2023年江苏省常州市中考数学全真模拟试卷附解析_1
- 格式:docx
- 大小:238.88 KB
- 文档页数:8
江苏省常州市2022-2023学年中考数学专项提升仿真模拟试卷(一模)一、选一选(共15小题,每小题3分,满分45分)1.﹣1的值是()A.﹣1B.1C.0D.±12.如图,在▱ABCD 中,AD =8,点E ,F 分别是AB ,AC 的中点,则EF 等于()A.2B.3C.4D.53.计算01(2--=()A.﹣1B.32-C.﹣2D.52-4.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是()A.6B.11C.12D.185.下列计算正确的是()A.(﹣x 3)2=x 5B.(﹣3x 2)2=6x 4C.(﹣x )﹣2=21x D.x 8÷x 4=x 26.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.7.计算(2x ﹣1)(1﹣2x )结果正确的是()A.241x - B.214x - C.2441x x -+- D.2441x x -+8.下列函数中,当x >0时,y 随x 的增大而减小的是()A .y=2xB.y=-4xC.y=3x+2D.y=x 2-39.△ABC 是⊙O 内接三角形,∠BOC=80°,那么∠A 等于()A.80°B.40°C.140°D.40°或140°10.如图,两个反比例函数y 1=1k x(其中k 1>0)和y 2=3x 在象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF ⊥x 轴于F 点,且图中四边形BOAP 的面积为6,则EF :AC 为()A.1 B.2 C.2:1 D.29:14二、填空题(共5小题,每小题3分,满分15分)11.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为________________.12.的平方根是.13.如图,在⊙O 中,点A 、B 、C 在⊙O 上,且∠ACB=110°,则∠α=______.14.已知函数22y x x =--,当___________时,函数值y 随x 的增大而增大.15.命题“直径所对的圆周角是直角”的逆命题是_______.16.分解因式:229ax ay -=____________.17.小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是_____.18.若二次函数y=2x 2的图象向左平移2个单位长度后,得到函数y=2(x+h )2的图象,则h=_____.三、解答题(共6小题,满分60分)19.计算:﹣12+(﹣12)﹣2+2cos30°.20.化简:2221211xx x x x x x ++⎛⎫-÷ ⎪--⎝⎭,并从﹣1,0,1,2中选择一个合适的数求代数式的值.21.甲、乙两名射击运动员在某次训练中各射击10发,成绩如表:甲89798678108乙679791087710且S乙2=1.8,根据上述信息完成下列问题:(1)将甲运动员的折线统计图补充完整;(2)乙运动员射击训练成绩的众数是_____,中位数是______.(3)求甲运动员射击成绩的平均数和方差,并判断甲、乙两人本次射击成绩的稳定性.22.已知反比例函数kyx与函数y=x+2的图象交于点A(﹣3,m).(1)求反比例函数的解析式;(2)如果点M的横、纵坐标都是没有大于3的正整数,求点M在反比例函数图象上的概率.23.如图,在正方形ABCD中,点E(与点B、C没有重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.24.某商场次用11000元购进某款拼装机器人进行,很快一空,商家又用24000元第二次购进同款机器人,所购进数量是次的2倍,但单价贵了10元.(1)求该商家次购进机器人多少个?(2)若所有机器人都按相同的标价,要求全部完毕的利润率没有低于20%(没有考虑其它因素),那么每个机器人的标价至少是多少元?25.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径.(1)判断BC与⊙O的位置关系,并证明你的结论;(2)求证:△ABD∽△DBE;(3)若co=223,AE=4,求CD.26.如图,平面直角坐标系中,O为菱形ABCD的对称,已知C(2,0),D(0,﹣1),N为线段CD上一点(没有与C、D重合).(1)求以C为顶点,且点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.江苏省常州市2022-2023学年中考数学专项提升仿真模拟试卷(一模)一、选一选(共15小题,每小题3分,满分45分)1.﹣1的值是()A.﹣1 B.1C.0D.±1【正确答案】B【详解】试题分析:根据正数的值是本身,0的值为0,负数的值是其相反数.可得﹣1的值等于其相反数1,故选B .考点:值2.如图,在▱ABCD 中,AD =8,点E ,F 分别是AB ,AC 的中点,则EF 等于()A .2B.3C.4D.5【正确答案】C【分析】利用平行四边形性质得到BC 长度,然后再利用中位线定理得到EF【详解】在▱ABCD 中,AD =8,得到BC=8,因为点E ,F 分别是AB ,AC 的中点,所以EF 为△ABC 的中位线,EF=142BC =,故选C 【点睛】本题主要考查平行四边形性质与三角形中位线定理,属于简单题3.计算01(2--=()A.﹣1 B.32-C.﹣2D.52-【正确答案】A【详解】试题分析:原式=1﹣2=﹣1,故选A .考点:算术平方根;零指数幂.4.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是()A.6B.11C.12D.18【正确答案】C【详解】试题分析:这个正多边形的边数:360°÷30°=12,故选C .考点:多边形内角与外角.5.下列计算正确的是()A.(﹣x 3)2=x 5B.(﹣3x 2)2=6x 4C.(﹣x )﹣2=21x D.x 8÷x 4=x 2【正确答案】C【详解】根据积的乘方,可知(﹣x 3)2=x 6,故没有正确;(﹣3x 2)2=9x 4,故没有正确;根据负整指数幂的性质,可知(﹣x )﹣2=21()x =21x,故正确;根据同底数幂相除,可知x 8÷x 4=x 4,故没有正确.故选C.6.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.【正确答案】B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、没有是轴对称图形,没有符合题意;B 、是轴对称图形,符合题意;C 、没有是轴对称图形,没有符合题意;D 、没有是轴对称图形,没有符合题意.故选B .本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.