NGW行星齿轮减速器的设计
- 格式:docx
- 大小:36.91 KB
- 文档页数:2
1 前言NGWN(III)型行星轮减速器设计1 前言随着现代化工业的发展,机械化和自动化水平不断地提高,各工业部门需要大量的减速器,并要求减速器的体积小、重量轻、传动比大、效率高、承载能力大、运转可靠和寿命长等。
而行星齿轮传动具有减速比大、传动效率高、结构小巧、承载能力强等优点,在许多情况下可代替二级、三级的普通齿轮减速器和涡轮减速器,因此行星轮减速器被广泛应用于各个方面。
行星传动不仅适用于高转速、大功率,而且在低速大转矩的传动装置上也已获得广泛的应用,所以目前行星传动技术已成为世界各国机械传动重点之一。
目前国外的减速器,以德国、丹麦和日本处于领先地位,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。
行星轮减速装置经过一个多世纪的发展设计理论及制造技术有了很大的进步,而且与新技术革命的发展紧密结合。
当今世界行星轮减速装置总的发展趋势是向着大功率、大传动比、小体积、高机械效率、高的承载能力以及利用寿命长的目标发展,而且其重量更轻,噪声更低,效率更高,可靠性也更高。
目前世界各国由工业化信息化时代正在进入知识化时代,行星轮在设计上的研究也趋于完善,制造技术也不断改进。
行星齿轮传动类型很多,行星齿轮传动根据基本够件的组成情况可分为:2K—H、3K、及K—H—V三种。
若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW 型、NGWN型和N型等。
我所研究的NGWN(III)行星齿轮属于3Z型行星齿轮传动的一种。
本文主要对NGWN(III)齿轮减速器设计方法进行了探讨,主要内容包括齿轮传动比的分配计算,主要零部件参数设计,标准零部件的选用,以及减速器中零件三维模型的设计。
NGWN(III)行星轮减速器的设计2 选题背景2.1 题目来源生产实际2.2 研究的目的与意义由于行星轮齿轮减速器具有质量小、体积小、传动比大以及效率高等优点,因此行星轮减速器被广泛应用于工程机械、矿山机械、冶金机械、起重运输机械、飞机、轮船等各个方面。
目录一.绪论 (3)1.引言 (3)2.本文的主要内容 (3)二.拟定传动方案及相关参数 (4)1.机构简图的确定 (4)2.齿形与精度 (4)3.齿轮材料及其性能 (5)三.设计计算 (5)1.配齿数 (5)2.初步计算齿轮主要参数 (6)(1)按齿面接触强度计算太阳轮分度圆直径 (6)(2)按弯曲强度初算模数 (7)3.几何尺寸计算 (8)4.重合度计算 (9)5.啮合效率计算 (10)四.行星轮的的强度计算及强度校核 (11)1.强度计算 (11)2.疲劳强度校核 (15)1.外啮合 (15)2.内啮合 (19)3.安全系数校核 (20)五.零件图及装配图 (24)六.参考文献 (25)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。
2.本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
NGW行星减速器设计系统用于行星减速器测绘的演示
本案例演示当利用《NGW行星减速器设计系统》进行行星减速器测绘时,如何使用测绘数据在软件中还原的问题。
已知测绘参数:
太阳轮齿数Za=24,齿顶圆直径52.5,齿根圆直径44
行星轮齿数Zc=28,齿顶圆直径62,齿根圆直径53.5
内齿圈齿数Zb=81,齿顶圆直径161.6,齿根圆170
中心距为53.5,模数m=2
1、打开软件,点“设计单级NGW行星减速器”链接
2、进入主界面。
在“总体技术要求”栏,输入名义减速比4.38(i=Zb/Za+1)。
如果知道功率、转速、转矩等参数,也输入。
用键盘键入,不要点按钮。
4、点“下一步”按钮进入“材料选择”窗口,并选择材料、热处理等。
5、点“下一步”按钮进入“初步计算”窗口,输入模数和实际中心距。
绘出的参数差异。
对于直径差异,可以通过“变位系数优化”来调整。
