75×3-180=45(升).答:到收工时,中途需要加油,最少加45升.22.解:(1)当n为奇数时,能求出.x=-1,y=1,z=1.当n为偶数时,不能求出.因为分母为0没有意义.(2)当x=-1,y=1,z=1时,原式=-1-1-0=-2.沪科版七年级数学上册第2章达标测试卷一、选择题(每题3分,共30分)1.苹果的价格为a元/千克,香蕉的价格为b元/千克,买2千克苹果和3千克香蕉共需( )A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元2.若x=-3,y=-2,则x2-2xy+y2的值是( )A.-10 B.-2 C.1 D.253.下列各式的计算结果正确的是( )A.3x+4y=7xy B.6x-3x=3x2C.8y2-4y2=4 D.9a2b-4ba2=5a2b4.下列各组整式中,是同类项的是( )A.3m3n2与-n3m2 B.13yx与3xyC.53与a3D.2xy与3yz25.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( ) A.x2-5x+3 B.-x2+x-1C.-x2+5x-3 D.x2-5x-136.下列说法正确的是( )A.-2a的系数是2 B.2m2n与-mn2是同类项C.2 021是单项式D.x3+1x是三次二项式7.如果A是3m2-m+1,B是2m2-m-7,且A-B+C=0,那么C是( )A.-m2-8 B.-m2-2m-6 C.m2+8 D.5m2-2m-6 8.如图,从边长为(m+3)的正方形纸片上剪下一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙).若拼成的长方形的一边长为3,则其周长是( )A.2m+6 B.4m+12C.2m+3 D.m+6(第8题) (第10题)9.一家商店以每包a元的价格购进了30包甲种茶叶,又以每包b元的价格购进了60包乙种茶叶(a>b).若以每包a+b2元的价格卖出这两种茶叶,则卖完后,这家商店( )A.赚了B.赔了C.不赔不赚D.不能确定赔或赚10.如图是小强用火柴棒搭的“金鱼”,分别为1条,2条,3条,…,则搭n(n 为正整数)条“金鱼”需要火柴棒的根数是( )A.7n+1 B.6n+2 C.5n+3 D.4n+4二、填空题(每题3分,共18分)11.下列式子23a+b,S=12ab,5,m,8+y,m+3=2,23<57中,代数式有________个.12.小陈同学买了5本笔记本,12支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小陈同学共花费________________元.(用含a,b的代数式表示)13.如果数轴上表示a,b两数的点的位置如图,那么|a-b|+|a+b|的计算结果是________.(第13题) (第14题)14.有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是__________,依次继续下去,第2 021次输出的结果是__________.15.若m2+mn=-3,n2-3mn=18,则m2+4mn-n2的值为________.16.张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报纸收入了________元.三、解答题(17题6分,18,19题每题8分,其余每题10分,共52分)17.化简: 5(a 2b -3ab 2)-2(a 2b -7ab 2).18.数学课上,张老师出示了这样一道题目:“当a =12,b =-2时,求多项式7a 3+3a 2b +3a 3+6a 3b -3a 2b -10a 3-6a 3b -1的值”.解完这道题后,小阳同学指出:“a =12,b =-2是多余的条件”,师生讨论后,一致认为小阳的说法是正确的.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目:“无论x ,y 取任何值,多项式2x 2+ax-5y +b -2⎝ ⎛⎭⎪⎫bx 2-32x -52y -3的值都不变,求系数a ,b 的值”.请你解决这个问题.19.果果同学做一道数学题:已知两个多项式A ,B ,计算2A +B ,他误将“2A +B ”看成“A +2B ”,求得的结果是9x 2-2x +7,已知B =x 2+3x -2,求2A +B 的正确结果.20.十一黄金周期间,某风景区门票价格为:成人票每张80元,学生票每张40元,希望中学七年级有x 名学生和y 名老师,八年级学生人数是七年级学生人数的32倍,八年级老师人数是七年级老师人数的65倍.(1)两个年级在该风景区的门票费用分别为:七年级__________________元,八年级________________元;(用含x ,y 的代数式表示) (2)若他们一起去该风景区,则门票费用共需多少元(用含x ,y 的代数式表示)?若x =200,y =30,求两个年级门票费用的总和.21.小丽放学回家后准备完成下面的题目:化简(□x2-6x+8)+(6x-5x2-2),发现系数“□”印刷不清楚.(1)她把“□”猜成3,请你化简(3x2-6x+8)+(6x-5x2-2);(2)她妈妈说:“你猜错了,我看到该题的标准答案是6.”请通过计算说明原题中“□”是几?22.小亮用火柴棒按如图所示的方式搭图形.(第22题)(1)把下表填完整.图形编号①②③火柴棒根数7(2)设第n(n=________(用含字母n的代数式表示).(3)是否存在一个图形共有117根火柴棒?若存在,求出是第几个图形;若不存在,请说明理由.答案一、1.C 2.C 3.D 4.B 5.C 6.C 7.A 8.B 9.A 10.B二、11.4 12.(5a +12b ) 13.-2a 14.3;4 15.-21 16.(0.3b -0.2a )三、17.解:原式=5a 2b -15ab 2-2a 2b +14ab 2=3a 2b -ab 2. 18.解:(1)因为7a 3+3a 2b +3a 3+6a 3b -3a 2b -10a 3-6a 3b -1=(7+3-10)a 3+(3-3)a 2b +(6-6)a 3b -1 =-1,所以该多项式的值为常数,与a 和b 的取值无关,小阳的说法是正确的.(2)2x 2+ax -5y +b -2(bx 2-32x -52y -3)=2x 2+ax -5y +b -2bx 2+3x +5y +6=(2-2b )x 2+(a +3)x +(b +6).因为无论x ,y 取任何值,多项式2x 2+ax -5y +b -2(bx 2-32x -52y -3)的值都不变,所以2-2b =0,a +3=0, 所以a =-3,b =1.19.解:A =A +2B -2B =(9x 2-2x +7)-2(x 2+3x -2)=9x 2-2x +7-2x 2-6x +4=7x 2-8x +11.所以2A +B =2(7x 2-8x +11)+(x 2+3x -2)=14x 2-16x +22+x 2+3x -2=15x 2-13x +20.20.解:(1)(40x +80y );(60x +96y )(2)门票费用共需(40x +80y )+(60x +96y )=(100x +176y )(元), 当x =200,y =30时,原式=25 280.则两个年级门票费用的总和为25 280元.21.解:(1)(3x 2-6x +8)+(6x -5x 2-2)=3x 2-6x +8+6x -5x 2-2=-2x 2+6.(2)设“□”是a ,(ax 2-6x +8)+(6x -5x 2-2)=ax 2-6x +8+6x -5x 2-2=(a -5)x 2+6.因为标准答案是6,所以a -5=0, 解得a =5.故原题中“□”是5. 22.解:(1)12;17(2)5n +2 (3)存在.根据题意,当s =117时, 5n +2=117, 解得n =23.故第23个图形共有117根火柴棒.泸科版七年级数学上册第3章达标测试卷一、选择题(每题3分,共30分)1.已知等式ax =ay ,下列变形不正确的是( ) A .x =y B .ax +1=ay +1 C .2ax =2ay D .3-ax =3-ay2.已知方程(m -1)x 2|m |-1+2=0是关于x 的一元一次方程,则m 的值为( ) A .0 B .1 C .-1 D .±1 3.若⎩⎨⎧x =2,y =-2是二元一次方程ax +by =3的一组解,则a -b -1的值为( )A .32B .1C .12D .24.解一元一次方程12(x +1)=1-13x 时,去分母正确的是( )A .3(x +1)=1-2xB .2(x +1)=1-3xC .2(x +1)=6-3xD .3(x +1)=6-2x5.关于x 的两个方程6x +8=3x 与ax -8=0的解相同,则a 的值为( ) A .-2 B .2 C .-3 D .36.下列方程中,与方程5x +2y =-9构成的方程组的解为⎩⎨⎧x =-2,y =12的是()A .x +2y =1B .5x +4y =-3C .3x -4y =-8D .3x +2y =-87.如果单项式12x a +b y 3与5x 2y b 的和仍是单项式,则|a -b |的值为( )A .4B .3C .2D .18.如图,宽为50 cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .400 cm 2B .500 cm 2C .600 cm 2D .300 cm 29.甲种物品每个1 kg ,乙种物品每个2.5 kg ,现购买甲种物品x 个,乙种物品y 个,共30 kg.若两种物品都买,则所有可供选择的购买方案的个数为( ) A .4 B .5 C .6 D .710.某服装店用6 000元购进A 、B 两种新款服装,按标价全部售出后获得利润3 800元(单件利润=标价-进价),这两种服装的进价、标价如下表所示,A .60件B D .100件 二、填空题(每题3分,共18分)11.当x =______时,2x 与2-x 互为相反数.12.二元一次方程x +y =5的正整数解有________个.13.有一张数学练习卷,只有25道选择题,做对一道得4分,做错一道扣1分,某同学全部做完,共得70分,他一共做对了________道题. 14.已知|x -1|+(2y +1)2=0,且2x -ky =4,则k =________.15.第1个方程是x +x 2=3,解为x =2;第2个方程是x 2+x3=5,解为x =6;第3个方程是x 3+x4=7,解为x =12;…,根据规律,第99个方程是________________,解为________.16.为鼓励居民节约用气,某省决定对天然气收费实行阶梯气价,阶梯气价划分为两个档级:(1)第一档气量为每户每月30立方米以内(含30立方米),执行基准价格; (2)第二档气量为每户每月超出30立方米以上的部分,执行市场调节价格. 小宋家5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,若小宋家7月份用气29立方米,则他家应交费________元.三、解答题(17,18题每题4分,19,20题每题10分,其余每题12分,共52分) 17.解方程:2x -13-x -26=1.18.解方程组:⎩⎨⎧x +1=2y ,2(x +1)-y =8.19.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1 755元,其中每支毛笔比钢笔贵4元. (1)求钢笔和毛笔的单价各为多少元;(2)该中学仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,对财务处王老师说:“我这次买这两种笔需支取2 447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说陈老师的账算错了.20.已知关于x ,y 的二元一次方程组⎩⎨⎧3x -5y =2a ,2x +7y =a -18.(1)若x ,y 的值互为相反数,求a 的值; (2)若2x +y +35=0,求x ,y 的值.21.某工厂用如图①所示的若干张长方形和正方形纸板做成如图②所示的A ,B两种长方体形状的无盖纸盒.现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A 型纸盒?多少个B 型纸盒?(1)根据题意,甲和乙两位同学分别列出的方程组如下:甲:⎩⎨⎧x +2y =140,4x +3y =360; 乙:⎩⎨⎧x +y =140,4x +32y =360. 根据两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义: 甲:x 表示______________,y 表示______________;__ 乙:x 表示______________,y 表示______________;(2)求出做成的A 型纸盒和B 型纸盒分别有多少个.(写出完整的解答过程)22.放学后,小贤和小艺来到学校附近的地摊上购买一种签字笔和笔记本,这种签字笔每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支签字笔、2本笔记本需花费12元,小艺要买6支签字笔、1本笔记本需花费15元.(1)求笔记本的单价和单独购买一支签字笔的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,小贤还剩2元钱,小艺还剩1元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品?请通过运算说明.答案一、1.A 2.C 3.C 4.D 5.C 6.C 7.A 【提示】由题意可得⎩⎨⎧a +b =2,b =3.解得⎩⎨⎧a =-1,b =3.当a =-1,b =3时,|a -b |=|-1-3|=4.8.A 9.B 10.C 二、11.-2 12.4 13.19 14.415.x 99+x100=199;x =9 900 16.87三、17.解:去分母,得2(2x -1)-(x -2)=6,去括号,得4x -2-x +2=6, 移项、合并同类项,得3x =6, 两边同除以3,得x =2. 18.解:原方程组可整理为⎩⎨⎧x -2y =-1,①2x -y =6.②①×2-②,得-3y =-8, 解得y =83.把y =83代入①,得x -2×83=-1,解得x =133,所以原方程组的解为⎩⎪⎨⎪⎧x =133,y =83.19.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +4)元.由题意得30x +45(x +4)=1 755. 解得x =21. 则x +4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)设购买单价为21元的钢笔y 支,则购买单价为25元的毛笔(105-y )支.根据题意,得21y +25(105-y )=2 447. 解得y =44.5,不符合题意.所以王老师说陈老师的账算错了. 20.解:(1)⎩⎨⎧3x -5y =2a ,①2x +7y =a -18,②①-②×2,得-x -19y =36,即x +19y =-36.当x =-y 时,-y +19y =-36, 解得y =-2, 所以x =2,将⎩⎨⎧x =2,y =-2代入①,得a =8. (2)由(1)及题意得⎩⎨⎧x +19y =-36,③2x +y +35=0.④ ③×2-④,得37y =-37,解得y =-1.把y =-1代入③,得x -19=-36,解得x =-17.21.解:(1)A 型纸盒的个数;B 型纸盒的个数;A 型纸盒中正方形纸板的张数;B 型纸盒中正方形纸板的张数(2)设做成的A 型纸盒有x 个,B 型纸盒有y 个,根据题意得⎩⎨⎧x +2y =140,4x +3y =360,解得⎩⎨⎧x =60,y =40. 答:做成的A 型纸盒有60个,B 型纸盒有40个.22.