计算(2x ﹣1)(1﹣2x )结果正确的是()A.241x - B.214x - C.2441x x -+- D.2441x x -+【正确答案】C【详解】试题分析:原式=2(21)x --=2441x x -+-,故选C .考点:完全平方公式.8.下列函数中,当x >0时,y 随x 的增大而减小的是()A.y=2xB.y=-4xC.y=3x+2D.y=x 2-3【正确答案】A【详解】试题分析:∵k >0,∴在象限内y 随x 的增大而减小;B 、∵k <0,∴在第四象限内y 随x 的增大而增大;C 、∵k >0,∴y 随着x 的增大而增大;D 、∵y=x 2-3,∴对称轴x=0,当图象在对称轴右侧,y 随着x 的增大而增大;而在对称轴左侧,y 随着x 的增大而减小.故选A .考点:1.反比例函数的性质;2.函数的性质;3.二次函数的性质.9.△ABC 是⊙O 内接三角形,∠BOC=80°,那么∠A 等于()A.80°B.40°C.140°D.40°或140°【正确答案】D【详解】试题分析:因为点A 可能在优弧BC 上,也可能在劣弧BC 上,则根据圆周角定理,应分为两种情况:当点A 在优弧BC 上时,∠BAC=40°;当点A 在劣弧BC 上时,∠BAC=140°;所以∠BAC 的大小为40°或140°.故选D .考点:圆周角定理10.如图,两个反比例函数y 1=1k x(其中k 1>0)和y 2=3x 在象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF ⊥x 轴于F 点,且图中四边形BOAP 的面积为6,则EF :AC 为()A.1 B.2 C.2:1 D.29:14【正确答案】A【详解】试题分析:首先根据反比例函数y 2=3x 的解析式可得到ODB OAC S S =12×3=32,再由阴影部分面积为6可得到PDOC S 矩形=9,从而得到图象C 1的函数关系式为y=6x,再算出△EOF 的面积,可以得到△AOC 与△EOF 的面积比,然后证明△EOF ∽△AOC ,根据对应边之比等于面积比的平方可得到EF ﹕.故选A .考点:反比例函数系数k 的几何意义二、填空题(共5小题,每小题3分,满分15分)11.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为________________.【正确答案】2.5×10-6【分析】值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法没有同的是其所使用的是负指数幂,指数由原数左边起个没有为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故2.5×10-6.本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起个没有为零的数字前面的0的个数所决定.12.的平方根是.【正确答案】±2±2.故答案为±2.13.如图,在⊙O 中,点A 、B 、C 在⊙O 上,且∠ACB=110°,则∠α=______.【正确答案】140°.【分析】作 AB 所对的圆周角∠ADB ,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【详解】作 AB 所对的圆周角∠ADB ,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°-110°=70°,∴∠AOB=2∠ADB=140°.故答案为140°.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.已知函数22y x x =--,当___________时,函数值y 随x 的增大而增大.【正确答案】x≤﹣1.【详解】试题分析:∵22y x x =--=2(1)1x -++,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y 随x 的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.15.命题“直径所对的圆周角是直角”的逆命题是_______.【正确答案】90°圆周角所对的弦是直径.【详解】试题分析:命题“直径所对的圆周角是直角”的逆命题是90°圆周角所对的弦是直径,故答案为90°圆周角所对的弦是直径.考点:命题与定理.16.分解因式:229ax ay -=____________.【正确答案】【详解】试题分析:根据因式分解的方法,先提公因式,再根据平方差公式分解.考点:因式分解17.小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是_____.【正确答案】19【详解】解:画树状图得:∵共有9种等可能的结果,两同学同时出“剪刀”的有1种情况,∴两同学同时出“剪刀”的概率是:19.故19.本题考查用列表法或画树状图法求概率.18.若二次函数y=2x 2的图象向左平移2个单位长度后,得到函数y=2(x+h )2的图象,则h=_____.【正确答案】2.【详解】直接根据“上加下减,左加右减”的原则进行解答.解:二次函数22y x =的图象向左平移2个单位长度得到()222y x =+,即h=2,故答案为2.“点睛”本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.考点:二次函数图象与几何变换.三、解答题(共6小题,满分60分)19.计算:﹣12+(﹣12)﹣20+2cos30°.【正确答案】【分析】根据乘方的意义,负整指数幂的性质,零次幂的性质和角的锐角三角函数值求解即可.【详解】解:﹣12+(﹣12)﹣20+2cos30°=-1+4+1+2×32点睛:(1)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①1(0)ppaa a -=≠(a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.20.化简:2221211xx x x x x x ++⎛⎫-÷ ⎪--⎝⎭,并从﹣1,0,1,2中选择一个合适的数求代数式的值.【正确答案】1x x +,x =2时,原式=23.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =2代入计算即可求出值.【详解】解:2221211xx x x x x x ++⎛⎫-÷⎪--⎝⎭=2221(1)(1)(1)x x x x x x x ⎡⎤+-÷⎢⎥--⎣⎦=21(1)x x x --•22(1)x x +=(1)(1)(1)x x x x +--•22(1)x x +=1x x +由题意可知,x ≠0,±1∴当x =2时,原式=23.本题考查分式的化简求值及分式成立的条件.21.