6、点“变位系数优化”按钮,弹出“变位系数优化”窗口,选“手动优化”按钮,并输入一个恰当的变位系数,然后点“确定”按钮,回到“变位系数优化和几何参数计算”窗口,
观察直径的变化是否接近测绘值,如果不满意,可再次改变变位系数。
7、点“下一步”进行强度校核,然后完成。
目录一.绪论 (3)1.引言 (3)2.本文的主要内容 (3)二.拟定传动方案及相关参数 (4)1.机构简图的确定 (4)2.齿形与精度 (4)3.齿轮材料及其性能 (5)三.设计计算 (5)1.配齿数 (5)2.初步计算齿轮主要参数 (6)(1)按齿面接触强度计算太阳轮分度圆直径 (6)(2)按弯曲强度初算模数 (7)3.几何尺寸计算 (8)4.重合度计算 (9)5.啮合效率计算 (10)四.行星轮的的强度计算及强度校核 (11)1.强度计算 (11)2.疲劳强度校核 (15)1.外啮合 (15)2.内啮合 (19)3.安全系数校核 (20)五.零件图及装配图 (24)六.参考文献 (25)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。
2.本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
42CrMo 技术要求1、装配前应用煤油将各零部件清洗干净,机体内不得有杂质。
2、装配验收按YZB100.9-88规定。
3、齿轮接触斑点:沿齿长不少于80%,沿齿高不少于60%。
4、啮合侧隙jmin=0.14。
5、在工作转数下空负荷试车正反各一小时,运行应平稳不得有冲击、振动现象,各密封处不得漏油。
6、装配时在油标上划最高、最低油位两条红线。
7、各机盖、端盖在装配时涂以密封胶。
8、外表面涂苹果绿.Ø60r 6300130228170337.5443.5811163630050653.5137750Ø65k 6Ø220H 7r 6Ø300k 6Ø100k 6Ø60k 62222Ø260k 6Ø400H 7Ø120H 7Ø900H 7Ø560H 7Ø845H 7Ø800H 7400-0.0622000-0.2R321H7/m65200-0.52058084010804-Ø4660540.01035.5R51028620油位刻度线R432.5H7/m6序号名称代号数量材料单件总计重量备注43444546474849505152535455565758键40×280145输出轴1输出轴透盖1HT200GB/T1096-2003键40×180145轴承60521Ø260ר400×65GB/T 276-1994GB/T 1096-2003后机盖1HT200键50×160145GB/T1096-2003低速级行星架1ZG40CrMn 低速级内齿轮1后机体1HT200轴承160601Ø300ר460×50GB/T 276-1994前机体1HT200键16×80145GB/T1096-2003高速级内齿轮11ZG40CrMn 高速级行星架1HT200前机盖轴承6213245Ø65ר120×23GB/T 276-19941HT200输入轴透盖序号代号名称数量材料重量单件总计备注123456789101112131415161718192021222324252627282930313233343536373839404142毡圈1201JB12Q 4606-1986键16×100145GB/T1096-2003142CrMo 输入轴挡圈65165Mn GB/T 894.1-1986轴套65×74×1001铜合金GB/T 2509-1981高速级行星轮轴142CrMo 套筒6铜合金轴承NF2126454545Ø60ר110×22GB/T 283-1994套筒铜合金3高速级行星轮3GB/T 119.1-2000圆柱销Ø8×503奥氏体不锈钢通气器M27×1.5145齿轮联轴器1球顶445太阳轮142CrMo 42CrMo 42CrMo 42CrMo 42CrMo 套筒3铜合金吊环145645轴承NF220Ø100ר180×34GB/T 