解:(1)设单独购买一支签字笔的价格为x 元,笔记本的单价为y 元.依题意可得⎩⎨⎧3x +2y =12,6x +y =15.解得⎩⎨⎧x =2,y =3.答:单独购买一支签字笔的价格为2元,笔记本的单价为3元. (2)合买一盒签字笔.理由:购买前:小贤有12+2=14(元),小艺有15+1=16(元),总共30元. 因为整盒买比单支买每支可优惠0.5元,所以买整盒签字笔的费用为10×(2-0.5)=15(元).因为15+3×(2+1)+3×2=30(元),30=30,所以合买一盒签字笔能满足要求,且还多得一支签字笔.泸科版七年级数学上册第4章达标检测卷一、选择题(每题3分,共30分)1.下面几种图形是平面图形的是( )2.下列现象,能说明“线动成面”的是( )A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹3.下列说法正确的是( )A.两点确定一条直线 B.两条射线组成的图形叫做角C.两点之间直线最短 D.若AB=BC,则点B为AC的中点4.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是( ) 5.将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是( )6.已知互为补角的两个角的差为35°,则较大的角是( )A.107.5°B.108.5°C.97.5°D.72.5°7.在直线AB上任取一点O,过点O作射线OC,OD,使∠COD=90°,当∠AOC =50°时,∠BOD的度数是( )A.40°B.140°C.40°或140° D.40°或90°8.已知点A,B,C共线,如果线段AB=5 cm,BC=4 cm,那么A,C两点间的距离是( )A.1 cm B.9 cmC.1 cm或9 cm D.2 cm或10 cm9.如图,已知C是线段AB的中点,D是线段BC的中点,下列各式不正确的是( )A.CD=AC-DB B.CD=AD-BCC.CD=12AB-BD D.CD=13AB10.钟表在8:25时,时针与分针的夹角是( ) A.101.5°B.102.5°C.120°D.125°二、填空题(每题3分,共18分)11.把58°18′化成度的形式,则58°18′=________°.12.一个角的余角是它的补角的14,这个角是________度.13.如图,图中线段有________条,射线有________条.14.如图,点O在直线AB上,射线OC,OD在直线AB的同侧,∠AOD=50°,∠BOC=40°,OM,ON分别平分∠BOC和∠AOD,则∠MON的度数为________.15.如图,将长方形纸片ABCD折叠,使边AB,CB均落在对角线BD上,得折痕BE,BF,则∠EBF=________.16.已知点O在直线AB上,且OA=4 cm,OB=6 cm,点E,F分别是OA,OB的中点,则EF=_________________________.三、解答题(17题6分,21题10分,22题12分,其余每题8分,共52分)17.如图,已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB、射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)尺规作图:连接AD并延长至点F,使得DF=AD.18.如图,已知A,B,C三点在同一直线上,AB=24 cm,BC=38AB,点E是AC的中点,点D是AB的中点,求DE的长.19.若第一个角的补角比第二个角的余角的3倍少20°,而第二个角的补角比第一个角的余角的3倍多20°,求这两个角的度数.20.如图,已知直线AB与CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF =34°,求∠BOD的度数.21.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.22.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图①,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)如图②,已知DE=15 cm,点P是DE的三等分点,求DP的长.(2)如图③,已知线段AB=15 cm,点P从点A出发以每秒1 cm的速度在射线AB上向点B方向运动,点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2 cm,设运动时间为t s.①若点P、点Q同时出发,当点P与点Q重合时,求t的值;②若点P、点Q同时出发,当点P是线段AQ的三等分点时,求t的值.答案一、1.A 2.B 3.A 4.B 5.C 6.A 7.C 8.C 9.D 10.B二、11.58.3 12.60 13.6;6 14.135° 15.45° 16.1 cm 或5 cm 三、17.解:如图所示.18.解:因为AB =24 cm ,所以BC =38AB =38×24=9(cm).所以AC =AB +BC =24+9=33(cm).因为点E 是AC 的中点,所以AE =12AC =12×33=16.5(cm).因为点D 是AB 的中点, 所以AD =12AB =12×24=12(cm).所以DE =AE -AD =16.5-12=4.5(cm).19.解:设第一个、第二个角的度数分别为x ,y .由题意得⎩⎨⎧180°-x =3(90°-y )-20°,180°-y =3(90°-x )+20°,解得⎩⎨⎧x =50°,y =40°.答:这两个角的度数分别为50°和40°.20.解:因为∠COE 是直角,∠COF =34°,所以∠EOF =56°. 因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°. 因为∠COF =34°,所以∠AOC =∠AOF -∠COF =22°.因为∠BOD +∠BOC =180°,∠AOC +∠BOC =180°, 所以∠BOD =∠AOC =22°.21.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12×90°=45°.(2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12α. (3)∠MON =12α.理由:∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(α+β)-12β=12α.22.解:(1)当DP =2PE 时,DP =23DE =15×23=10(cm);当2DP =PE 时,DP =13DE =13×15=5(cm).综上所述,DP 的长为5 cm 或10 cm.(2)①根据题意,得(1+2)t =15, 解得t =5.所以当t =5时,点P 与点Q 重合. ②点P ,Q 重合前:当2AP =PQ 时,有t +2t +2t =15, 解得t =3;当AP =2PQ 时,有t +12t +2t =15,解得t =307. 点P ,Q 重合后:当AP =2PQ 时,有t =2(t -5), 解得t =10;当2AP =PQ 时,有2t =t -5, 解得t =-5(不合题意,舍去). 综上所述,当t =3,307或10时,点P 是线段AQ 的三等分点. 泸科版七年级数学上册第4章达标测试卷一、选择题(每题3分,共30分)1.我们学过的数轴是一条( )A.射线B.直线C.线段D.直线或线段2.下列说法正确的是( )A.两点之间直线最短B.线段MN就是M,N两点间的距离C.射线AB和射线BA是同一条射线D.将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线3.如图,点C在线段AB上,则下列说法正确的是( )A.AC=BC B.AC>BCC.图中共有两条线段D.AB=AC+BC4.某校学生要去博物馆参观,从学校A处到博物馆B处的路径如图所示,若学生沿每条路径行走的速度都相同,那么为了节约时间,尽快从A处赶到B处,应选取的路径为( )A.A→H→E→BB.A→C→E→BC.A→F→E→BD.A→D→G→E→B5.如图,C,D是射线OA上两点,E,F是射线OB上两点,下列表示∠AOB错误的是( )A.∠COE B.∠AOFC.∠DOB D.∠EOF6.如图,O是直线AB上一点,∠1=39°42′,OD平分∠BOC,则∠2的度数是( )A.39°42′B.50°18′C.50°9′D.70°9′7.在直线AB上任取一点O,过点O作射线OC,OD,使∠COD=90°,当∠AOC =50°时,∠BOD的度数是( )A.40°B.140°C.40°或140°D.40°或90°8.点A,B,C是直线l上的点,线段BC长为4,M,N分别为线段AB,BC的中点,MN的长为3,则线段AB的长为( )A.2 B.10 C.2或10 D.1或79.如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB 的度数为( )A .25°B .30°C .45°D .60°10.如图,已知A ,B 是线段EF 上两点,EA ∶AB ∶BF =2∶3∶4,M ,N 分别为EA ,BF 的中点,且MN =12 cm ,则EF 的长度为( )A .10 cmB .14 cmC .16 cmD .18 cm 二、填空题(每题3分,共18分) 11.计算58°18′=________°.12.一个角是它的补角的15,则这个角的余角是________°.13.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为________.14.下午2:30时,时钟上的时针与分针的夹角是________.15.已知线段AB =8 cm ,点C 是线段AB 所在直线上一点.下列说法:①若点C为线段AB 的中点,则AC =4 cm ;②若AC =4 cm ,则点C 为线段AB 的中点;③若AC >BC ,则点C 一定在线段AB 的延长线上;④线段AC 与BC 的长度和一定不小于8 cm ,其中正确的有________.(填写正确答案的序号)16.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,且AC 的中点为E ,BD 的中点为M ,线段BC 上有一点N ,且BN =13BC ,则该数轴的原点为________.三、解答题(17,18题每题8分,其余每题9分,共52分)17.如图,已知线段AB 的长为28 cm ,在AB 的延长线上取一点C ,使BC =47AB ,E 为AC 的中点,D 为AB 的中点,求线段DE 的长.18. 已知∠α与∠β互余,且∠α比∠β小25°,求2∠α-13∠β的值.19.如图,已知直线l和直线l外的三点A,B,C,按下列要求画图并回答问题.(1)画射线AB;(2)画线段BC;(3)延长CB至D,使得BD=BC;(4)在直线l上确定点E,使得AE+CE最小,请写出你作图的依据.20.如图,已知直线AB上有一点O,射线OD平分∠AOE,∠AOC∶∠EOC=1∶4,且∠COD=36°.(1)求∠AOC的度数;(2)求∠BOE的度数.21.点O为直线AB上一点,过点O作射线OC,使∠BOC的度数比∠AOC度数的2倍还多6°,将一直角三角板DFE的直角顶点F放在点O处.(1)如图①,若直角三角板DFE的一边FD在射线OA上,求∠COE的度数;(2)如图②,将直角三角板DFE绕点O顺时针转动到某位置,若OC恰好平分∠AOE,求∠COD的度数;(3)如图③,将直角三角板DFE绕点O任意转动,如果FD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系,并说明理由.22.定义:若线段上的一个点把这条线段分成1∶2的两条线段,则称这个点是这条线段的三等分点.如图①,点C在线段AB上,且AC∶CB=1∶2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)如图②,已知DE=15 cm,点P是DE的三等分点,求DP的长;(2)如图③,已知线段AB=15 cm,点P从点A出发以每秒1 cm的速度在射线AB上向点B方向运动,同时点Q从点B出发,先向点A方向运动,当与点P 重合后立刻改变方向与点P同向而行且速度始终为每秒2 cm,设运动时间为t s.①当点P与点Q重合时,求t的值;②当点P是线段AQ的三等分点时,求t的值.答案一、1.B 2.D 3.D 4.C 5.D 6.D 7.C 8.C 9.B 10.D 二、11.58.312.60 【提示】设这个角的度数是x ,根据题意,得x =15(180°-x ),解得x=30°.所以这个角的余角为90°-30°=60°. 13.135° 14.105° 15.①④ 16.点N 三、17.解:因为AB 的长为28 cm ,BC =47AB ,所以BC =47×28=16(cm),所以AC =AB +BC =44 cm ,因为E 为AC 的中点,D 为AB 的中点,所以AD =12AB =12×28=14(cm),AE =12AC =12×44=22(cm),所以DE =AE -AD =22-14=8(cm).18.解:由题意得⎩⎨⎧∠α+∠β=90°,∠β-∠α=25°,解得⎩⎨⎧∠α=32.5°,∠β=57.5°.所以2∠α-13∠β=2×32.5°-13×57.5°=45°50′.19.解:(1)(2)(3)如图所示.(4)如图,连接AC ,AC 与直线l 的交点即为所求的点E .依据:两点之间的所有连线中,线段最短.20.解:(1)因为∠AOC ∶∠EOC =1∶4,所以可设∠AOC =x ,则∠EOC =4x ,所以∠AOE =5x .因为OD 平分∠AOE ,所以∠AOD =12∠AOE =52x ,所以∠COD =52x -x =32x =36°,解得x =24°,即∠AOC =24°.(2)因为∠AOC =24°,所以∠AOE =5×24°=120°,所以∠BOE=180°-∠AOE=180°-120°=60°.21.解:(1)设∠AOC=x°,则∠BOC=(2x+6)°.因为∠AOC+∠BOC=180°,所以x+(2x+6)=180,所以x=58,所以∠COE=∠DFE-∠AOC=90°-58°=32°.(2)因为OC平分∠AOE,所以∠EOC=∠AOC=58°,所以∠COD=∠DOE-∠EOC=90°-58°=32°.(3)∠COE-∠AOD=32°.理由:因为FD始终在∠AOC的内部,所以∠COE=90°-∠COD,∠AOD=∠AOC-∠COD=58°-∠COD,所以∠COE-∠AOD=32°.22.解:(1)当DP=2PE时,DP=23DE=15×23=10(cm).当2DP=PE时,DP=13DE=13×15=5(cm).综上所述,DP的长为5 cm或10 cm.(2)①根据题意得(1+2)t=15,解得t=5.所以当t=5时,点P与点Q重合.②点P,Q重合前:当2AP=PQ时,有t+2t+2t=15,解得t=3.当AP=2PQ时,有t+12t+2t=15,解得t=307.点P,Q重合后:当AP=2PQ时,有t=2(t-5),解得t=10.当2AP=PQ时,有2t=t-5,解得t=-5(不合题意,舍去).综上所述,当点P是线段AQ的三等分点时,t的值为3或307或10.泸科版七年级数学上册第5章达标测试卷一、选择题(每题3分,共30分)1.下列调查中,适宜采用普查方式的是( )A.了解一批灯泡的使用寿命B.了解游客对天柱山的印象C.了解本班同学早餐是否有喝牛奶的习惯D.了解我国中学生的视力情况2.每年6月5日是“世界环境日”,为了了解某校七年级500名学生对“禁止焚烧植物秸秆”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是( )A.500名学生B.所抽取的50名学生对“禁止焚烧植物秸秆”的知晓情况C.50名学生D.每名学生对“禁止焚烧植物秸秆”的知晓情况3.