甲、乙两名射击运动员在某次训练中各射击10发,成绩如表:甲89798678108乙679791087710且S 乙2=1.8,根据上述信息完成下列问题:(1)将甲运动员的折线统计图补充完整;(2)乙运动员射击训练成绩的众数是_____,中位数是______.(3)求甲运动员射击成绩的平均数和方差,并判断甲、乙两人本次射击成绩的稳定性.【正确答案】①.7②.7.5【详解】试题分析:(1)根据表格中的数据可以将折线统计图补充完整;(2)根据表格中的数据可以得到乙运动员射击训练成绩的众数和中位数;(3)根据表格中的数据可以计算出甲运动员射击成绩的平均数和方差,根据甲乙两人的方差可以得到谁的稳定性好.试题解析:(1)由表格中的数据可以将折线统计图补充完成,如图所示,(2)将乙的射击成绩按照从小到大排列是:6,7,7,7,7,8,9,9,10,10,故乙运动员射击训练成绩的众数是7,中位数是:782+=7.5,故答案为7,7.5;(3)由表格可得,8979867810810x +++++++++=甲=8,222222222221=[(88)(98)(78)(98)(88)(68)(78)(88)(108)(88)]10S 甲-+-+-+-+-+-+-+-+-+-=1.2,∵1.5<1.8,∴甲本次射击成绩的稳定性好,即甲运动员射击成绩的平均数是8,方差是1.2,甲本次射击成绩的稳定性好.22.已知反比例函数ky x=与函数y=x+2的图象交于点A (﹣3,m ).(1)求反比例函数的解析式;(2)如果点M 的横、纵坐标都是没有大于3的正整数,求点M 在反比例函数图象上的概率.【正确答案】(1)3y x =;(2)29.【详解】试题分析:(1)首先将点A 的坐标代入函数的解析式,求得m 的值,从而确定点A 的坐标,代入反比例函数的解析式求得k 值即可;(2)根据点M 的横纵坐标均为没有大于3的正整数确定所有点M 的可能,然后找到在反比例函数的图象上的点的个数,利用概率公式求解即可.试题解析:(1)∵反比例函数kyx=与函数y=x+2的图象交于点A(﹣3,m),∴﹣3+2=m=﹣1,∴点A的坐标为(﹣3,﹣1),∴k=﹣3×(﹣1)=3,∴反比例函数的解析式为3 yx =;(2)∵点M的横、纵坐标都是没有大于3的正整数,∴点M的坐标可能为:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),∵在反比例函数的图象上的有(1,3)和(3,1)两个点,∴点M在反比例函数图象上的概率为2 9.考点:反比例函数与函数的交点问题;列表法与树状图法.23.如图,在正方形ABCD中,点E(与点B、C没有重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.【正确答案】(1)证明见解析;(2)1.【分析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS 得到三角形ABE与三角形EFG全等;(2)利用全等三角形的性质得出AB=EG=2,S△ABE=S△EGF,求出S EGF=2S△ECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案.【详解】解:(1)证明:∵EF⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°,∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,∵∠ABE=∠EGF,∠BAE=∠GEF,AE=EF,∴△ABE≌△EGF(AAS);(2)解:∵△ABE≌△EGF,AB=2,∴AB=EG=2,S△ABE=S△EGF,∵S△ABE=2S△ECF,∴S EGF=2S△ECF,∴EC=CG=1,∵四边形ABCD是正方形,∵BC=AB=2,∴BE=2﹣1=1.24.某商场次用11000元购进某款拼装机器人进行,很快一空,商家又用24000元第二次购进同款机器人,所购进数量是次的2倍,但单价贵了10元.(1)求该商家次购进机器人多少个?(2)若所有机器人都按相同的标价,要求全部完毕的利润率没有低于20%(没有考虑其它因素),那么每个机器人的标价至少是多少元?【正确答案】(1)100;(2)140元.【详解】试题分析:(1)设该商家次购进机器人x个,根据“次用11000元购进某款拼装机器人,用24000元第二次购进同款机器人,所购进数量是次的2倍,但单价贵了10元”列出方程并解答;(2)设每个机器人的标价是a元.根据“全部完毕的利润率没有低于20%”列出没有等式并解答.试题解析:(1)设该商家次购进机器人x个,依题意得:1100024000102x x+=,解得x=100.经检验x=100是所列方程的解,且符合题意.答:该商家次购进机器人100个.(2)设每个机器人的标价是a元.则依题意得:(100+200)a﹣11000﹣24000≥(11000+24000)×20%,解得a≥140.答:每个机器人的标价至少是140元.考点:分式方程的应用;一元没有等式的应用.25.如图,在△ABC 中,∠C=90°,∠BAC 的平分线交BC 于点D ,DE ⊥AD ,交AB 于点E ,AE 为⊙O 的直径.(1)判断BC 与⊙O 的位置关系,并证明你的结论;(2)求证:△ABD ∽△DBE ;(3)若co=3,AE=4,求CD .【正确答案】(1)BC 与⊙O 相切;(2)证明见解析;(3)423.【详解】试题分析:(1)结论:BC 与⊙O 相切,连接OD 只要证明OD ∥AC 即可.(2)欲证明△ABD ∽△DBE ,只要证明∠BDE=∠DAB 即可.(3)在Rt △ODB 中,由co=BD OB =3,设BD=k ,OB=3k ,利用勾股定理列出方程求出k ,再利用DO ∥AC ,得BD BO CD AO列出方程即可解决问题.试题解析:(1)结论:BC 与⊙O 相切.证明:如图连接OD .∵OA=OD ,∴∠OAD=∠ODA ,∵AD 平分∠CAB ,∴∠CAD=∠DAB ,∴∠CAD=∠ADO ,∴AC ∥OD ,∵AC ⊥BC ,∴OD ⊥BC ,∴BC 是⊙O 的切线.(2)∵BC 是⊙O 切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵AE 是直径,∴∠ADE=90°,∴∠DAE+∠AED=90°,∵OD=OE ,∴∠ODE=∠OED ,∴∠BDE=∠DAB ,∵∠B=∠B ,∴△ABD ∽△DBE .(3)在Rt △ODB 中,∵co=BD OB =223,设BD=,OB=3k ,∵OD 2+BD 2=OB 2,∴4+8k 2=9k 2,∴k=2,∴BO=6,BD=,∵DO ∥AC ,∴BD BO CD AO =,∴62CD =,∴CD=3.考点:圆的综合题;探究型.26.如图,平面直角坐标系中,O 为菱形ABCD 的对称,已知C (2,0),D (0,﹣1),N 为线段CD 上一点(没有与C 、D 重合).