283-1994低速级行星轮342CrMo 套筒铜合金6GB/T 119.1-2000奥氏体不锈钢3圆柱销Ø12×60142CrMo 低速级行星轮轴顶块445螺栓M24×100123565Mn 1212Q235平垫圈24弹簧垫圈24GB/T 97.1-2002GB/T 93-1987GB/T 5780-2000GB/T 5780-200035GB/T 93-1987GB/T 97.1-2002Q23565Mn 888平垫圈20弹簧垫圈20螺栓M20×80油塞1Q235-A M42×2GB/T 5780-2000GB/T 93-1987GB/T 97.1-2002Q23565Mn 35GB/T 5780-2000GB/T 93-1987GB/T 97.1-2002Q23565Mn 35平垫圈20弹簧垫圈20螺栓M20×80GB/T 5780-2000GB/T 93-1987GB/T 97.1-2002Q23565Mn 35平垫圈20弹簧垫圈20681266881212螺栓M16×65弹簧垫圈16平垫圈16螺栓M20×120DDCCD-DAABBA-AB-B160-0.043530-0.2C-C润滑方式啮合特性参数太阳轮行星轮内齿轮太阳轮行星轮级别高速级低速级a i zmα精度等级啮合轴承油池飞溅8-7-7FH 8-7-7FH 油池飞溅3720°16212.517891992228164620°110内齿轮标记设计处数分区更改文件号签名年、月、日阶段标记重量比例共张第张标准化批准审核工艺斗轮减速器总装图1:51156575853545550515249464748434445424140393837363534333231302928272625242322212019181716151413121110987654321405808401080712572AA4ר46(锪平Ø70)C-C5200-0.51035201080882.5+0.12R 475R 510R 470M 148612015°15°3.23.250+0.0453.232C12-M24R25R20R20C60305.560112.5100367.5622-M19R35134.51506.37210405072×4=288R3120020026820443.5Ø845+0.046601429160151403×45°3×45°Ø865+0.052Ø880Ø901+0.0523.23.23.23.23.2H3.20.06H3.20.06HBBA-AR10R20R20R20R20R16R16Ø0.06H其余ⅡⅠ301072R5221022Ⅱ2:1M3012Ø50R82:1ⅠDDB-B50500305.5143.520020035540R20R20R20R203.26.3D-D1、铸件不得有夹砂,裂纹和缩孔等影响强度的铸造缺陷。
1 前言NGWN(III)型行星轮减速器设计1 前言随着现代化工业的发展,机械化和自动化水平不断地提高,各工业部门需要大量的减速器,并要求减速器的体积小、重量轻、传动比大、效率高、承载能力大、运转可靠和寿命长等。
而行星齿轮传动具有减速比大、传动效率高、结构小巧、承载能力强等优点,在许多情况下可代替二级、三级的普通齿轮减速器和涡轮减速器,因此行星轮减速器被广泛应用于各个方面。
行星传动不仅适用于高转速、大功率,而且在低速大转矩的传动装置上也已获得广泛的应用,所以目前行星传动技术已成为世界各国机械传动重点之一。
目前国外的减速器,以德国、丹麦和日本处于领先地位,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。
行星轮减速装置经过一个多世纪的发展设计理论及制造技术有了很大的进步,而且与新技术革命的发展紧密结合。
当今世界行星轮减速装置总的发展趋势是向着大功率、大传动比、小体积、高机械效率、高的承载能力以及利用寿命长的目标发展,而且其重量更轻,噪声更低,效率更高,可靠性也更高。
目前世界各国由工业化信息化时代正在进入知识化时代,行星轮在设计上的研究也趋于完善,制造技术也不断改进。