某市去年共有37 098名考生报名参加中考,为了了解这37 098名考生的数学成绩,从中抽取了1 000名考生的数学成绩进行统计分析,以下说法正确的有( )①这次调查采用了抽样调查的方式;②37 098名考生是总体;③1 000名考生是总体的一个样本;④每名考生的数学成绩是个体.A.1个B.2个C.3个D.4个4.七(1)班班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图所示的折线统计图,阅读数量变化率最大的两个月是( )A.1月与2月B.4月与5月C.5月与6月 D.6月与7月5.下面是反映世界人口情况的数据:1957年、1974年、1987年、1999年的世界人口数依次为30亿、40亿、50亿、60亿,预计2025年世界人口将达80亿,2050年世界人口将达94亿.上面的数据不能制成( )A.统计表B.条形统计图C.折线统计图D.扇形统计图6.可以显示部分在整体中所占百分率的统计图是( )A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可7.小明同学对九年级(1)班、(2)班(每班各50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多8.如图是某校七(1)班60名同学参加课外兴趣小组情况的扇形统计图,其中S1,S,S3,S4分别为四个扇形的面积,若S1∶S2∶S3∶S4=4∶3∶2∶1,则参加2科技小组的有( )A.24名B.18名C.12名D.16名9.如图,某校公布了反映该校各年级学生体育达标情况的两幅统计图,七、八、九三个年级共有学生800人.甲、乙、丙三名同学看了这两幅统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三名同学中,说法正确的是( )A.甲和乙B.乙和丙C.甲和丙D.甲、乙和丙10.某大型商场1月份到4月份的销售总额为1 850万元,每月的销售额如图①所示,其中每月电器销售额所占百分率如图②所示.根据图中信息,有下列结论:①该商场2月份销售额最少;②1月份电器销售额比4月份电器销售额少;③3月份与2月份相比,电器销售额上涨约88.6%;④若5月份与4月份相比,销售额上涨15%,其中电器销售额上涨10%,则5月份电器销售额所占百分率高于4月份.其中正确的是( )A.①②③B.①③C.②④D.②③二、填空题(每题3分,共18分)11.以下调查中:①了解某批次零件的质量情况;②了解某班学生的体重情况;③了解某台元宵晚会的收视率;④选出某校短跑最快的学生参加全市比赛,适合抽样调查的是________.(填序号)12.某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示.已知巧克力口味冰淇淋一天售出100份,那么芒果口味冰淇淋一天售出的份数是________.。
2022-2023学年初中七年级上数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 10 小题,每题 5 分,共计50分)1. ${2\dfrac{1}{3}}$中有________个${\dfrac{1}{3}}$.2. 下列方程中,不是一元一次方程的是()A.${\dfrac{7}{y}+ 12= 0}$B.${2x+ 8= 0}$C.${3z= 0}$D.${3x= - 2- x}$3. 下列几何图形中,有${3}$个面的是( )A.B.C.D.4. 今年“五一”小长假期间,我市共接待游客${99.6}$万人次,旅游收入${516000000}$元.数据${516000000}$科学记数法表示为( )A.${5.16 \times 10^{8}}$B.${0.516 \times 10^{9}}$C.${51.6 \times 10^{7}}$D.${5.16 \times 10^{9}}$5. 小明要把${1}$张${50}$元的压岁钱兑换成面额为${5}$元和${10}$元的人民币(假设两种面额的人民币都需要),兑换方式有${(}$ ${)}$A.${1}$种B.${2}$种C.${3}$种D.${4}$种6. 单项式${-2\pi x^{2}y^{3}}$的系数是( )A.${-2}$B.${-2\pi }$C.${5}$D.${6}$7. 若代数式${4x- 5}$的值比${3x}$的值小${7}$,则${x}$的值是${(}$ ${)}$A.${- \dfrac{12}{7}}$B.${-12}$C.${2}$D.${-2}$8. 已知方程组的解是,则的解是( )A.C.D.9. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出${8}$钱,则多${3}$钱;每人出${7}$钱,则差${4}$钱,求物品的价格和共同购买该物品的人数.设该物品的价格是${x}$钱,共同购买该物品的有${y}$人,则根据题意,列出的方程组是( )A.${\left\{ \begin{matrix} 8y - x = 3 \\ 7y - x = - 4 \\ \end{matrix} \right.\ }$B.${\left\{ \begin{matrix} 8y - x = 3 \\ 7y - x = 4 \\ \end{matrix} \right.\ }$C.${\left\{ \begin{matrix} y - 8x = - 3 \\ 7y - x = - 4 \\ \end{matrix} \right.\ }$D.${\left\{ \begin{matrix} 8x - y = 3 \\ 7x - y = 4 \\ \end{matrix} \right.\ }$10. 如图,每个图案均由边长相等的黑白两色正方形按规律拼接而成,照此规律,第${n}$个图案中白色正方形比黑色正方形多${(}$ ${)}$个.A.${n}$B.${(5n+3)}$C.${(5n+2)}$D.${(4n+3)}$卷II(非选择题)二、填空题(本题共计 4 小题,每题 5 分,共计20分)12. ${2019}$年国内航空公司规定:旅客乘机时,免费携带行李箱的重量不超过${20\rm kg}$. 若超过${20\rm kg}$,则超出的重量每千克要按飞机票原价的${1.5\%}$购买行李票. 小明的爸爸从长春飞到北京,机票原价是${m}$元,他带了${40\rm kg}$行李,小明的爸爸应付的行李票是________元(用含${m}$的代数式表示).13. 长方形${ABCD}$中放置了${6}$个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是________${cm^{2}}$.14. 已知点${A}$,${B}$,${C}$都在直线${l}$上, ${AB=3BC}$,点${D}$,${E}$分别为${AC}$,${BC}$的中点,${DE=6}$,则${AC=}$________.三、解答题(本题共计 9 小题,每题 5 分,共计45分)15. 计算:${| 2-3 | +2\times \left(-4\right)-}$${\left(-3\right)^{2}\div 9}$.16. 解方程:${{\dfrac{0.03+0.02x}{0.03}}+{\dfrac{2x-5}5}={\dfrac{x-1}2}}$.17. 按要求作图如图,在同一平面内有四个点${A}$,${B}$,${C}$,${D}$ .①画射线${CD}$ ;②画直线${AD}$ ;③连结${AB}$ ;④直线${BD}$与直线${AC}$相交于点${O}$.18. 已知${y_{1}=}$${6-x}$,${y_{2}=}$${2+ 7x}$,解答下列问题:${(1)}$当${y_{1}=}$${2y_{2}}$时,求${x}$的值;${(2)}$当${x}$取何值时,${y_{2}}$比${y_{1}}$小${3}$.19. 已知${A=x^{2}+3xy-12}$,${B=2x^{2}-xy+y}$.${(1)}$当${x=y=-2}$时,求${2A-B}$的值;${(2)}$若${2A-B}$的值与${y}$的取值无关,求${x}$的值.【运用】${(1)}$①${ -2x= 4 }$,②${ 3x= -4.5 }$,③${ \dfrac{1}{2}x= -1 }$三个方程中,为“友好方程”的是________(填写序号);${(2)}$若关于${ x }$的一元一次方程${ 3x= b }$是“友好方程”,求${ b }$的值;${(3)}$若关于${ x }$的一元一次方程${ -2x= mn+ n(n\ne 0) }$是“友好方程”,且它的解为${ x= n}$,求${ m }$与${ n }$的值.21. 解方程组:.22. 观察下列各式:${\begin{matrix} - 1 \times \dfrac{1}{2} = - 1 + \dfrac{1}{2}; \\ - \dfrac{1}{2} \times \dfrac{1}{3} = - \dfrac{1}{2} + \dfrac{1}{3} ; \\ - \dfrac{1}{3} \times \dfrac{1}{4} = - \dfrac{1}{3} + \dfrac{1}{4} ;\\ \end{matrix}}$${\cdots}$${(1)}$你能探索出什么规律?(用含${n}$的式子表达);${(2)}$试运用你发现的规律计算:${( - 1 \times \dfrac{1}{2}) + ( - \dfrac{1}{2} \times \dfrac{1}{3}) + ( - \dfrac{1}{3} \times \dfrac{1} {4}) + \cdots + ( - \dfrac{1}{2018} \times \dfrac{1}{2019}) + ( - \dfrac{1}{2019} \times \dfrac{1} {2020})}$.23. 某汽车制造厂开发了一款新式电动汽车,计划一年生产安装${240}$辆.工厂决定招聘一些新工人.生产开始后,调研部门发现:${1}$名熟练工和${2}$名新工人每月可安装${8}$辆电动汽车;${2}$名熟练工和${3}$名新工人每月可安装${14}$辆电动汽车.${(1)}$每名熟练工和新工人每月分别可以安装多少辆电动汽车?${(2)}$如果工厂招聘${n(0\lt n\lt 10)}$名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有几种招聘新工人的方案?${(3)}$在${(2)}$的条件下,工厂给安装电动汽车的每名熟练工每月发${4000}$元的工资,给每名新工人每月发${2400}$元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额${W}$(元)尽可能的少?参考答案与试题解析2022-2023学年初中七年级上数学月考试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】${7}$【考点】有理数的除法【解析】用 ${2\dfrac{1}{3}}$除以${\dfrac{1}{3}}$即可得到答案.【解答】解:${2\dfrac13\div\dfrac13=\dfrac73\div\dfrac13=7}$.故答案为:${7}$.2.【答案】A【考点】一元一次方程的定义【解析】此题暂无解析【解答】解:一元一次方程是指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,${\rm A}$中${y}$的最高次幂是${-1}$,不符合一元一次方程的定义,故选${\rm A}$.3.【答案】D认识立体图形【解析】根据立体图形的概念逐一判断可得.【解答】${A}$、球只有${1}$个面;${B}$、三棱锥有${4}$个面;${C}$、正方体有${6}$个面;${D}$、圆柱体有${3}$个面;4.【答案】A【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:${516000000}$用科学计数法表示为${5.16 \times 10^{8}}$,故选${\rm A}$.5.【答案】D【考点】二元一次方程的解【解析】先设面值${5}$元的有${x}$张,面值${10}$元的${y}$张,根据${1}$张${50}$元的人民币兑换成面额为${5}$元和${10}$元的人民币列出方程求解即可.【解答】解:设面值${5}$元的有${x}$张,面值${10}$元的${y}$张,根据题意得:${5x+10y=50}$,由于两种面额的人民币都需要,当${x=6}$时,${y=2}$;当${x=8}$时,${y=1}$.有${4}$种方案.故选${\rm D}$.6.【答案】B【考点】单项式【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单项式${-2\pi x^{2}y^{3}}$的系数是${-2\pi }$,故选:${B}$.7.【答案】D【考点】解一元一次方程【解析】此题暂无解析【解答】解:因为代数式${4x- 5}$的值比${3x}$的值小${7}$,所以${4x-5=3x-7}$,解得:${x=-2}$.故选${\rm D}$.8.【答案】D【考点】加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】此题暂无解析【解答】此题暂无解答9.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】设该物品的价格是${x}$钱,共同购买该物品的有${y}$人,由“每人出${8}$钱,则多${3}$钱;每人出${7}$钱,则差${4}$钱”,即可得出关于${x}$,${y}$的二元一次方程组,此题得解.【解答】解:设该物品的价格是${x}$钱,共同购买该物品的有${y}$人,依题意,得:${\left\{ \begin{matrix} 8y - x = 3 \\ 7y - x = - 4 \\ \end{matrix} \right.\ }$.故选${\rm A}$.10.【答案】D【考点】规律型:图形的变化类【解析】根据题意,第一个图形白色正方形为${8}$个,第二个图形白色正方形为${13}$个,第三个图形白色正方形为${18}$个,后一个图形比前一个图形多${5}$个白色正方形,则第${n}$个图形白色正方形的个数为${5n+ 3}$,即可推出第${5}$个图形白色正方形的个数.【解答】解:∵${n= 1}$时,白色正方形的个数为${8}$,白色正方形的个数为${13}$,黑色正方形个数为${2}$;${n= 3}$时,白色正方形的个数为${18}$,黑色正方形个数为${3}$;∴第${n}$个图形白色正方形的个数为${5n+ 3}$,黑色正方形个数为${n}$;∴第${n}$个图案中白色正方形比黑色正方形多${4n+3}$个.故选${\rm D}$.二、填空题(本题共计 4 小题,每题 5 分,共计20分)11.【答案】${-1}$【考点】二元一次方程的定义【解析】本题主要考查二元一次方程的定义,根据定义即可解得 .【解答】解:由题知${\begin{cases} |k|=1, \\k-1≠0, \end{cases}}$解得${k=-1}$.故答案为:${-1}$.12.【答案】${0.3m}$【考点】列代数式【解析】此题暂无解析【解答】解:由题意可得,小明的爸爸应付的行李票是: ${\left(40-20\right)m\times 1.5\% =0.3m}$(元).故答案为:${0.3m}$.13.${67}$.【考点】二元一次方程组的应用——几何问题【解析】设小长方形的长为${x\rm cm}$,宽为${y \rm cm}$,根据图中给定的数据可得出关于${x}$,${y}$的二元一次方程组,解之即可得出${x}$,${y}$的值,再利用阴影部分的面积${= }$大长方形的面积${-6\times }$小长方形的面积,即可求出结论.