(1)求以C 为顶点,且点D 的抛物线解析式;(2)设N 关于BD 的对称点为N 1,N 关于BC 的对称点为N 2,求证:△N 1BN 2∽△ABC ;(3)求(2)中N 1N 2的最小值;(4)过点N 作y 轴的平行线交(1)中的抛物线于点P ,点Q 为直线AB 上的一个动点,且∠PQA=∠BAC ,求当PQ 最小时点Q 坐标.【正确答案】(1)y=﹣14(x ﹣2)2(2)证明见解析(3)165(4)(52-,-14)或(3110,5120)【分析】(1)用待定系数法求,即可;(2)由对称的特点得出∠N 1BN 2=2∠DBC 菱形的性质即可;(3)先判定出,当BN ⊥CD 时,BN 最短,再利用△ABC ∽△N 1BN 2得到比例式,求解,即可;(4)先建立PE=14m 2﹣12m+2函数解析式,根据抛物线的特点确定出最小值.【详解】(1)由已知,设抛物线解析式为y=a (x ﹣2)2把D (0,﹣1)代入,得a=﹣14∴y=﹣14(x ﹣2)2(2)如图1,连结BN.∵N 1,N 2是N 的对称点∴BN 1=BN 2=BN ,∠N 1BD=∠D ,∠C=∠N 2BC ∴∠N 1BN 2=2∠DBC ∵四边形ABCD 是菱形∴AB=BC ,∠ABC=2∠DBC ∴∠ABC=∠N 1BN 2,12AB BCBN BN =∴△ABC ∽△N 1BN 2(3)∵点N 是CD 上的动点,∴点到直线的距离,垂线段最短,∴当BN ⊥CD 时,BN 最短.∵C (2,0),D (0,﹣1)∴∴BNmin=BD CO CD ⨯=,∴BN 1min =BN min,∵△ABC ∽△N 1BN 2∴112AB ACBN N N =,N 1N 2min =5,(4)如图2,过点P 作PE ⊥x 轴,交AB 于点E .∵∠PQA=∠BAC ∴PQ 1∥AC∵菱形ABCD 中,C (2,0),D (0,﹣1)∴A (﹣2,0),B (0,1)∴l AB :Y=12x+1没有妨设P (m ,﹣14(m ﹣2)2),则E (m ,12m+1)∴PE=14m 2﹣12m+2∴当m=1时,min 74PE =∴P (1,-14)∴Q 1(52-,-14)此时,PQ 1最小,最小值为1tan PE EQ P ∠=72,∴PQ 1=PQ 2=72.设Q 2(n,12n+1)∵P (1,-4)∴272PQ =∴n=52-或n=3110∴Q 2(3110,5120)∴满足条件的Q (52-,-14)或(3110,5120)此题是二次函数综合题,涉及到菱形的性质,待定系数法求解析式,相似三角形的性质和判定,对称的特点,解本题的关键是判断出达到极值是的位置.江苏省常州市2022-2023学年中考数学专项提升仿真模拟试卷(二模)一、选一选:(每题3分,共计24分)1.-4的相反数是()A.14 B.14- C.4 D.-42.下列运算正确的是()A.2= B.325a a a ∙= C.824a a a ÷= D.()32626a a -=-3.如图,由6个小正方体搭建而成的几何体的俯视图是()A. B. C. D.4.在体育课上,初三年级某班10名男生“跳绳”的成绩(单位:个)分别是149,154,150,155,147,149,156,150,151,149,这组数据的众数、中位数、平均数依次是()A.150,148,151B.150,148,149C.149,148,151D.149,150,1515.如图,⊙O 的直径AB 的长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则AD 长为()A.8B.5C.D.6.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是()A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本7.如图,在平行四边形ABCD 中,6AB =,9AD =,BAD ∠的平分线交BC 于点E ,交DC的延长线于点F ,BG AE ⊥,垂足为G ,BG =CEF △的周长为()A .8 B.9.5 C.10 D.58.如图,已知直线l 的解析式是443y x =-,并且与x 轴、y 轴分别交于A 、B 两点.一个半径为1.5的⊙C ,圆心C 从点(0,1.5)开始以每秒0.5个单位的速度沿着y 轴向下运动,当⊙C 与直线l 相切时,则该圆运动的时间为()A.3秒或6秒B.6秒C.3秒D.6秒或16秒二、填空题:(每题3分,共计30分)9.据统计某该景区去年实现门票收入约598000元.用科学记数法表示598000是_______.10.因式分解:24x y y -=______.11.已知33a b -=,则83a b -+的值是___________.12.为了考察甲、乙两种小麦的长势,分别从中抽出20株测得其高度,并求得它们的方差分别为S 甲2=3.6,S 乙2=15.8,则_______种小麦的长势比较整齐.13.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使没有知道密码的人就拨对密码的概率小于12010,则密码位数至少需要______位.14.反比例函数k y x=(k ≠0)的图象点(2,5),若点(1,n )在反比例函数的图象上,则n 的值是______.15.如图,在△ABC 中,D 、E 分别AB 、AC 边上的点,DE ∥BC .若AD =3,DB =6,DE =1.2,则BC =_______.16.如图,如果从半径为3cm 的圆形纸片剪去13圆周的一个扇形,将留下在扇形围成一个圆锥(接缝处没有重叠),那么这个圆锥的体积是_______.17.如图,点P 为弦AB 上的一点,连接OP ,过点P 作PC ⊥OP ,PC 交☉O 于C .若AP =8,PB =2,则PC 的长是___18.矩形纸片ABCD 中,AB =3,AD =4,将纸片折叠,使点B 落在边CD 上的B ’处,折痕为AE .在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为_______.三、解答题:(共96分)19.(1)计算:12014sin 30(2011)7π-⎛⎫++-- ⎪⎝⎭;(2)解没有等式组31422x x x ->-⎧⎨<+⎩,并把它的解集表示在数轴上.20.先化简,再求值:2111(•113x x x -+-+,其中x =3.21.5月19日,中国旅游日正式启动,某校组织了由八年级800名学生参加的旅游地理知识竞赛.李老师为了了解对旅游地理知识的掌握情况,从中随机抽取了部分同学的成绩作为样本,把成绩按、良好、及格、没有及格4个级别进行统计,并绘制成了如图所示的条形统计图和扇形统计图(部分信息未给出).请根据以上提供的信息,解答下列问题:(1)求被抽取的部分学生的人数;(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;(3)请估计八年级的800名学生中达到良好和的总人数.22.阅读对话,解答问题.