行星齿轮传动类型很多,行星齿轮传动根据基本够件的组成情况可分为:2K—H、3K、及K—H—V三种。
若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW 型、NGWN型和N型等。
我所研究的NGWN(III)行星齿轮属于3Z型行星齿轮传动的一种。
本文主要对NGWN(III)齿轮减速器设计方法进行了探讨,主要内容包括齿轮传动比的分配计算,主要零部件参数设计,标准零部件的选用,以及减速器中零件三维模型的设计。
NGWN(III)行星轮减速器的设计2 选题背景2.1 题目来源生产实际2.2 研究的目的与意义由于行星轮齿轮减速器具有质量小、体积小、传动比大以及效率高等优点,因此行星轮减速器被广泛应用于工程机械、矿山机械、冶金机械、起重运输机械、飞机、轮船等各个方面。
图1.1 为2K-H 型行星轮系机构简图。
已知:作用于中心轮的转矩T1=1140N ·m ,传动比u =4.64,齿轮材料均为38SiMnMo ,表面淬火45—55HRC ,行星轮个数c=3,要求以重量最轻为目标,对其进行优化设计。
1、目标函数和设计变量的确定行星齿轮减速器的重量可取太阳轮和c 个行星轮重量之和来代替,因此目标函数可简化为:()()⎡⎤⎣⎦2221f x =0.19635m z b 4+u -2c式中:1z — 中心轮1的齿数;m — 模数,单位为(mm); b — 齿宽,单位为(mm);c — 行星轮2的个数; u — 轮系的传动比。
影响目标函数的独立参数应列为设计变量,即[]1TT⎡⎤=⎣⎦x z b m c 1234=x x x x在通常情况下,行星轮个数可以根据机构类型事先选定,这样,设计变量为:[]1TT⎡⎤=⎣⎦x z b m123=x x x目标函数为:()()⎡⎤⎣⎦x 222312f x =0.19635x x 4+u -2c 2.约束条件的建立1)小齿轮1z 不根切,得:()≤11gx =17-x 02)限制齿宽最小值,得:()≤22g x =10-x 03)限制模数最小值,得:()-≤33gx =2x 04)限制齿宽系数b/m 的范围:≤≤5b/m 17,得:()-≤432g x =5x x 0()17-≤523g x =x x 05)满足接触强度要求,得:()[]H σ-≤612g x =750937.3/(x x 0式中:[]H σ — 许用接触应力。
6)满足弯曲强度要求,得:())[]F σ-≤27F S 123g x =1482000y y /(x x x 0式中:F y 、Sy — 齿轮的齿形系数和应力校正系数;[]F σ — 许用弯曲应力。
,案。
1.目标函数和设计变量在大批量生产压力容器时,以螺栓总成本最小作为追求的设计目标很有意义,一台压力容器的螺栓总成本W n取决于螺栓的个数n和单价W,即W n=n WW=0.0205d-0.1518于是,可对这种螺栓组写出如下目标函数f(x)=n(0.0205d-0.1518)显然,可取设计变量为X=[x1,x2]T=[d,n]T则目标函数f(x)= x2 (0.0205 x1-0.1518)2.约束函数设计压力容器螺栓组时,螺栓数量的确定既要考虑密封性要求,又要兼顾装拆工具的工作空间。
1 绪论行星齿轮减速器与普通定轴减速器相比,具有承载能力大、传动比大、体积小、重量轻、效率高等特点,被广泛应用于汽车、起重、冶金、矿山等领域。
我国的行星齿轮减速器产品在性能和质量方面与发达国家存在着较大差距,其中一个重要原因就是设计手段落后,发达国家在机械产品设计上早巳进入分析设计阶段,他们利用计算机辅助设计技术,将现代设计方法,如有限元分析、优化设计等应用到产品设计中,采用机械CAD系统在计算机上进行建模、分析、仿真、干涉检查等。
本文通过对行星齿轮减速器的结构设计,初步计算出各零件的设计尺寸和装配尺寸,并对设计结果进行参数化分析,为行星齿轮减速器产品的开发和性能评价,实现行星齿轮减速器规模化生产提供了参考和理论依据。