【解答】解:设小长方形的长为${x\rm cm}$,宽为${ym}$依题意,得:${\left\{ \begin{array} {l}{x+ 3y= 19} \\ {x+ y-2y= 7}\end{array} \right.}$解得:${\left\{ \begin{array} {l}{x= 10} \\ {y= 3}\end{array} \right.}$…图中阴影部分的面积${= 19\times \left(7+ 2\times 3\right)-6\times 10\times 3= 67\left( \rm cm ^{2}\right)}$故答案为:${67}$.14.【答案】${8}$或${16}$【考点】线段的和差线段的中点【解析】利用线段的比例关系,列式,注意对${B}$点的位置分类讨论.【解答】解:设${BC=x}$,当${C}$在线段${AB}$外面时,${AC=4x}$,由条件可得${\dfrac32x=6}$,解得${x=4}$,则${AC=4x=16}$,当${C}$在线段${AB}$中间时,${AC=2x}$,由条件可得${\dfrac32x=6}$,解得${x=4}$,则${AC=2x=8}$.故答案为:${8}$或${16}$.三、解答题(本题共计 9 小题,每题 5 分,共计45分)15.【答案】解:原式${=1+(-8)-1}$${=-8}$.【考点】有理数的混合运算有理数的乘方绝对值【解析】【解答】解:原式${=1+(-8)-1}$${=-8}$.16.【答案】解:${\dfrac{0.03+0.02x}{0.03}+\dfrac{2x-5}5=\dfrac{x-1}2}$去分母,得${10\left(3+2x\right)+6\left(2x-5\right)=15\left(x-1\right)}$,去括号,得${30+20x+12x-30=15x-15}$,移项、合并同类项,得${17x=-15}$,系数化为${1}$,得${x=-\dfrac{15}{17}}$.【考点】解一元一次方程【解析】根据去分母、去括号、移项、合并同类项、系数化为${1}$等几个步骤进行解答即可.【解答】解:${\dfrac{0.03+0.02x}{0.03}+\dfrac{2x-5}5=\dfrac{x-1}2}$去分母,得${10\left(3+2x\right)+6\left(2x-5\right)=15\left(x-1\right)}$,去括号,得${30+20x+12x-30=15x-15}$,移项、合并同类项,得${17x=-15}$,系数化为${1}$,得${x=-\dfrac{15}{17}}$.17.【答案】解:如图所示,【考点】直线、射线、线段作图—几何作图【解析】根据直线、射线、线段的定义作图即可得.【解答】解:如图所示,18.【答案】解:${(1)}$由题意,得${6-x=2(2+7x)}$,解得${x=\dfrac{2}{15}}$.${(2)}$由题意,得${\left(6-x\right)-(2+7x)=3}$,解得${x=\dfrac{1}{8}}$.【考点】解一元一次方程列代数式由实际问题抽象出一元一次方程【解析】无无【解答】解:${(1)}$由题意,得${6-x=2(2+7x)}$,解得${x=\dfrac{2}{15}}$.${(2)}$由题意,得${\left(6-x\right)-(2+7x)=3}$,解得${x=\dfrac{1}{8}}$.19.【答案】解:${(1)}$${2A-B=2(x^2+3xy-12)-(2x^2-xy+y)}$${=2x^2+6xy-24-2x^2+xy-y}$${=7xy-y-24}$,当${x=y=-2}$时,原式${=28+2-24=6}$.${(2)}$由${(1)}$知,${2A-B=(7x-1)y-24}$,若${2A-B}$的值与${y}$的取值无关,则${7x-1=0}$,${x=\dfrac{1}{7}}$.【考点】整式的加减——化简求值整式的加减【解析】先化简多项式,再代入求值;合并含${y}$的项,因为${2A-B}$的值与${y}$的取值无关,所以${y}$的系数为${0}$.【解答】解:${(1)}$${2A-B=2(x^2+3xy-12)-(2x^2-xy+y)}$${=2x^2+6xy-24-2x^2+xy-y}$${=7xy-y-24}$,当${x=y=-2}$时,原式${=28+2-24=6}$.${(2)}$由${(1)}$知,${2A-B=(7x-1)y-24}$,若${2A-B}$的值与${y}$的取值无关,则${7x-1=0}$,${x=\dfrac{1}{7}}$.20.【答案】②${(2)}$方程${ 3x= b }$的解为${ x= \dfrac{b}{3} }$,∵关于${x}$的一元一次方程${ 3x= b }$是“友好方程”,∴${ \dfrac{b}{3}= b+ 3 }$,解得${ b= -\dfrac{9}{2}}$.${(3)}$∵方程${ -2x= mn+ n(n\ne 0) }$是“友好方程”,且它的解为${ x= n }$,∴${ n= mn+ n-2 }$,${ mn= 2 }$,解方程${ -2x= mn+ n(n\ne 0) }$,解得${ x= -\dfrac{mn+ n}{2} }$,即${ n= -\dfrac{mn+ n}{2} }$,整理得${ -2n= mn+ n }$,解得${ m= -3}$.由${ mn= 2 }$得${ n= -\dfrac{2}{3} }$,∴${ m= -3 }$,${ n= -\dfrac{2}{3}}$.【考点】一元一次方程的解解一元一次方程【解析】(${1}$)求出方程的解,依次进行判断即可;(${2}$)求出方程的解${x=\dfrac{b}{3}}$,根据“友好方程”的定义,得到${\dfrac{b}{3}=b+3}$即可求出占的值;(${3}$)根据“友好方程”的定义以及解为${x=n}$,得到${n= \rm mm +n-2}$,解方程${-2x=mn+n\left(n\ne 0\right)}$,得到${x=-\dfrac{m+n}{2}}$,即${n=-\dfrac{mn+}{2}}$,通过上面两个式子整理化简即可求出${m}$和${n}$的值.【解答】解:${(1)}$①方程${-2x=4}$的解为${x=-2}$,而${-2\ne 4-2}$,因此方程${-2x=4}$不是“友好方程”;②方程${3x=-4.5}$的解为${x=-1.5}$,而${-1.5=-4.5+3}$,因此方程${3x=-4.5}$是“友好方程”;③方程${\dfrac{1}{2}x=-1}$的解为${x=-2}$,而${-2\ne -1+\dfrac{1}{2}}$,因此方程${\dfrac{1} {2}x=-1}$不是“友好方程”.故答案为:②.${(2)}$方程${ 3x= b }$的解为${ x= \dfrac{b}{3} }$,∵关于${x}$的一元一次方程${ 3x= b }$是“友好方程”,∴${ \dfrac{b}{3}= b+ 3 }$,解得${ b= -\dfrac{9}{2}}$.${(3)}$∵方程${ -2x= mn+ n(n\ne 0) }$是“友好方程”,且它的解为${ x= n }$,∴${ n= mn+ n-2 }$,${ mn= 2 }$,解方程${ -2x= mn+ n(n\ne 0) }$,解得${ x= -\dfrac{mn+ n}{2} }$,即${ n= -\dfrac{mn+ n}{2} }$,整理得${ -2n= mn+ n }$,解得${ m= -3}$.由${ mn= 2 }$得${ n= -\dfrac{2}{3} }$,∴${ m= -3 }$,${ n= -\dfrac{2}{3}}$.21.【答案】②${\times 2}$得:${2x+ 3y}$=${26}$③,③-①得:${5y}$=${10}$,解得:${y}$=${2}$,把${y}$=${4}$代入②得:${x+ 8}$=${13}$,解得:${x}$=${5}$,方程组的解为.【考点】二元一次方程组的解加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:${(1)}$观察已知算式可知:${ - \dfrac{1}{n} \times \dfrac{1}{n + 1} = - \dfrac{1}{n} + \dfrac{1}{n + 1}}$.${(2)}$根据发现的规律可得:原式${=-1 + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{3} + \dfrac{1}{4} + \cdots }$ ${+ ( - \dfrac{1}{2018}) + \dfrac{1}{2019} - \dfrac{1}{2019} + \dfrac{1}{2020}}$${=-1 + \dfrac{1}{2020}}$${ = - \dfrac{2019}{2020}}$.【考点】规律型:数字的变化类有理数的混合运算【解析】(1)根据已知三个等式的规律即可得一般表达式;(2)根据(1)中得到的一般式进行有理数的混合运算即可求解.【解答】解:${(1)}$观察已知算式可知:${ - \dfrac{1}{n} \times \dfrac{1}{n + 1} = - \dfrac{1}{n} + \dfrac{1}{n + 1}}$.${(2)}$根据发现的规律可得:原式${=-1 + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{3} + \dfrac{1}{4} + \cdots }$ ${+ ( - \dfrac{1}{2018}) + \dfrac{1}{2019} - \dfrac{1}{2019} + \dfrac{1}{2020}}$${=-1 + \dfrac{1}{2020}}$${ = - \dfrac{2019}{2020}}$.23.【答案】解:${(1)}$设每名熟练工和新工人每月分别可以安装${x}$、${y}$辆电动汽车.根据题意,得${\left\{ {\begin{matrix} {x+ 2y= 8}, \\ {2x+ 3y= 14}, \end{matrix}} \right.}$解得${\left\{ {\begin{matrix} {x= 4} ,\\ {y= 2} .\end{matrix}} \right.}$答:每名熟练工和新工人每月分别可以安装${4}$辆,${2}$辆电动汽车.${(2)}$设工厂有${a}$名熟练工.根据题意,得${12(4a+ 2n)= 240}$,则${2a+ n= 10}$,移项得${n= 10-2a}$,又∵${a}$,${n}$都是正整数,${0\lt n\lt 10}$,∴${n= 8}$,${6}$,${4}$,${2}$.即工厂有${4}$种新工人的招聘方案.①${n= 8}$,${a= 1}$,即新工人${8}$人,熟练工${1}$人;②${n= 6}$,${a= 2}$,即新工人${6}$人,熟练工${2}$人;③${n= 4}$,${a= 3}$,即新工人${4}$人,熟练工${3}$人;④${n= 2}$,${a= 4}$,即新工人${2}$人,熟练工${4}$人.${(3)}$结合${(2)}$知:要使新工人的数量多于熟练工,则${n= 8}$,${a= 1}$;或${n= 6}$,${a= 2}$;或${n= 4}$,${a= 3}$.根据题意,得:${W=4000a+2400(10-2a)=24000-800a}$要使工厂每月支出的工资总额${W}$(元)尽可能地少,则${a}$应最大.显然当${n= 4}$,${a= 3}$时,工厂每月支出的工资总额${W}$(元)尽可能地少,故应招聘${4}$名新员工.【考点】二元一次方程组的应用——产品配套问题由实际问题抽象出二元一次方程【解析】(1)设每名熟练工和新工人每月分别可以安装${x}$、${y}$辆电动汽车.根据“${1}$名熟练工和${2}$名新工人每月可安装${8}$辆电动汽车”和“${2}$名熟练工和${3}$名新工人每月可安装${14}$辆电动汽车”列方程组求解.${(2)}$设工厂有${a}$名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据${a}$,${n}$都是正整数和${0\lt n\lt 10}$,进行分析${n}$的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额${W}$(元)尽可能地少,两个条件进行分析.【解答】解:${(1)}$设每名熟练工和新工人每月分别可以安装${x}$、${y}$辆电动汽车.根据题意,得${\left\{ {\begin{matrix} {x+ 2y= 8}, \\ {2x+ 3y= 14}, \end{matrix}} \right.}$解得${\left\{ {\begin{matrix} {x= 4} ,\\ {y= 2} .\end{matrix}} \right.}$答:每名熟练工和新工人每月分别可以安装${4}$辆,${2}$辆电动汽车.${(2)}$设工厂有${a}$名熟练工.根据题意,得${12(4a+ 2n)= 240}$,则${2a+ n= 10}$,移项得${n= 10-2a}$,又∵${a}$,${n}$都是正整数,${0\lt n\lt 10}$,∴${n= 8}$,${6}$,${4}$,${2}$.即工厂有${4}$种新工人的招聘方案.①${n= 8}$,${a= 1}$,即新工人${8}$人,熟练工${1}$人;②${n= 6}$,${a= 2}$,即新工人${6}$人,熟练工${2}$人;③${n= 4}$,${a= 3}$,即新工人${4}$人,熟练工${3}$人;④${n= 2}$,${a= 4}$,即新工人${2}$人,熟练工${4}$人.${(3)}$结合${(2)}$知:要使新工人的数量多于熟练工,则${n= 8}$,${a= 1}$;或${n= 6}$,${a= 2}$;或${n= 4}$,${a= 3}$.根据题意,得:${W=4000a+2400(10-2a)=24000-800a}$要使工厂每月支出的工资总额${W}$(元)尽可能地少,则${a}$应最大.显然当${n= 4}$,${a= 3}$时,工厂每月支出的工资总额${W}$(元)尽可能地少,故应招聘${4}$名新员工.。
沪科版数学七年级上册第一次月考测试题(适用于一二单元)(时间120分钟分值:120分)一、选择题(30分)1.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,72.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( )A.20 B.18 C.16 D.153.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是( )A.20 B.﹣20 C.28 D.﹣284.已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是( )A.ab B.a+b C.10a+b D.100a+b5.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨6.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是( )℃.A.44 B.34 C.﹣44 D.﹣347.|﹣3|的相反数是( )A.3 B.﹣3 C.D.﹣8.下列说法不正确的是( )A.0既不是正数,也不是负数B.0的绝对值是0C.一个有理数不是整数就是分数D.1是绝对值最小的正数9.在数﹣,0,4.5,|﹣9|,﹣6.79中,属于正数的个数是( )A.2 B.3 C.4 D.510.一个数的相反数是3,这个数是( )A.﹣3 B.3 C.D.二、填空题(本题共30分)11.单项式的系数是__________,次数是__________.12.多项式2x2y﹣+1的次数是__________.13.任写一个与﹣a2b是同类项的单项式__________.14.多项式3x+2y与多项式4x﹣2y的差是__________.15.绝对值大于1并且不大于3的整数是__________.16.最小的正整数是__________,最大的负整数是__________.17.比较下面两个数的大小(用“<”,“>”,“=”)(1)1__________﹣2;(2)__________﹣0.3;(3)|﹣3|__________﹣(﹣3).18.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.19.数据810000用科学记数法表示为__________.20.观察下面一列数,根据规律写出横线上的数,﹣;;﹣;;__________;__________;…;第2013个数是__________.三、解答题(共60分)21.把下列各数的序号填在相应的数集内:①1 ②﹣③+3.2 ④0 ⑤⑥﹣6.5 ⑦+108 ⑧﹣4 ⑨﹣6(1)正整数集合{ …}(2)正分数集合{ …}(3)负分数集合{ …}(4)负数集合{ …}.22.在数轴上把下列各数表示出来,并用从小到大排列出来2.5,﹣2,|﹣4|,﹣(﹣1),0,﹣(+3)23.(16分)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣24)÷6。