(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树形图法或列表法写出(a,b)的所有取值;(2)若小冬从小丽、小兵袋子中抽出的卡片上标有的数字之积为奇数,算小丽赢,否则算小兵赢,这样的取法合理吗?23.如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC≈4.8米,引桥水平跨度AC=8米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.(参考:sin37°=0.60,cos37°=0.80,tan37°=0.75)24.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当DF:DE=2:1时,∠BAC的度数为多少?说明理由.25.如图,直线y=kx+k(k≠0)与双曲线5myx-=在象限内相交于点M,与x轴交于点A.(1)求m的取值范围和点A的坐标;(2)若点B的坐标为(3,0),AM=5,S△ABM=8,求双曲线的函数表达式.26.我市某工艺厂为迎“五一”,设计了一款成本为20元/件的工艺品投放市场进行试销.,得到如下数据:(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当单价定为多少时,工艺厂试销该工艺品每天获得的利润?利润是多少?(利润=总价-成本总价)(3)当地物价部门规定,该工艺品单价没有能...超过45元/件,那么单价定为多少时,工艺厂试销该工艺品每天获得的利润?27.如图1,E 是等腰Rt △ABC 边AC 上的一个动点(点E 与A 、C 没有重合),以CE 为一边在Rt △ABC 作等腰Rt △CDE ,连结AD ,BE .我们探究下列图中线段AD ,、线段BE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;②将图1中的等腰Rt △CDE 绕着点C 按顺时针方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中等腰直角三角形改为直角三角形(如图4—6),且AC =a ,BC =b ,CD =ka ,CE =kb (a ≠b ,k >0),第(1)题①中得到的结论哪些成立,哪些没有成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结BD 、AE ,且a =4,b =3,k =12,求BD 2+AE 2的值.28.二次函数26(0)y ax bx a =++≠的图像交y 轴于C 点,交x 轴于A ,B 两点(点A 在点B 的左侧),点A 、点B 的横坐标是一元二次方程24120x x --=的两个根.(1)求出点A 、点B 的坐标及该二次函数表达式.(2)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q没有与点O、B重合),过点Q 作QD∥AC交于BC点D,设Q点坐标(m,0),当△CDQ面积S时,求m的值.(3)如图3,线段MN是直线y=x上的动线段(点M在点N左侧),且MN,若M点的横坐标为n,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出n的值;若没有能,请说明理由.江苏省常州市2022-2023学年中考数学专项提升仿真模拟试卷(二模)一、选一选:(每题3分,共计24分)1.-4的相反数是()A.14 B.14 C.4 D.-4【正确答案】C【分析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.2.下列运算正确的是()A.2=B.325a a a ∙=C.824a a a ÷=D.()32626a a -=-【正确答案】B【详解】试题解析:A 、原式=2,故本选项错误;B 、a 3•a 2=a 5,故本选项正确;C 、a 8÷a 2=a 6,故本选项错误;D 、(-2a 2)3=-8a 6,故本选项错误.故选B .3.如图,由6个小正方体搭建而成的几何体的俯视图是()A. B. C. D.【正确答案】C【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C .考点:三视图.4.在体育课上,初三年级某班10名男生“跳绳”的成绩(单位:个)分别是149,154,150,155,147,149,156,150,151,149,这组数据的众数、中位数、平均数依次是()A.150,148,151B.150,148,149C.149,148,151D.149,150,151【详解】解:从小到大排列此数据为:147,149,149,149,150,150,151,154,155,156,数据149出现了三次至多为众数,处在第5位、第6位的均为150,∴150为中位数,平均数为:(147+149+149+149+150+150+151+154+155+156)÷10=151,故选D.5.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则AD长为()A.8B.5C.D.【正确答案】D【详解】解:连接OD.∵AB是⊙O的直径,∴∠ACB=∠ADB=90°(直径所对的圆周角是直角);又∵∠ACB的平分线交⊙O于D,∴D点为半圆AB的中点,∴△ABD为等腰直角三角形,∴=cm.6.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是()A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本【详解】分别根据次花了42元,第二次花了30元,两个等量关系联立方程组求解即可解:设小红所买的笔和笔记本的价格分别是x 元,y 元,则5x+10y=4210x+5y=30,解得x=1.2y=3.6,所以小红所买的笔和笔记本的价格分别是1.2元,3.6元.故选D .7.如图,在平行四边形ABCD 中,6AB =,9AD =,BAD ∠的平分线交BC 于点E ,交DC的延长线于点F ,BG AE ⊥,垂足为G ,BG =CEF △的周长为()A.8B.9.5C.10D.5【正确答案】A 【分析】在□ABCD 中,由已知条件可得△ADF 是等腰三角形,9AD DF ==;同理△ABE 也是等腰三角形,可知6AB BE ==,所以3CF =;在△ABG 中,BG AE ⊥,6AB =,BG =2AG =,又因为△ABE 是等腰三角形,BG AE ⊥,所以24AE AG ==,所以△ABE 的周长等于16,又由□ABCD 可得△CEF ∽△BEA ,相似比为1:2,所以△CEF 的周长为8.【详解】解:∵在平行四边形ABCD 中,6AB CD ==,9AD BC ==,∠BAD 的平分线交BC 于点E ,∴//AB CD ,BAF DAF ∠=∠,∴BAF F ∠=∠,∴DAF F ∠=∠,∴AD DF =,∴△ADF 是等腰三角形,同理△ABE 也是等腰三角形,9AD DF ==,6AB BE ==,∴3CF DF CD =-=,∴在△ABG 中,BG AE ⊥,6AB =,BG =,可得:2AG ==,又∵BG AE ⊥,AB BE =,∴24AE AG ==,∴△ABE 的周长等于16,又∵四边形ABCD 为平行四边形,∴△CEF ∽△BEA ,相似比为1:2,∴△CEF 的周长为8.故选:A本题主要综合考查平行四边形、相似三角形和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形思想的考查.8.如图,已知直线l 的解析式是443y x =-,并且与x 轴、y 轴分别交于A 、B 两点.一个半径为1.5的⊙C ,圆心C 从点(0,1.5)开始以每秒0.5个单位的速度沿着y 轴向下运动,当⊙C 与直线l 相切时,则该圆运动的时间为()A .3秒或6秒 B.6秒 C.3秒 D.6秒或16秒【正确答案】D【详解】试题解析:如图,。