本课题设计通过对行星齿轮减速器工作状况和设计要求对其结构形状进行分析,,然后以各个系统为模块分别进行具体零部件的设计校核计算,得出各零部件的具体尺寸,再重新调整整体结构,不断反复计算从而使减速器的性能主要使寿命和稳定性及润滑情况进行优化设计。
2设计与校核输入功率:P=10KW 输入转速:n 1=750r/min ; 输出转速:n 2=20r/min ; 中等冲击;每天连续工作14小时; 使用期限10年。
减速器的总传动比i=750/20=,属于二级NGW 型的传动比范围。
拟用两级太阳轮输入、行星架输出的形式串联,即i 1·i 2=。
两级行星轮数都选n p =3。
高速级行星架不加支承,与低速级太阳轮之间用单齿套联接,以实现高速级行星架与低速级太阳轮浮动均载。
其中高速级行星轮采用球面轴承,机构镇定。
低速级仍为静不定。
其自由度为:()()54321654321610554133212113W n P P P P P =-++++=⨯-⨯+⨯+⨯+⨯+⨯=- 机构的静定度为:1(3)4S W W =-=--='因属于低速传动,采用齿形角a n =20o的直齿轮传动。
精度定为6级。
为提高承载能力,两级均采用变位齿轮传动,要求外啮合a ac =24o 内啮合a cb =20o 左右。
目录一.绪论 (1)1.引言 (1)2.本文的主要内容 (1)二.确定设计数据 (4)三.拟定传动方案及相关参数 (5)1.对减速器进行结构设计 (5)2.齿形与精度 (5)3.齿轮材料及其性能 (6)四,设计计算 (6)1. 配齿数 (6)2.啮合效率计算 (7)3. 确定手摇力并进行运动及动力参数计算 (8)4. 初步计算齿轮主要参数 (9)(1)按齿面接触强度计算太阳轮分度圆直径 (9)(2)按弯曲强度初算模数 (11)5.几何尺寸计算 (12)6.重合度计算 (14)五.行星轮的强度校核 (15)1.疲劳强度校核 (13)(1).外啮合 (13)(2).内啮合 (20)六.行星轮部位的相关设计 (21)七.输入轴的设计 (24)八输出轴的设计 (26)九铸造箱体结构设计 (27)十参考文献 (28)一绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
NGW行星齿轮减速器的设计
首先,我们需要确定NGW行星齿轮减速器的传动比。
传动比是指输入轴转速与输出轴转速之间的比值,通常由齿轮的齿数比确定。
在确定传动比时,需要考虑到被传动装置的工作条件和要求,以及NGW行星齿轮减速器的结构特点和制造工艺。
一般而言,NGW行星齿轮减速器的传动比可以根据工作条件和设计要求进行选择。
接下来,我们需要进行NGW行星齿轮减速器的齿轮参数设计。
齿轮的参数设计包括齿轮的模数、齿数、齿轮啮合角等。
模数决定了齿轮的尺寸和齿面接触强度,一般通过强度计算来确定。
齿数决定了齿轮的传动比,并且齿数的选择还需要满足齿轮传动的平滑性要求。
齿轮啮合角则决定了齿轮的啮合性能和传动效率,一般通过减速器的运动试验来确定。
在设计NGW行星齿轮减速器时,还需要考虑到齿轮的材料选择和热处理工艺。
齿轮的材料应具有良好的力学性能和疲劳强度,一般选择高强度合金钢或工程塑料。
齿轮的热处理工艺包括淬火和回火等,可以提高齿轮的强度和硬度,延长使用寿命。
此外,NGW行星齿轮减速器还需要进行结构设计和强度计算。
结构设计包括减速器的内部组成部分、外部壳体和密封装置等。
强度计算主要包括齿轮的强度计算和轴的强度计算等,以确保减速器在工作过程中能够承受所需的工作载荷和传动力矩。
最后,需要进行NGW行星齿轮减速器的动力学分析和传动效率计算。
动力学分析可以通过数值模拟或实验来进行,以研究减速器在工作过程中的振动和噪声情况。
传动效率计算可以通过减速器的理论计算和实际测试来进行,以评估减速器的传动效率和能量损耗情况。
综上所述,NGW行星齿轮减速器的设计涉及传动比的选择、齿轮参数
设计、材料选择、热处理工艺、结构设计、强度计算、动力学分析和传动
效率计算等多个方面。
通过合理的设计和优化,可以实现减速器的高精度、高扭矩传动,并满足各种机械设备的要求。