2022-2023学年七年级数学上册第一次月考测试题(附答案)一、单选题(共18分)1.有理数﹣的倒数为()A.5B.C.D.﹣52.李明同学在“百度搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约6180万,这个数用科学记数法表示为()A.6.18×105B.6.18×106C.6.18×107D.6.18×1083.下列说法正确的是()A.倒数等于本身的数是±1B.有理数包括正有理数和负有理数C.没有最大的正数,但有最大的负数D.绝对值等于本身的数是正数4.下列各对数中,互为相反数的是()A.+(﹣2)和﹣(+2)B.﹣|﹣3|和+(﹣3)C.(﹣1)2和﹣12D.(﹣1)3和﹣135.如果a>0,b<0,a+b<0,那么下列各式中大小关系正确的是()A.﹣b<﹣a<b<a B.﹣a<b<a<﹣b C.b<﹣a<﹣b<a D.b<﹣a<a<﹣b 6.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2020次跳后它停的点所对应的数为()A.1B.2C.3D.5二、填空题(共24分)7.比较大小:(填“<”、“=”或“>”=).8.绝对值小于4而不小于1的正整数有.9.已知m、n互为相反数,a、b互为倒数,那么|m+n+ab﹣4|=.10.下列各数:10、(﹣2)2、、0、﹣(﹣8)、﹣|﹣2|、﹣42、|﹣4|中,正整数有个.11.数轴上一点A表示的数为﹣5,将点A先向右移2个单位,再向左移10个单位,则这个点表示的数是.12.在数轴上表示数a的点到表示﹣1的点的距离为3,则a=.13.若|a|=1,|b|=4,且ab<0,则a+b=.14.如图所示是计算机某计算程序,若开始输入x=2,则最后输出的结果是.15.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是.16.如图是按照一定规律画出的一列“树型”图.经观察可以发现:图2比图1多出2个“树枝”,图3比图2多出5个“树枝”,图4比图3多出10个“树枝”,照此规律,图6比图5多出个“树枝”.三、解答题(共78分)17.把下列各数分别填入相应的集合里:﹣2,,﹣5.,0,,3.1415926,,+10%,2.626626662 (2020)正数集合{…}.负数集合{…}.整数集合{…}.分数集合{…}.无理数集合{…}.18.在数轴上表示下列各数:﹣(﹣5),0,,﹣|﹣2.5|,(﹣1)2,﹣22,并用“<”将它们连接起来.19.计算:(1)3﹣(+1)﹣(﹣3)+1+(﹣4).(2).(3).(4)48÷[4×(﹣2)﹣(﹣4)].(5)2×(﹣3)2﹣5×(﹣2).(6).20.简便计算:(1).(2).21.对于有理数a、b,定义一种新的运算:a⊗b=a×b﹣a+b.例如:1⊗2=1×2﹣1+2.(1)计算(﹣3)⊗4的值.(2)计算[5⊗(﹣2)]⊗3的值.22.在抗洪抢险中,解放军战士的冲锋舟加满油,沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)救灾过程中,冲锋舟离出发点A最远处千米;(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负来表示,记录如下:﹣3﹣2﹣1.501 2.5与标准质量的差值(单位:千克)筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐重千克;(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?24.观察下列等式:第一个等式:;第二个等式:;第三个等式:.按上述规律,回答下列问题:(1)请写出第四个等式:;(2)第n个等式为:;(3)计算:.25.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图3中的圆圈共有13层.(1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,﹣20,…,求最底层最右边圆圈内的数是;(3)求图4中所有圆圈中各数值之和.(写出计算过程)26.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.参考答案一、单选题(共18分)1.解:根据倒数的定义可知:﹣的倒数为﹣5.故选:D.2.解:6180万=6.18×107.故选:C.3.解:A、倒数等于本身的数是±1,原说法正确,故此选项符合题意;B、有理数包括正有理数、负有理数和0,原说法错误,故此选项不符合题意;C、没有最大的正数,也没有最大的负数,原说法错误,故此选项不符合题意;D、绝对值等于本身的数是0和正数,原说法错误,故此选项不符合题意.故选:A.4.解:A、∵+(﹣2)=﹣2,﹣(+2)=﹣2,∴+(﹣2)和﹣(+2)相等,不互为相反数,故选项A不正确;B、∵﹣|﹣3|=﹣3,+(﹣3)=﹣3,∴﹣|﹣3|和+(﹣3)相等,不互为相反数,故选项B不正确;C、∵(﹣1)2=1,﹣12=﹣1,∴(﹣1)2和﹣12互为相反数,故选项C正确;D、∵(﹣1)2=1,13=1,∴(﹣1)2和13相等,不互为相反数,故选项D不正确;故选:C.5.解:∵a>0,b<0,∴a为正数,b为负数,∵a+b<0,∴负数b的绝对值较大,则a、b、﹣a、﹣b在数轴上的位置如图所示:,由数轴可得:b<﹣a<a<﹣b,故选:D.6.解:由题意得:青蛙第1次跳到的那个点是3,∵若青蛙停在奇数点上,则下一次沿顺时针方向跳两个点,∴青蛙第2次跳到的那个点是5,∴青蛙第3次跳到的那个点是2.∵若青蛙停在偶数点上,则下一次沿逆时针方向跳一个点,∴青蛙第4次跳到的那个点是1,∴青蛙第5次跳到的那个点是3;归纳类推得:青蛙跳后它停的点所对应的数是以3,5,2,1循环往复的,∵2020=4×505,∴经2020次跳后它停的点所对应的数与经4次跳后它停的点所对应的数相同,即为1,故选:A.二、填空题(共24分)7.解:因为,所以,故答案为:>8.解:因为正整数的绝对值等于它本身,所以只需求出小于4而不小于1的正整数即可,则符合条件的正整数有1,2,3,故答案为:1,2,3.9.解:∵m、n互为相反数,a、b互为倒数,∴m+n=0,ab=1,∴|m+n+ab﹣4|=|(m+n)+ab﹣4|=|0+1﹣4|=|﹣3|=3,故答案为:3.10.解:正整数有10、(﹣2)2=4、﹣(﹣8)=8、|﹣4|=4,一共有4个,故答案为:4.11.解:先设向右为正,向左为负,那么﹣5+2﹣10=﹣13,则这个点表示的数是﹣13故答案是:﹣13.12.解:当表示数a的点在表示﹣1的点的右侧时,则a>﹣1.∴表示﹣1的点向右移动3个单位长度可到达表示数a的点处.∴a=﹣1+3.∴a=2.当表示数a的点在表示﹣1的点的左侧时,则a<﹣1.∴表示﹣1的点向左移动3个单位长度可到达表示数a的点处.∴a=﹣1﹣3.∴a=﹣4.综上:a=2或﹣4.故答案为:2或﹣4.13.解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴①当a=1,b=﹣4时,a+b=1﹣4=﹣3,②当a=﹣1,b=4时,a+b=(﹣1)+4=3,故答案为±3.14.解:把x=2代入程序中得:2×4﹣2=8﹣2=6<10,把x=6代入程序中得:6×4﹣2=24﹣2=22>10,则最后输出的结果是22.故答案为:22.15.解:由题意可得:圆的周长为π,∵直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,∴A点表示的数是:1﹣π.故答案为:1﹣π.16.解:观察图可知,图(2)比图(1)多出“树枝”个数为2,图(3)比图(2)多出“树枝”个数为5=22+20,图(4)比图(3)多出“树枝”个数为10=23+21,图(5)比图(4)多出“树枝”个数为20=24+22,归纳类推得:图(n)比图(n﹣1)多出“树枝”个数为2n﹣1+2n﹣3,其中n≥3且为整数,则图(6)比图(5)多出“树枝”个数为26﹣1+26﹣3=32+8=40,故答案为:40.三、解答题(共78分)17.解:正数集合{,,3.1415926,+10%,2.626626662…,2020…};负数集合{﹣2,﹣5.,,…};整数集合{﹣2,0,2020…};分数集合{,﹣5.,3.1415926,,+10%…};无理数集合:{,2.626626662……}.故答案为:1,,3.1415926,+10%,2.626626662…,2020;﹣2,﹣5.,﹣;﹣2,0,2020;1,﹣5.,3.1415926,,+10%;,2.626626662….18.解:﹣(﹣5)=5,=3.5,﹣|﹣2.5|=﹣2.5,(﹣1)2=1,﹣22=﹣4,如图所示:用“<”把这些数连接起来为:﹣22<﹣|﹣2.5|<0<(﹣1)2<<﹣(﹣5).19.解:(1)3﹣(+1)﹣(﹣3)+1+(﹣4)=3+(﹣1)+3+1+(﹣4)=2;(2)===﹣10+17=7;(3)=﹣18÷(﹣2)×=9×=;(4)48÷[4×(﹣2)﹣(﹣4)]=48÷(﹣8+4)=48÷(﹣4)=﹣12;(5)2×(﹣3)2﹣5×(﹣2)=2×9﹣5×(﹣2)×(﹣2)=18﹣20=﹣2;(6)=﹣1﹣××(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.20.解:(1)=(﹣100)×5=×5﹣100×5=﹣500=;(2)=(﹣36)×(﹣)+(﹣36)×﹣(﹣36)×=16﹣30+21=7.21.解:(1)由题意可得,(﹣3)⊗4=(﹣3)×4﹣(﹣3)+4=﹣12+3+4=﹣5;(2)由题意可得,[5⊗(﹣2)]⊗3=[5×(﹣2)﹣5+(﹣2)]⊗3=(﹣10﹣5﹣2)⊗3=(﹣17)⊗3=(﹣17)×3﹣(﹣17)+3=﹣51+17+3=﹣31.22.解:(1)(+14)+(﹣9)+(+8)+(﹣7)+(+13)+(﹣6)+(+12)+(﹣5)=14﹣9+8﹣7+13﹣6+12﹣5=20(千米),答:B地位于A地的正东方向,距离A地20千米;(2)第1次记录时冲锋舟离出发点A的距离为|+14|=14千米,第2次记录时冲锋舟离出发点A的距离为|14+(﹣9)|=5千米,第3次记录时冲锋舟离出发点A的距离为|5+(+8)|=13千米,第4次记录时冲锋舟离出发点A的距离为|13+(﹣7)|=6千米,第5次记录时冲锋舟离出发点A的距离为|6+(+13)|=19千米,第6次记录时冲锋舟离出发点A的距离为|19+(﹣6)|=13千米,第7次记录时冲锋舟离出发点A的距离为|13+(+12)|=25千米,第8次记录时冲锋舟离出发点A的距离为|25+(﹣5)|=20千米,由此可知,救灾过程中,冲锋舟离出发点A最远处为25千米;故答案为:25;(3)冲锋舟当天航行总路程为:|+14|+|﹣9|+|+8|+|﹣7|+|+13|+|﹣6|+|+12|+|﹣5|=14+9+8+7+13+6+12+5=74(千米),则74×0.5﹣28=37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油.23.解:(1)2.5﹣(﹣3)=2.5+3=5.5(千克),故答案为:5.5;(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=﹣3﹣8﹣3+0+2+20=8(千克),答:与标准重量比较,20筐白菜总计超过8千克;(3)这20筐白菜的总质量为25×20+8=508(千克),则508×2.6=1320.8(元),答:出售这20筐白菜可卖1320.8元.24.解:(1)观察三个等式可以看到:等式左边第一个数字都是1,第二个数字的分子都是1,分母为等式的序号加1的平方;等式的右边为两个分数的乘积,两个分数的分母均为等式的序号加1,分子分别为等式的序号和等式的序号加2.由此规律可得第四个等式为:1﹣=.故答案为:;(2)由(1)中的规律得第n个等式为:1﹣=.故答案为:1﹣=.(3)====;25.解:(1)当有13层时,图3中到第12层共有:1+2+3+…+11+12=78个圆圈,最底层最左边这个圆圈中的数是:78+1=79;(2)图4中所有圆圈中共有1+2+3+…+13==91个数,最底层最右边圆圈内的数是﹣23+91﹣1=67;(3)图4中共有91个数,其中23个负数,1个0,67个正数,所以图4中所有圆圈中各数的和为:﹣23﹣22﹣…﹣1+0+1+2+…+67=﹣(1+2+3+...+23)+(1+2+3+ (67)=﹣276+2278=2002.故答案为:(1)79;(2)67.26.解:(1)∵|a+2|+|b﹣4|=0;∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=3,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动2个单位,此时,乙小球到原点的距离=4﹣2=2,故答案为:3,2;当t=3时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球3秒钟向左运动3个单位,此时,甲小球到原点的距离=5,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球2秒钟向左运动2个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2.②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6.故当t=秒或t=6秒时,甲乙两小球到原点的距离相等.故答案为:5,2.。