2023年江苏省常州市中考数学摸底测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在高楼前D 点测得楼顶的仰角为30o ,向高楼前进60米到C 点,又测得仰角为45o ,则该高楼的高度大约为( )A .82米B .163米C .52米D .30米 2.在△ABC 中,AB=AC ,∠A=36°.以点A 为位似中心,把△ABC 放大2倍后得△A ′B ′C ′,则∠B 等于( )A .36°B .54°C .72°D .144° 3. 已知关于x 的一元二次方程2210x x k -+-=有两个不相等的实数根,则k 的最大整 数值是( )A .2B .1C .0D .-1 4.如图,在等腰梯形ABCD 中,AD ∥BC ,∠C=60°,则∠1=( ) A .30°B .45°C .60°D .80° 5.如图所示,若六边形ABCDEF 绕着中心 0旋转∠α得到的图形与原来的图形重合,则α的最小值为( )A . 180°B .120°C .90°D . 60°6.如图,在△ABC 中,∠ABC 与∠ACB 的角平分线交于点0,且∠BOC=α,则∠A 的度数是 ( )A .180°-αB .2α-180°C .180°-2αD .12α7. 如图,数轴上A 点表示的数减去B 点表示的数,结果是( )A .8B .-8C .2D .-2二、填空题8.如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面...涂色的小立方体共有个. 9.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成35时,测得旗杆AB 在地面上的投影BC 长为23.5米,则旗杆AB 的高度约是 米(精确到0.1米)10.将数据分成4组,画出频数分布直方图,各小长方形的高的比是1:3:4:2,若第2 组的频数是15,则此样本的样本容量是_______. 11.如图所示,把一张长方形纸片ABCD 沿EF 折叠后,ED 与BC 的交点为G ,点D ,C 分别落在D ′,C ′位置,若∠EFG=55°,则∠l= , ∠2= .12.一元二次方程(x -1)(x -2)=0的两个根为x 1,x 2,且x 1>x 2,则x 1-2x 2=_______.13.已知22(5)(3)0a b -++=,则点P(a ,b )在第 象限.14.在某次数学测验中,为了解某班学生的数学成绩情况,从该班测试试卷中随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83在这个问题中,总体是 ,样本是 ,样本平均数是 分,估计该班的平均成绩是 分.15.在Rt △ABC 中,∠C=90°,∠A=41°,则∠B= .16.如图,∠C=∠D=90°,请你再添加一个条件,使△ABD ≌△BAC ,并在添加的条件后的( )内写出判定全等的依据.(1) ( );(2) ( );(3) ( );(4) ( ).17.如图,当∠1 与∠3满足 时,1l ∥3l ;当2l ∥3l 时,∠2 与∠3 满足的关系式为 .18.计算:2a ×(3a 2 -ab+b 2 )=_________;(a -1)(a+1)(a 2 +1)= . 19.计算:()()4622-÷-=___________. 20.用四舍五入法,保留l 个有效数字,则取80600的近似值为 ,保留2个有效数 字的近似值为 .21.填一填:+ (-5) = +3;(-14)+ =-3;37+ =-1. 三、解答题22.如图,已知△ABC.(1)以点0为位似中心,相似比为12画111A B C ∆;(2)以点 A 为位似中心1相似比为32画222A B C ∆;(3)以 BC 中点为位似中心,相似比为 2 画333A B C ∆23.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,求∠CDF 的度数.24.已知:如图,在四边形ABCD 中,AD ∥BC ,AD=BC .求证:△ABD ≌△CDB .D CA B25.如图,C表示灯塔,轮船从A处出发以每小时21海里的速度向正北(AN方向)航行,在A 处测得么∠NAC=30°,3小时后,船到达B处,在B处测得么∠NBC=60°,求此时B到灯塔C的距离.26.如图,在△ABC中,∠A=110°,∠B=35°,请你应用变换的方法得到一个三角形使它与△ABC全等,且要求得到的三角形与原△ABC组成一个四边形.请角两种变换方法解决上述问题.27.某中学七年级有 6 个班,要从中选出 2 个班代表学校参加某项活动,七 (1)班必须参加,另外再从七(2)至七(6)班选出 1 个班. 七(4)班有学生建议用如下的方法:从装有编号为 1,2,3 的三个白球的,A袋中摸出 1个球,再从装有编号为 1,2,3 的三个红球的B袋中摸出 1 个球(两袋中球的大小、形状与质量等完全一样),摸出的两个球上的数字和是几,就选几班,你认为种方法公平吗?请说明理由.28.已知3+=,求:a b(1)2a b++.++;(2)332a b29.已知a、b互为相反数,c、d互为倒数,m的绝对值是 2,求()+-⋅+的值.a b c d m30.某商店在销售中发现:某品牌童装平均每天可售出20件,每件赢利40元.为了迎“六一”儿童节,商场决定适当地降价,以扩大销售量,增加赢利,经市场调查发现,如果每件童装每降低l元,那么平均每天就可多售出2件,要想平均每天在销售这种童装上赢利1200元,那么每件童装应降价多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.B4.C5.D6.B7.B二、填空题8.8n—49.16.510.5011.70°,ll0°12.13.四14.该班学生的数学成绩,10名学生的数学成绩,81,8115.49°16.(1)AD=BC ,HL (2)BD=AC ,HL (3)∠DAB=∠CBA ,AAS (4)∠DBA=∠CAB ,AAS 17.∠l+∠3=180°,∠2+∠3=180°18.223226ab b a a +-,14-a19.-420.8×lO 4,8.1×1O 421.8,11,107- 三、解答题22.(1) (2) (3)如图所示.23.连结BF,∠CDF=60°24.略.25.63海里26.略.27.不公平,理由略28.(1)5 (2) 1129.1 或-330.降价 10 元或 20 元。