2022-2023学年沪科版七年级数学上册《第1章有理数》期中复习综合测试题(附答案)一、选择题(共30分)1.计算﹣6÷|﹣2|的结果是()A.﹣3B.3C.12D.﹣82.把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.6+3=9B.﹣6﹣3=﹣9C.6﹣3=3D.﹣6+3=﹣3 3.若﹣(﹣2)表示一个数的相反数,则这个数是()A.B.﹣C.2D.﹣24.下列各对数中数值相等的是()A.﹣12和(﹣1)2B.﹣(﹣3)和﹣|﹣3|C.(﹣2)3和﹣23D.﹣3×23和﹣(3×2)35.若ab<0,则的值()A.是正数B.是负数C.是非正数D.是非负数6.已知|x﹣3|+(2+y)2=0,则y x的值为()A.9B.﹣9C.﹣8D.87.有三个数,它们的绝对值分别为1,2,4,其中绝对值最小的数最大,绝对值最大的数最小,这三个数的和是()A.﹣5B.﹣7C.﹣5或﹣7D.18.在有理数:﹣(﹣2),﹣|﹣|,(﹣2)3,(﹣5)2,(﹣1)5,﹣22中,负数有()A.2个B.3个C.4个D.5个9.一根1m长的绳子,第一次剪去绳子的,第二次剪去剩下绳子的,如此剪下去,第100次剪完后剩下绳子的长度是()A.B.C.D.10.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0B.|b|<|c|C.|a|>|b|D.abc<0二、填空题(共18分)11.﹣的倒数是.12.如果规定a※b=+1,则2※(﹣3)的值为.13.已知|x|=3,y2=4,且xy<0,则x+y的值是.14.数轴上到表示数﹣4点距离为3的点所表示的数为.15.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2011=.16.设[m)表示大于m的最小整数,如[5.5)=6,[﹣1.2)=﹣1,把下列正确结论的序号写在横线上.(1)[2)﹣2=1;(2)若[m)﹣m=0.5,则m=0.5;(3)[m)﹣m的最大值是1;(4)[m)﹣m的最小值是0.三、解答题(共72分)17.计算题(1)﹣(﹣3)﹣(+7)﹣|﹣8|;(2)(﹣0.5)+(﹣2)+2;(3)1﹣(1+﹣)×21;(4)(﹣27)÷2×÷(﹣24);(5)(﹣2)3+[(﹣3)3﹣(1﹣32)×2];(6)﹣32﹣[﹣5﹣0.2÷×(﹣2)2].18.以48.0千克为标准体重测量7名学生的体重,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:学生1234567与标准体重之差(千克)﹣2.8+1.7+0.8﹣0.5﹣0.2+1.2+0.5(1)最接近标准体重的是学生(填序号).(2)最大体重与最小体重相差千克.(3)求7名学生的平均体重.19.已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求m2+a+b+(﹣cd)3的值.20.如果x n=y,那么我们记为:(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空:(2,8)=,=;(2)若(4,a)=2,(b,8)=3,求(b,a)的值.21.(8分)阅读理解并解答:为了求1+2+22+23+24+…+22019的值.可令S=1+2+22+23+24+…+22019则2S=2+22+23+24+…+22019+22020因此2S﹣S=(2+22+23+24+…+22019+22020)﹣(1+2+22+23+24+…+22019)=22020﹣1所以S=22020﹣1即1+2+22+23+24+…+22019=22020﹣1请依照此法,求:1+5+52+53+54+…+52020的值.22.结合数轴与绝对值的知识回答下列问题:(1)表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣1的两点之间的距离是2,那么a=.(2)若数轴上表示数a的点位于﹣2与4之间,则|a﹣4|+|a+2|的值为.(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是.(4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.参考答案一、选择题(共30分)1.解:﹣6÷|﹣2|=﹣6÷2=﹣3.故选:A.2.解:由题意可知:﹣6+3=﹣3,故选:D.3.解:﹣(﹣2)=2,2的相反数是:﹣2.故选:D.4.解:A、﹣12=﹣1,(﹣1)2=1,﹣1≠1,故A不符合题意;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,3≠﹣3,故B不符合题意;C、(﹣2)3=﹣8,﹣23=﹣8,﹣8=﹣8,故C符合题意;D、﹣3×23=﹣24,﹣(3×2)3=﹣216,﹣24≠﹣216,故D不符合题意.故选:C.5.解:∵ab<0,∴a与b异号,∴的值是负数.故选:B.6.解:根据题意得,x﹣3=0,2+y=0,∴x=3,y=﹣2,∴y x=(﹣2)3=﹣8.故选:C.7.解:∵三个数的绝对值分别为1,2,4,∴这三个数可能是±1,±2,±4,∵绝对值最小的数最大,绝对值最大的数最小,∴最大的数是1或﹣1,最小的数是﹣4,当最大的数是﹣1时,﹣4<﹣2<﹣1,∴另一个数是﹣2,∴这三个数的和为:﹣4﹣2﹣1=﹣7,当最大的数是1时,﹣4<﹣2<1,∴另一个数也是﹣2,∴这三个数的和为:﹣4﹣2+1=﹣5,∴这三个数的和是﹣5或﹣7,故选:C.8.解:∵﹣(﹣2)=2,﹣|﹣|=﹣,(﹣2)3=﹣8,(﹣5)2=25,(﹣1)5=﹣1,﹣22=﹣4,∴负数有﹣|﹣,(﹣2)3,(﹣1)5,﹣22,一共4个,故选:C.9.解:∵第一次剪去绳子的,还剩m;第二次剪去剩下绳子的,还剩=m,……∴第100次剪去剩下绳子的后,剩下绳子的长度为()100m;故选:C.10.解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0.9,则|b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选:C.二、填空题(共18分)11.解:﹣的倒数是﹣,故答案为:﹣12.解:2※(﹣3)==+1=7+1=8.故答案为:8.13.解:∵|x|=3,y2=4,xy<0,∴x=3时,y=﹣2,则x+y=3﹣2=1;x=﹣3时,y=2,则x+y=﹣3+2=﹣1,∴x+y的值是±1;故答案为:±1.14.解:距离点数﹣4为3个单位长度的点有两个,它们分别是﹣4+3=,﹣4﹣3=,故答案为﹣或.15.解:a1=﹣a2==;a3==4;a4==﹣,因而一下三个一次循环,故a2011=﹣.故答案是:﹣16.解:[m)表示大于m的最小整数,(1)[2)﹣2=3﹣2=1;(2)若[m)﹣m=0.5,则m不一定等于0.5;(3)[m)﹣m的最大值是1,正确;(4)[m)﹣m>0,但是取不到0.∴正确结论有(1)(3).故答案为:(1)(3).三、解答题(共72分)17.解:(1)原式=3﹣7﹣8=﹣4﹣8=﹣12;(2)原式=(﹣0.5)+[(﹣2)+2]=(﹣0.5)+(﹣)=﹣1;(3)原式=1﹣(1×21+×21﹣×21)=1﹣(21+7﹣3)=1﹣25=﹣24;(4)原式=27×××=;(5)原式=﹣8+[﹣27﹣(﹣8)×2]=﹣8+(﹣27+16)=﹣8+(﹣11)=﹣19;(6)原式=﹣9﹣(﹣5﹣××4)=﹣9﹣(﹣5﹣1)=﹣9﹣(﹣6)=﹣9+6=﹣3.18.解:(1)由表格可知,5号学生的体重与标准体重之差的绝对值最小,∴最接近标准体重的是5号学生.故答案为:5号;(2)由表格可知最高体重是第2名学生,最低体重是第1名学生,∴体重之差为:1.7﹣(﹣2.8)=1.7+2.8=4.5(千克)故答案为:4.5;(3)7名学生的平均体重=48+(﹣2.8+1.7+0.8﹣0.5﹣0.2+1.2+0.5)÷7=48.1(千克),∴7名学生的平均体重为48.1千克.19.解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m2=4,∴m2+a+b+(﹣cd)3=m2+(a+b)+(﹣cd)3=4+0+(﹣1)3=4+0+(﹣1)=3.20.解:(1)∵23=8,∴(2,8)=3;∵(﹣)4=,∴(﹣,)=4;故答案为:3,4;(2)∵a=42=16,b3=8,∴b=2,∴(b,a)=(2,16),∵24=16,∴(b,a)=4.21.解:设S=1+5+52+53+ (52020)则5S=5+52+53+54 (52021)两式相减得:5S﹣S=4S=52021﹣1,则S=.∴1+5+52+53+54+…+52020的值为.22.解:(1)表示﹣3和2两点之间的距离是5,|﹣3﹣2|=5;一般地,数轴上表示m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是2,则可记为:|a+1|=2,那么a=1或﹣3;故答案为:5,1或﹣3;(2)∵﹣2<a<4,∴|a﹣4|+|a+2|=4﹣a+2+a=6,故答案为:6;(3)当x>5时,|x+2|+|x﹣5|=x+2+x﹣5=2x﹣3>7,当﹣2≤x≤5时,|x+2|+|x﹣5|=x+2+5﹣x=7,当x<﹣2时,|x+2|+|x﹣5|=﹣x﹣2+5﹣x=﹣2x+3>7,∴使得|x+2|+|x﹣5|=7的所有整数为:﹣2,﹣1,0,1,2,3,4,5,∵﹣2+(﹣1)+0+1+2+3+4+5=12,故答案为:12;(4)当a>4时,|a+3|+|a﹣1|+|a﹣4|=a+3+a﹣1+a﹣4=3a﹣2>10,当1<a≤4时,|a+3|+|a﹣1|+|a﹣4|=a+3+a﹣1+4﹣a=6+a,则7<6+a≤10,当﹣3<a≤1时,|a+3|+|a﹣1|+|a﹣4|=a+3+1﹣a+4﹣a=8﹣a,则7≤8﹣a<11,当x≤﹣3时,|a+3|+|a﹣1|+|a﹣4|=﹣a﹣3+1﹣a+4﹣a=﹣3a+2≥11,由上可得,当a=1时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是7,故答案为:1;7.。
人教版2022-2023学年七年级数学上册第一次月考测试题(附答案)一.选择题(共30分)1.在0.6,﹣9,﹣6.9,4这4个数中,最小的数是()A.﹣9B.0.6C.4D.﹣6.92.一个数的立方根等于它本身,这个数是()A.0B.1C.0或1D.0或±13.在(﹣2)3,﹣(+5),﹣(﹣3),(﹣1)2022,﹣|﹣6|中,负数有()A.2个B.3个C.4个D.5个4.若两个非0的有理数是互为相反数,则它们的商是()A.0B.﹣1C.1D.不能确定5.马小虎做了6道题:①(﹣1)2023=﹣2023;②0﹣(﹣1)=1;③﹣+=﹣;④÷(﹣)=﹣1;⑤2×(﹣3)2=36;⑥﹣3÷×2=﹣3.那么,他做对了()题.A.1道B.2道C.3道D.4道6.有理数a、b在数轴上的对应的位置如图所示,则下列各式①a+b<0;②a﹣b>0;③ab >0;④|a|>b;⑤1﹣b>0;⑥a+1<0,一定成立的有()A.3个B.4个C.5个D.6个7.计算(﹣2)100+(﹣2)101所得的结果是()A.2100B.﹣1C.﹣2D.﹣21008.用棋子按下面的规律摆图形,则摆第2022个图形需要围棋子()枚.A.6064B.6066C.6068D.60709.已知a,b互为相反数,c,d互为倒数,m的绝对值为1,x是数轴上到原点的距离为1的点表示的数,则x2022﹣cd+﹣1的值为()A.3B.2C.1D.010.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:十六进制0123456789A B C D E F 十进制0123456789101112131415例如,用十六进制表示:C+F=1B,19﹣F=A,18÷4=6,则A×B=()A.72B.6E C.5F D.B0二、填空题(共18分)11.全世界人口大约是7000000000人,把7000000000用科学记数法表示为.12.在12、﹣9、﹣1、1、0、﹣,﹣20中,整数有个.13.一个数的平方为16,这个数是.14.对有理数a、b,定义运算★如下,a★b=,则﹣5★6=.15.若四个互不相等的整数之积为64,则四个整数之和的最大值是.16.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2022的值为.三、解答题(共16分)17.计算:(1)(+16)﹣(+11)﹣(﹣18)+(﹣15);(2)﹣12﹣(1﹣0.5)÷;(3);(4).18.已知有理数:﹣1.5,4,0,﹣3,2.在数轴上表示出这些数,并按从小到大的顺序把这些数用“<”连接起来.四、解答题(共56分)19.有10箱苹果,以每箱30千克为标准,超过与不足分别用正数、负数来表示,记录如下:2,﹣4,2.5,3,﹣0.5,1.5,3,﹣1,0,﹣2.5.问这10箱苹果共重多少千克?20.今年3月小黄的妈妈到建设银行开户,存入了5000元钱,以后的每月都根据家里的收支情况存入一笔钱,下表为小黄的妈妈从4月到9月的存款情况:月份456789与上一月﹣400﹣100+600+300+100﹣500比较/元根据记录,解答以下问题:(1)从4月到9月中,哪个月存入的钱最多?哪个月最少?(2)截止到9月,存折上共有多少元存款?21.观察:32﹣12=8×1;52﹣32=8×2;72﹣52=8×3;92﹣72=8×4……观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20232﹣20212的值.22.一条直线的流水线上依次有5个机器人,它们站立的位置在数轴上依次用点A1,A2,A3,A4,A5表示,如图A1:﹣4,A2:﹣3,A3:﹣1,A4:1,A5:3.(1)怎样将点A3移动,使它先到达A2,再到达A5;(2)将零件的供应点设在这五个点中的哪点,才能使5个机器人分别到达供应点取货的总路程最短?最短路程是多少?24.著名数学教育家G•波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先观察下列等式找出规律,并解答问题.①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…(1)等式⑤是.(2)求(﹣16)3+(﹣17)3+…+(﹣20)3的值.参考答案一.选择题(共30分)1.解:排列得:﹣9<﹣6.9<0.6<4,则最小的数是﹣9,故选:A.2.解:立方根等于它本身是0或±1.故选:D.3.解:(﹣2)3=﹣8,﹣(+5)=﹣5,﹣(﹣3)=3,(﹣1)2022=1,﹣|﹣6|=﹣6,负数有3个.故选:B.4.解:设a为非0的有理数,则﹣a为a的相反数,a÷(﹣a)=﹣1.故选:B.5.解:∵(﹣1)2023=﹣1,∴①不正确;∵0﹣(﹣1)=1,∴②正确;∵﹣+=﹣,∴③正确;∵÷(﹣)=﹣1,∴④正确;∵2×(﹣3)2=18,∴⑤不正确;∵﹣3÷×2=﹣12,∴⑥不正确.综上,可得他做对了3题:②、③、④.故选:C.6.解:由数轴可得:a<﹣1<0<b<1,a+b<0;a﹣b<0;ab<0;|a|>b;1﹣b>0;a+1<0,正确的有:①④⑤⑥,共4个;故选:B.7.解:(﹣2)100+(﹣2)101=2100﹣2×2100=2100×(1﹣2)=﹣2100,故选:D.8.解:∵第1个图形需要围棋子的枚数=5,第2个图形需要围棋子的枚数=5+3,第3个图形需要围棋子的枚数=5+3×2,第4个图形需要围棋子的枚数=5+3×3,…,∴第n个图形需要围棋子的枚数=5+3(n﹣1)=3n+2,∴第2022个图形需要围棋子的枚数=3×2022+2=6068,故选:C.9.解:∵a,b互为相反数,c,d互为倒数,m的绝对值为1,x是数轴上到原点的距离为1的点表示的数,∴a+b=0,cd=1,m=±1,x=±1,∴m2=1,x2022=1,∴x2022﹣cd+﹣1=1﹣1++1﹣1=1﹣1+0+1﹣1=0,故选:D.10.解:∵A×B=10×11=110,110÷16=6余14,∴用十六进制表示110为6E.故选:B.二、填空题(共18分)11.解:7000000000=7×109,故答案为:7×109.12.解:整数有12,﹣9,0,﹣20共4个.故答案为4.13.解:∵(±4)2=16,∴这个数是±4.故答案为:±4.14.解:∵a★b=,∴﹣5★6==﹣30.故答案为:﹣30.15.解:64的四个互不相等的因数,有32,﹣2,1,﹣1;﹣32,2,1,﹣1;16,﹣4,1,﹣1;﹣16,4,1,﹣1;8,﹣8,1,﹣1;8,4,2,1;﹣8,﹣4,2,1;﹣8,4,﹣2,1;﹣8,4,2,﹣1;8,﹣4,﹣2,1;8,﹣4,2,﹣1;8,4,﹣2,﹣1;﹣8,﹣4,﹣2,﹣1;4,﹣4,2,﹣2共14组数,其中和最大的是32﹣2+1﹣1=30,故若四个互不相等的整数之积为64,则四个整数之和的最大值是30.