2023年江苏省常州市中考数学全真模拟考试试卷C 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.书包里有数学书 3本,英语书2本,语文书5本,从中任意抽到一本,则抽取数学书的概率为( )A .110B .35C .310D .152.对于反比例函数6y x =,当6x -≤时,y 的取值范围是( ) A .y ≥1- B .y ≤1- C .1-≤y <0 D .y ≥13.下列方程中,与方程1x y +=有公共解23x y =-⎧⎨=⎩的是( ) A .45y x -= B .23y 13x -=- C .21y x =+ D .1x y =-4. 如图,一块三角形绿化园地,三个角处都做有半径为 R 的圆形喷水池,则这三个喷水池 占去的绿化园地(阴影部分)的面积为( )A .212R π B .2R π C .22R π D .不能确定5.从1到9这九个自然数中任取一个,既是2的倍数,又是3的倍数的概率是( )A .91B . 31C . 21D . 97 6.下列计算正确的是( )A .23(31)3a a a a --=--B .222()a b a b -=-C .2(23)(23)94a a a ---=-D .235()a a =7.如果2(1)()23x x a x x -+=+-,那么 a 的值是( )A .3B .-2C .2D .38. 如图,在已知的数轴上,表示-2. 75 的是( )A .E 点B .F 点C .G 点D .H 点二、填空题9.如图,在下列各图形中选择合适的图形填入相应的空格内(填号码):(1)主视图: ; 左视图: ; 俯视图: ; (2)主视图: ;左视图: ;俯视图: ;(3)主视图: ;左视图: ;俯视图: ;解答题10. 如图所示,DB 切⊙O 于A ,∠A= 66°,则∠D= .11.cos45°= ,cos30°= ,cos65°= ,并把它们用“<”号连结 .12.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,则任意摸出一个蓝球的概率是 . 13.某人沿着坡度i=1:3的山坡走了50米,则他离地面 米高.14.已知代数式(5)10x x ++与代数式925x -的值互为相反数,则x = .15. 如图,在数轴上,A ,B 两点之间表示整数的点有 个.16.如图所示,在□ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E ,F ,∠FBE=60°,AF=3cm,CE=4.5cm ,则∠A= ,AB= ,BC= .17.点A 的坐标是(2,-3),则横坐标与纵坐标的和为 .18.某网站开展“北京2008年奥运会中国队能获多少枚金牌”的网络调查,共有100000人参加此次活动,现要从中抽取100名“积极参与奖”,那么参加此活动的小华能获奖的概率是__________.19.如果关于x 的方程2324+=-x m x 和m x x 32-=的解相同,则m = .20.已知2253x x +-=,那么代数式2248x x ++= .21. 绝对值大于 3 而不大于 6 的所有负整数之和为 .三、解答题22.某青少年研究所随机调查了某市某校100名学生寒假中花零花钱的数量(钱取整数元),以便引导学生树立正确的消费观.根据调查制成了频率分布表(未完成).某校100名学生零花钱的频数分布表(1)补全频数分布表;(2)画出频数分布直方图;(3)该研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1200名学生中约多少名学生提出这项建议?23.如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上.设F 、H 分别是B 、D 落在AC 上的两点,E 、G 分别是折痕CE 、AG 与AB 、CD 的交点.(1)求证:四边形AECG 是平行四边形;(2)若AB =4cm ,BC =3cm ,求线段EF 的长.24.如图,已知AB ⊥BD 于点B ,ED ⊥BD 于点D ,且AB=CD ,BC=DE ,那么AC 与CE 有什么关系?写出你的猜想,并说明理由.25.已知43x a +=,274x b -=,并且22b b a ≤≤,求x 的取值范围,并把解集在数轴上表示出来.1126322x -≤≤26.如图,AD ,CE 分别是△ABC 的两条高,问∠BAD 与∠BCE 相等吗?请说明理由.27.用小数表示下列各数:(1)210-;(2)53.7510--⨯A B CD E28.如图,用恰当的方法比较长方形ABCD中AB、AC、AD的长,然后用“<”号连结这三条线段.29.为了方便管理,学校每年都为新的七年级学生制作学生卡片,卡片上有了位数字的编号,其中前六位数表示该生入学年份、所在班及该生在班级中的序号;末位数表示性别;1 表示男生,2表示女生. 如:2007年入学的3班32号男同学的编号为 0703321. 则2008年入学的 10班的 15号女同学的编号为多少?有一次老师捡到一张编号为0 807 021 的学生卡片,你能帮忙找到失主吗?30.2008年四川省遭受地震灾害,全国人民万众一心,众志成城,抗震救灾.如图(1)是某市一所中学根据“献出爱心,抗震救灾”自愿捐款活动期间学生捐款情况制成的条形统计图,图(2)是该中学学生人数比例统计图(该校共有学生 1450人).(1)该校九年级学生共捐款多少元?(2)该校学生均每人捐款多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.B4.A5.A6.C7.D8.D二、填空题9.(1)④④④;(2)⑥⑥④;(3)⑤⑤①10.147°2,2,0. 4226, cos65°<cos45°<cos30° 12.92013. 2514.1 或-1515.416.60°,6 cm ,9 cm17.-118.10001 19. 220.2421.-15三、解答题22.(1) 某校100名学生零花钱的频数分布表(2)(3)(0.3+0.1+0.05)×1200=540(名) 答:估计应对该校1200名学生中约540名学生提出这项建议. 23. 解:(1)证明略;(2)EF=1.5. 24.AC ⊥CE 且AC=CE ,证△ABC ≌△CDE ,再证∠ACE=∠B=90° 25.1126322x -≤≤26.相等,理由略27.(1) 0.01;(2)0.0000375-28.AD<AB<AC29.2008年入学的10班的15号女同学的编号是0810152. 编号为0807021的学生卡是2008年入学的7班的2号男同学的30.(1) 5.4×1450×(1-34% -38%)=2192.4(元);(2)6.452元 频数(人)10203025.575.5125.5175.5225.5275.5某校100名学生零花钱的频数分布直方图10202530105。