故答案为30.16.解:a1=0,a2=﹣|a1+1|=|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,…,所以,n是奇数时,a n=﹣(n﹣1),n是偶数时,a n=﹣,a2022=﹣1011.故答案为:﹣1011.三、解答题(共16分)17.解:(1)(+16)﹣(+11)﹣(﹣18)+(﹣15)=16+(﹣11)+18+(﹣15)=(16+18)+[(﹣11)+(﹣15)]=34+(﹣26)=8;(2)﹣12﹣(1﹣0.5)÷=﹣1﹣×5×(2﹣4)=﹣1﹣×5×(﹣2)=﹣1+5=4;(3)=(﹣72)×﹣(﹣72)×+(﹣72)×﹣(﹣72)×=﹣32+27+(﹣11)+24=7;(4)=[(﹣11)+19+6]×(﹣)=14×(﹣)=﹣44.四、解答题(共56分)18.解:,﹣3<﹣1.5<0<2<4.19.解:根据题意得,这10筐苹果按标准的和为:2+(﹣4)+2.5+3+(﹣0.5)+1.5+3+(﹣1)+0+(﹣2.5)=2﹣4+2.5+3﹣0.5+1.5+3﹣1+0﹣2.5=4,则这10箱苹果的总重量为:30×10+4=304(千克),答:这10箱苹果共重304千克.20.解:(1)四月:5000﹣400=4600元;五月:4600﹣100=4500元;六月:4500+600=5100元;七月:5100+300=5400元;八月:5400+100=5500元;九月:5500﹣500=5000元;所以存钱最多的是八月,存钱最少的是五月.(2)截止到九月份存折上共有5000×7+(﹣400﹣500+100+400+500+0)=35100元.21.解:由所给一系列等式,可知:相邻两个奇数的平方差等于8的倍数;(2n+1)2﹣(2n﹣1)2=8n(n是正整数),∴20232﹣20212=(2×1011+1)2﹣(2×1011﹣1)2=8×1011=8088.22.解:(1)先向左移2个单位,再向右移动6个单位;(2)结合分析可得放在A3处总路程最短,此时总路程=3+2+2+4=11.23.解:∵|a﹣1|+|b+4|+(4c﹣1)2=0,∴a﹣1=0,b+4=0,4c﹣1=0,∴a=1,b=﹣4,c=,则(abc)2022÷(a6×b4×c3)=[1×(﹣4)×]2022÷[16×(﹣4)4×()3]=(﹣1)2022÷4=.即(abc)2022÷(a6×b4×c3)的值是.24.解:(1)由题意可得,等式⑤是13+23+33+43+53=152,故答案为:13+23+33+43+53=152;(2)(﹣16)3+(﹣17)3+…+(﹣20)3=﹣[(13+23+33+…+203)﹣(13+23+33+…+153)]=﹣(2102﹣1202)=﹣(210+120)×(210﹣120)=﹣330×90=﹣29700.。
2022-2023学年七年级数学上册第一次月考测试题(附答案)一、选择题(共30分)1.下列方程中,一元一次方程的是()A.3y+1=6B.x+3>7C.=3x D.3a﹣42.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1C.ax=﹣ay D.3﹣ax=3﹣ay 3.下列方程变形中,正确的是()A.方程﹣=1化成3x=6B.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2C.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1D.方程t=,未知数系数化为1,得t=14.已知x=﹣3是方程k(x+4)﹣x=5的解,则k的值是()A.﹣2B.2C.3D.55.若代数式x﹣的值是2,则x的值是()A.0.75B.1.75C.1.5D.3.56.在一张日历表中,任意圈出一个竖列上相邻的三个数,它们的和不可能是()A.60B.39C.40D.577.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分必须答对的题数是()A.6B.7C.8D.98.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A.22+x=2×26B.22+x=2(26﹣x)C.2(22+x)=26﹣x D.22=2(26﹣x)9.一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数小9,则原两位数是()A.45B.27C.72D.5410.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A.80元B.85元C.90元D.95元二、填空题(共计30分)11.已知x5m﹣4+=2是关于x的一元一次方程,那么m=.12.当n=时,单项式7x2y2n+1与﹣x2y5是同类项.13.x与5的和的2倍等于x的3倍”,用方程表示数量关系为.14.x=时,式子与互为相反数.15.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是.16.若关于x的方程3x﹣7=2x+a的解与方程4x+3=7的解相同,则a的值为.17.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.甲车速度120千米/时,乙车速度为105千米/时,经过小时两车相遇.18.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(﹣3x)=29,则x 值为.19.有一列数,按一定规律排列成﹣1,3,﹣9,27,﹣81,⋯.其中某三个相邻数的和是﹣567,这三个数中的第一个数是.20.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船6h,已知船在静水中的速度是16km/h,水流速度是4km/h,若A、C两地距离为4km,则A、B两地间的距离是km.三、解答题(共计60分)21.解方程:(1)3x+7=32﹣2x;(2)4x﹣3(20﹣x)+4=0;(3);(4)=2﹣.22.当m等于多少时,代数式的值比代数式的值大5.23.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?24.如图,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的长条面积正好相等,那么原正方形的面积是多少?25.某商场在“十一”黄金周投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲2436乙3348(1)该商场购进甲、乙两种矿泉水各多少箱?(2)为了促销,该商场将甲种矿泉水打九折,乙种矿泉水打八五折出售.这样,500箱矿泉水在“十一”黄金周结束时全部售完,该商场可获得利润多少元?26.定义:对于一个两位数x,如果x满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S(x).如a =13个位数字与十位数字对调后的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S(13)=4.(1)计算:S(43)=;(2)若一个“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10,求相异数y;(3)小慧同学发现若S(x)=5,则“相异数”x的个位数字与十位数字之和一定为5,请判断小慧发现是否正确?如果正确,说明理由;如果不正确,举出反例.27.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:规格(升/桶)价格(元/桶)大桶装18225小桶装590小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?参考答案一、选择题(共30分)1.解:A.方程3y+1=6是一元一次方程,故本选项符合题意;B.x+3>7是不等式,不是方程,不是一元一次方程,故本选项不符合题意;C.方程=3x是分式方程,不是整式方程,不是一元一次方程,故本选项不符合题意;D.3a﹣4不是方程,不是一元一次方程,故本选项不符合题意;故选:A.2.解:A、如果ax=ay,当a≠0时,x=y,故此选项不合题意;B、如果ax=ay,ax+1=ay+1,故此选项不合题意;C、如果ax=ay,则ax≠﹣ay,故此选项不合题意;D、如果ax=ay,则3﹣ax=3﹣ay,故此选项符合题意;故选:D.3.解:A:方程﹣=1化成3x=6,故本选项符合题意;B:方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项不符合题意;C:方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项不符合题意;D:方程t=,未知数系数化为1,得t=,故本选项不符合题意.故选:A.4.解:把x=﹣3代入k(x+4)﹣x=5,得:k×(﹣3+4)+3=5,解得:k=2.故选:B.5.解:∵代数式x﹣的值等于2,∴x﹣=2,∴3x﹣1﹣x=6,∴x=3.5.故选:D.6.解:设一个竖列上中间数为x,在上面一个为(x﹣7),下面一个为x+7,由题意得:x+7+x+x﹣7=3x,因此所得和一定是3的倍数,四个选项中只有C不是3的倍数,故选:C.7.解;设答对的题数为x道,则不答或答错的有(10﹣x)道故:5x﹣3(10﹣x)=34解得:x=8.故选:C.8.解:设抽调x人,则调后一组有(22+x)人,由题意得:(22+x)=2(26﹣x),故选:B.9.解:设原数的个位数字是x,则十位数字是9﹣x.根据题意得:10x+(9﹣x)=10(9﹣x)+x+9,解得:x=5,9﹣x=4,则原数为54.故选:D.10.解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选:C.二、填空题(共计30分)11.解:由一元一次方程的特点得5m﹣4=1,解得:m=1.故填:1.12.解:∵单项式7x2y2n+1与﹣x2y5是同类项,∴2n+1=5,∴n=2,故答案为2.13.解:根据题意得,2(x+5)=3x,故答案为:2(x+5)=3x.14.解:∵式子与互为相反数,∴+=0,解得x=.故答案为:.15.解:设乙现在x岁,则5年前甲为(x+15﹣5)岁,乙为(x﹣5)岁,由题意得:x+15﹣5=2(x﹣5),解得:x=20,即乙现在的年龄是20岁.故答案为:20岁.16.解:∵4x+3=7解得:x=1将x=1代入:3x﹣7=2x+a得:a=﹣6.故答案为:﹣6.17.解:设经过x小时相遇,根据题意得,(120+105)x=450,解得x=2,故答案为:2.18.解:由题意得2(5x﹣3)﹣3(﹣3x)=29,10x﹣6+9x=29,10x+9x=29+619x=35,x=,故答案为:.19.解:设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=﹣567,解得:x=﹣81.故答案为:﹣81.20.解:①C地在A地上游时,设A、B两地间的距离是xkm,根据题意得=6,解得x=42.5,②C地在A地下游时,设A、B两地间的距离是xkm,根据题意得=6,解得x=47.5,故答案为:42.5或47.5.三、解答题(共计60分)21.解:(1)3x+7=32﹣2x,3x+2x=32﹣7,5x=25,x=5;(2)4x﹣3(20﹣x)+4=0,4x﹣60+3x+4=0,4x+3x=60﹣4,7x=56,x=8;(3)去分母得:3(3x+5)=2(2x﹣1),9x+15=4x﹣2,9x﹣4x=﹣2﹣15,5x=﹣17,x=﹣3.4;(4)去分母得:4(5y+4)+3(y﹣1)=24﹣(5y﹣3),20y+16+3y﹣3=24﹣5y+3,20y+3y+5y=24+3﹣16+3,28y=14,y=.22.解:由题意得﹣=5,去分母,得3(3m+5)﹣7(m﹣8)=5×21,去括号,得9m+15﹣7m+56=105,移项,得9m﹣7m=105﹣56﹣15,合并同类项,得2m=34,系数化为1,得m=17,∴当m等于17时,代数式的值比代数式的值大5.23.解:设分配x名工人生产螺钉,y名工人生产螺母,根据题意,得:,解之得.答:分配10名工人生产螺钉,12名工人生产螺母.解法二:设分配x名工人生产螺钉,(22﹣x)名工人生产螺母,根据题意,得:2400x=2000(22﹣x),解得x=10,22﹣10=12,答:分配10名工人生产螺钉,12名工人生产螺母.24.解:设正方形的边长为xcm,由题意可知:5(x﹣4)=4x,解得x=20,∴该正方形的面积为:202=400(cm2),答:原正方形的面积是400cm2.25.解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:,解得:.答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)由题意可得:(36×0.9﹣24)×300+(48×0.85﹣33)×200=4080(元).答:该商场可获得利润4080元.26.解:(1)S(43)=(43+34)÷11=7,故答案为:7;(2)由“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10得,10k+2(k﹣1)+20(k﹣1)+k=10×11,解得:k=4,∴2(k﹣1)=6,∴相异数y是46;(3)正确;理由如下:设“相异数”的十位数字为a,个位数字为b,则x=10a+b,由S(x)=5得,10a+b+10b+a=55,即:a+b=5,因此,判断正确.27.解:(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,依题意,得:18x+2=5(x+11)﹣1,解得:x=4,∴18x+2=74.答:小明爸预计墙面的粉刷需要乳胶漆74升.(2)由(1)可知,需购买15桶“小桶装”乳胶漆.∵商家对“小桶装”乳胶漆有“买4送1“的促销活动,∴只需购买15×=12(桶),∴比促销前可节省15×90﹣(12×90﹣120)=390(元).答:比促销前节省390元钱.(3)设“小桶装”乳胶漆每桶的成本是y元,依题意,得:12×90﹣120﹣15y=15y×25%,解得:y=51.2.答:“小桶装”乳胶漆每桶的成本是51.2元.。
2022-2023学年七年级数学上册第一次月考测试题(附答案)一、选择题(满分30分)1.的相反数是()A.3B.C.﹣3D.2.在0,2,,﹣1,这五个数中,最小的数是()A.0B.2C.D.﹣13.“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底各地已累计完成投资1002亿元,可以表示为()元.A.1.002×1011B.1.002×1010C.1.002×103D.1.002×102 4.下列各式正确的是()A.﹣|﹣5|=5B.﹣(﹣5)=﹣5C.|﹣5|=﹣5D.﹣(﹣5)=5 5.由四舍五入法得到的近似数6.18万,下列说法正确的是()A.精确到万位B.精确到百位C.精确到千分位D.精确到百分位6.下列各组数中,数值相等的是()A.﹣22和(﹣2)2B.﹣和(﹣)2C.(﹣2)2和22D.﹣(﹣)2和﹣7.已知有理数a,b,c在数轴上的位置如图所示,下列结论正确的是()A.c<a<b B.|a|<|b|C.a+b>0D.|c﹣b|=c﹣b 8.某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的20%,则该药品现在应降价的幅度是()A.40%B.45%C.50%D.80%9.已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6B.6C.﹣9D.910.下列说法:①一个有理数不是整数就是分数;②有理数是正数和小数的统称;③到原点距离相等的点所表示的数相等;④相反数、绝对值都等于它本身的数只有0;⑤数轴上的点离原点越远,表示的数越大;⑥有最小的正整数但没有最小的正有理数.其中正确的个数有()A.2个B.3个C.4个D.5个二、填空题(满分15分)11.把(﹣3)﹣(﹣6)﹣(+7)+(﹣8)写成省略括号和加号的和的形式为.12.比较大小:﹣(﹣2)4﹣|﹣4|(填“>”、“<”或“=”).13.在0.5,2,﹣3,﹣4,﹣5这五个数中任取两个数相除,得到的商最小是.14.1﹣3﹣5+7+9﹣11﹣13+15+…+2019﹣2021﹣2023+2025=.15.给出下列判断:①若a,b互为相反数,则a+b=0②若a,b互为倒数,则ab=1③若|a|>|b|,则a>b④若|a|=|b|,则a=b⑤若|a|=﹣a,则a<0其中正确结论的个数为个.三、解答题:(共55分)16.计算(1)6;(2).17.计算(1);(2).18.如图,将面积为16的小正方形与面积为144的大正方形放在一起,则三角形ABC的面积是多少?19.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期一二三四五六日增减+100﹣200+400﹣100﹣100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?20.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a,如:1⊕3=1×32+2×1×3+1=16(1)求(﹣2)⊕3的值;(2)求(⊕3)⊕(﹣)的值.21.观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.22.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.参考答案一、选择题(满分30分)1.解:依据只有符号不同的两个数互为相反数得:的相反数是.故选:D.2.解:∵﹣1<<<0<2,∴最小的数为﹣1.故选:D.3.解:1002亿=1002 0000 0000=1.002×1011,故选:A.4.解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.5.解:由四舍五入法得到的近似数6.18万精确到0.01万位,即百位.故选:B.6.解:∵﹣22=﹣4,(﹣2)2=4,﹣22≠(﹣2)2,∴选项A不符合题意;∵﹣=﹣,(﹣)2=,﹣≠(﹣)2,∴选项B不符合题意;∵(﹣2)2=4,22=4,(﹣2)2=22,∴选项C符合题意;∵﹣(﹣)2=﹣,﹣=﹣,﹣(﹣)2≠﹣,∴选项D不符合题意.故选:C.7.解:依题意有c<a<0<b,|c|>|a|>|b|,则a+b<0,c﹣b<0,则|c﹣b|=﹣c+b,故只有选项A正确.故选:A.8.解:设原价为a元,该药品现在应降价x,依题意得:(1+100%)a(1﹣x)=(1+20%)a,整理得:1﹣x=0.6,解得:x=0.4=40%.故选:A.9.解:∵|a﹣2|+(b+3)2=0,∴a=2,b=﹣3.∴原式=(﹣3)2=9.故选:D.10.解:整数和分数统称为有理数,因此①是正确的,整数和分数统称有理数,因此②不正确,到原点距离相等的点所表示的数相等或互为相反数,因此③不正确,相反数等于它本身的数是0、绝对值都等于它本身的数是非负数,因此相反数、绝对值都等于它本身的数只有0,因此④是正确的,数轴上,在原点的左侧离原点越远,表示的数越小,因此⑤不正确,最小的正整数是1,没有最小的正有理数,因此⑥是正确的,因此正确的个数为3,故选:B.二、填空题(满分15分)11.解:把(﹣3)﹣(﹣6)﹣(+7)+(﹣8)写成省略括号和加号的和的形式为﹣3+6﹣7﹣8.故答案为:﹣3+6﹣7﹣8.12.解:﹣(﹣2)4=﹣16,﹣|﹣4|=﹣4,∵|﹣16|=16,|﹣4|=4,16>4,∴﹣16<﹣4,即﹣(﹣2)4<﹣|﹣4|,故答案为:<.13.解:∵﹣5<﹣4<﹣3<0.5<2,∴所给的五个数中,绝对值最大的数是﹣5,最小的正数是0.5,∴得到的商最小的是:﹣5÷0.5=﹣10.故答案为:﹣10.14.解:原式=(1﹣3)+(﹣5+7)+(9﹣11)+(﹣13+15)+…+(2019﹣2021)+(﹣2023+2025)=﹣2+2+(﹣2)+2+…+(﹣2)+2=0.故答案为:0.15.解:①若a,b互为相反数,则a+b=0,是正确的;②若a,b互为倒数,则ab=1,是正确的;③若|a|>|b|,当a=﹣4,b=1也成立,所以a不一定大于b,是错误的;④若|a|=|b|,则a=b或a=﹣b,是错误的,⑤若|a|=﹣a,则a≤0,是错误的,所以有2个正确的结论;故答案为:2.三、解答题:(共55分)16.解:(1)6=[6﹣(﹣3)]+(3.3﹣3.3)+[﹣(﹣6)+4]=10+0+10=20.(2)=36×÷(﹣16)=16÷(﹣16)=﹣1.17.解:(1)=(﹣24)×1+(﹣24)×2+(﹣24)×(﹣0.75)=﹣33﹣56+18=﹣71.(2)=﹣1﹣××(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.18.解:由题图可知:S△ABC=S△ABH+S△AEH+S△BEC,且S△AEH+S△BEC=16+144﹣S△AFC﹣S△BCG.S△AFC==32,S△BCG=×144=72,∴S△ABC=S△ABH+16+144﹣S△AFC﹣S△BCG=+16+144﹣32﹣72=72.答:三角形ABC的面积是72.19.解:(1)(+100﹣200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)+400﹣(﹣200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)5000×7+(100﹣200+400﹣100﹣100+350+150)=35600(个),0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.20.解:(1)根据题中的新定义得:原式=﹣2×32﹣2×2×3﹣2=﹣18﹣12﹣2=﹣32;(2)根据题中的新定义得:原式=(﹣⊕3)⊕(﹣)=(﹣×9﹣10﹣)⊕(﹣)=(﹣)⊕(﹣)=﹣×+2××﹣=﹣.21.解:根据观察知答案分别为:(1);;(2);;(3)a1+a2+a3+a4+…+a100=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×=(1﹣+﹣+﹣+﹣+…+﹣)=(1﹣)=×=.22.解:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=|3﹣2|=1,故答案为:1;(2)根据题意得,|a+2|=3,解得a=1或﹣5.故答案为:1或﹣5;(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=(a+4)﹣(a﹣2)=a+4﹣a+2=6.故答案为:6;(4)|x﹣3|+|x﹣6|表示数x到3和6两点的距离之和,最小值为x﹣3﹣x+6=3.。
2022-2023学年七年级数学上册第一次月考测试题(附答案)一、选择题(本大题共10小题,共40分)1.在﹣,﹣4,,﹣10%,0,中,负数有()A.2个B.3个C.4个D.5个2.下列各对数中,互为相反数的是()A.32与﹣32B.﹣(+4)与+(﹣4)C.﹣3与﹣|﹣3|D.﹣23与(﹣2)33.多项式x|m|﹣(m+2)x+7是关于x的二次三项式,则m的值是()A.2B.﹣2C.2或﹣2D.34.据统计,我省2019年生产总值约为37100亿元,其中“37100亿”用科学记数法表示为()A.3.71×1012B.3.71×1011C.0.371×105D.3.71×1045.如果水位下降5m,记为+5m,那么水位上升2m,记为()A.3m B.7m C.2m D.﹣2m6.若a,b互为相反数,c和d互为倒数,m是最大的负整数,则cd﹣a﹣b+m2019的值是()A.0B.﹣2C.﹣2或0D.27.计算的结果是()A.﹣2B.﹣8C.D.﹣68.已知方程3x+8=﹣a的解满足|x﹣2|=0,则a的值为()A.﹣B.﹣C.﹣D.49.若(a+1)2+|b﹣2|=0,则a+6(﹣a+2b)等于()A.5B.﹣5C.30D.2910.下列说法正确的个数是()①如果两个数的和为0,则这两个数互为倒数;②绝对值是它本身的有理数是正数;③几个有理数相乘,积为负数时,负因数个数为奇数;④若a+b<0,则a<0,b<0;⑤若|a|=|b|,则a2=b2.A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,共24分)11.如果|a|=2,|b|=1,则|a+b|=.12.计算一个式子,计算器上显示的结果是1.597583,将这个结果精确到0.01是.13.若x,y互为相反数,a,b互为倒数,则代数式的值是.14.幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方﹣﹣九宫图.如图,是一个三阶幻方(由9个数构成,并且每一横行、每一竖行以及两条斜对角线上的数字之和都相等),则m的值为.15.已知整数对序列(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),…,则第30对数为.16.如果y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,则m的值是.三、解答题(本大题共6小题,共86分)17.计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6);(2)﹣1×(﹣1)÷|﹣|;(3)(2﹣4﹣1)×(﹣);(4)(﹣)×(﹣6)+(﹣)2÷(﹣)3.18.某检修小组乘一辆汽车在东西走向的一条路上检修,约定向东行驶为正,向西行驶为负,从A地出发到收工时,行走记录为:+6,﹣2,+5,﹣1,﹣8,+3.(单位:千米)(1)算一算,收工时检修小组在A地的哪一边,距A地有多远?(2)若每千米汽车耗油0.08升,求出发到收工时汽车耗油多少升?19.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?20.(3m﹣4)x3﹣(2n﹣3)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式;(2)当m、n满足什么条件时,该多项式是关于x的三次二项式.21.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157162158154163165身高与平均身高的差值﹣3+2﹣2a+3b(1)计算得出表中的数据a=;b=;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)22.探究规律:(1)计算:①2﹣1=;②22﹣2﹣1=;③23﹣22﹣2﹣1=;④24﹣23﹣22﹣2﹣1=;(2)根据上面结果猜想:①22020﹣22019﹣22018﹣…﹣23﹣22﹣2﹣1=;②2n﹣2n﹣1﹣2n﹣2﹣…﹣23﹣22﹣2﹣1=;③212﹣211﹣210﹣29﹣28﹣27﹣26=.参考答案一、选择题(本大题共10小题,共40分)1.解:负数有﹣,﹣4,﹣10%共3个.故选:B.2.解:A、9和﹣9,符合只有符号不同的两个数互为相反数,故A正确;B、都是﹣4,故B错误;C、都是﹣3,故C错误;D、都是﹣8,故D错误;故选:A.3.解:∵多项式x|m|﹣(m+2)x+7是关于x的二次三项式,∴|m|=2,m+2≠0,∴m=±2,则m=2.故选:A.4.解:37100亿=3710000000000=3.71×1012.故选:A.5.解:∵水位下降5m,记为+5m,∴水位上升2m,记为﹣2m.故选:D.6.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∵m是最大的负整数,∴m=﹣1,∴cd﹣a﹣b+m2019=1﹣0+(﹣1)2019=1﹣0﹣1=0.故选:A.7.解:原式=﹣8×=﹣2,故选:A.8.解:解|x﹣2|=0得:x=2,把x=2代入方程3x+8=﹣a得:6+8=﹣a,解得:a=﹣.故选:A.9.解:由题意,得:a+1=0,b﹣2=0,即a=﹣1,b=2;把a=﹣1,b=2代入a+6(﹣a+2b)=29;故选:D.10.解:如果两个数的和为0,则这两个数互为相反数,故①错误,绝对值是它本身的有理数是非负数,故②错误,几个有理数相乘,积为负数时,负因数个数为奇数,故③正确,若a+b<0,则a<0,b<0或a=0,b<0或a>0,b<0且|a|<|b|,故④错误,若|a|=|b|,则a2=b2,故⑤正确,故选:B.二、填空题(本大题共6小题,共24分)11.解:∵|a|=2,|b|=1,∴a=±2,b=±1,a=2,b=1时,|a+b|=|2+1|=3,a=2,b=﹣1时,|a+b|=|2+(﹣1)|=1,a=﹣2,b=1时,|a+b|=|﹣2+1|=1,a=﹣2,b=﹣1时,|a+b|=|﹣2﹣1|=3,综上所述,|a+b|=1或3.故答案为:1或3.12.解:1.597583精确到0.01是1.60.故答案为1.60.13.解:∵x,y互为相反数,∴x+y=0,∵a、b互为倒数,∴ab=1,∴=2020×0﹣=﹣.故答案为:﹣.14.解:设第二行第二个数为x,﹣3+7+5=1+x+5,得,x=3,则m+3﹣3=﹣3+7+5,解得,m=9,故答案为:915.解:(1,1),两数的和为2,共1个,(1,2),(2,1),两数的和为3,共2个,(1,3),(2,2),(3,1),两数的和为4,共3个,(1,4),…,∵1+2+3+4+5+6+7=28,∴第30对数是两个数的和为9的8个数对中的第二对数,即(2,7).故答案为:(2,7).16.解:∵y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,∴|m|﹣3=2,m﹣5≠0,∴m=﹣5,故答案为:﹣5.三、解答题(本大题共6小题,共86分)17.解:(1)原式=﹣2﹣3﹣1+6=0;(2)原式=﹣×(﹣)×13=13;(3)原式=(﹣﹣)×(﹣)=×(﹣)﹣×(﹣)﹣×(﹣)=﹣2+4+1=3;(4)原式=×(﹣6)﹣×(﹣6)+×(﹣8)=﹣2+3﹣2=﹣1.18.解:(1)(+6)+(﹣2)+(+5)+(﹣1)+(﹣8)+(+3)=3(千米),答:收工时,该组在A地的东边,且距A地3千米.(2)从出发到收工时,该组耗油为[|+6|+|﹣2|+|+5|+|﹣1|+|﹣8|+|+3|]×0.08,=(6+2+5+1+8+3)×0.08,=2(升).答:如果汽车每千米耗油0.08升,检修组这天耗油2升.19.解:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了36分钟长时间.20.解:(1)由题意得:3m﹣4=0,且2n﹣3≠0,解得:m=,n≠;(2)由题意得:2n﹣3=0,2m+5n=0,且3m﹣4≠0,解得:n=,m=﹣.21.解:(1)由题意:a=154﹣160=﹣6,b=165﹣160=+5;故答案为:﹣6,+5;(2)6名学生的平均身高=160+≈159.8cm,∴这6名学生的平均身高是159.8厘米.22.解:(1)计算:①2﹣1=1,②22﹣2﹣1=1,③23﹣22﹣2﹣1=1,④24﹣23﹣22﹣2﹣1=1;故答案为:①1;②1;③1;④1;(2)①22020﹣22019﹣22018﹣…﹣23﹣22﹣2﹣1=1;②2n﹣2n﹣1﹣2n﹣2﹣…﹣23﹣22﹣2﹣1=1;③212﹣211﹣210﹣29﹣28﹣27﹣26=212﹣211﹣210﹣…﹣28﹣27﹣26﹣25﹣24﹣23﹣22﹣2﹣1+25+24+23+22+2+1=1+25+24+23+22+2+1=64.故答案为:①1;②1;③64.。