2023年江苏省常州市中考数学模拟检测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,AB 切⊙O 于 B ,割线 ACD 经过圆心0,若∠BCD=70°,则∠A 的度数为( ) A .20°B .50°C .40°D .80°2. ,则a +bb 的值是( ) A .85 B .35C .32D .583.下列各点在抛物线23y x =上的是( ) A .(-1,-3)B .(一1,3)C .(-2,6)D .( 13,1)4.四边形ABCD 中,∠A :∠B :∠C :∠D=3:3:2:4,则此四边形是( ) A .一般四边形 B .平行四边形C .直角梯形D .等腰梯形5.如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EFC .AC=AFD .CH=HD 6. 解方程22(51)3(51)x x -=-的最适当的方法应是( ) A . 直接开平方法 B .配方法C .分式法D .因式分解法7.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数( ) A .至多6人 B .至少6人 C .至多5人 D .至少5人 8.若4a <,则关于x 的不等式(4)4a x a ->-的解集是( ) A .1x >-B .1x <-C .1x >D .1x <9.下列图形中,不是正方体的表面展开图的是( )10.如图,在△ABC 中,∠A :∠ABC :∠ACB =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( ) A .1:2B . 1:3C . 2: 3D . 1 : 411.用长为4 cm 、5 cm 、6 cm 的三条线段围成三角形的事件是( ) A .随机事件 B .必然事件 C .不可能事件 D .以上都不是 12.在△ABC 中,若∠A =70°-∠B ,则∠C 等于( ) A .35°B .70°C .110°D .140°13.下列说法正确的是( )A . 如果一件事情发生的机会是 99. 9%,那么它必然发生B . 即使一件事情发生的机会是0.0l%,它仍然可能发生C . 如果一件事情极有可能发生,那么它必然发生D . 如果一件事情不太可能发生,那么它就不可能发生 14.形如d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132 的结果为( )A .11B .-11C .5D .-215.近似数36.0是由四舍五入得到的近似数,在下列关于其精确度的叙述中正确的是( )A .36.0与36精确度相同B .36.0精确到个数C .36.0有三个有效数字D .36.0有两个有效数字二、填空题16.如图,△ABC 中,AB=AC ,∠A=45°,AC 的垂直平分线分别交AB ,AC 于D ,E 两点,连接CD .如果AD=1,那么tan ∠BCD=________.17.已知直角三角形两条直角边的长是6和8,则其内切圆的半径是______.18.已知反比例函数y=-8x的图象经过点P(a+1,4),则a=_____.-319.三角形中,和顶角相邻的外角的平分线和底边的位置关系是 .20.图形的平移和旋转都不改变图形的和.21.如图所示,甲、乙、丙、丁四个长方形拼成正方形EFGH,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是32cm2,四边形ABCD的面积是20cm2,则甲、乙、丙、丁四个长方形周长的总和为 cm.解答题三、解答题22.口袋里装有大小相同的卡片4张,且分别标有数字1,2,3,4.从口袋里抽取一张卡片不放回,再抽取一张.请你用列举法(列表或画树状图)分析并求出两次取出的卡片上的数字之和为偶数的概率.23.如图,一个底面直径AB=4 cm 的圆锥,内接一个底面直径为 2 cm,高线为 lcm 的圆柱. 求圆锥的高线和母线长.24.如图所示.在△ABC中,∠BAC=120°,AB=AC,BC=4,请你建立适当的平面直角坐标系,并写出A、B、C各点的坐标.25.一篇稿件有3020 千字,要8小时内打完,在第一小时内已打出 60 千字,问在剩余的时间内,每小时至少要打出多少字,才能按时完成任务?26.宏志高中高一年级近几年来招生人数逐年增加,去年达到 550 名,其中有面向全省招收的“宏志班”学生,也有一般普通班学生.由于场地、师资等限制,今年的招生人数最多比去年增加 100 人,其中普通班学生,可多招20%,“宏志班”学生可多招 10%,问今年最少可招收“宏志班”学生多少名?27.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:捐款(元)1015305060人数3611136因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?28.如图所示,点E,F是△ABC边AC,AB上的点,请问在BC边上是否存在一点N,使△ENF的周长最小?29.如图所示,已知∠E=∠F=90°,∠B=∠C ,AE=AF ,则以下结论有哪些是成立的? 并挑选一个将理由补充完整.①∠1=∠2;②BE=CF ;③CD=FN ;④△AEM ≌△AFN . 成立的有: .我选 ,理由如下:30.将下列各数按从小 到大的次序排列,并用“<”号连结起来.1211-,1413-,2423-,65-,4746-. 612142447511132346-<-<-<-<-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.C5.D6.D7.B8.B9.C10.D11.BC13.B14.A15.C二、填空题 16.-117.218.19. 平行20.形状,大小21.48三、解答题 22.解法一:列表∴P (和为偶数)41123== 方法二:画树状图:∴P13.23.由题意得SO CD SO AB '=,即214SO SO-=,∴SO=2 cm,答:圆雉高为2 cm ,母线长为 cm .3(4,3)2(4,2)1(4,1)4(3,4)2(3,2)1(3,1)4(2,4)3(2,3)1(2,1)4(1,4)3(1,3)2(1,2)4321答案不唯一,略25.423千字26.100名27.解:(1)被污染处的人数为11人.设被污染处的捐款数为x元,则 11x+1460=50×38 ,解得x=40答:(1)被污染处的人数为11人,被污染处的捐款数为40元.(2)捐款金额的中位数是40元,捐款金额的众数是50元.28.图的画法是:作点E关于BC所在直线的对称点E′,连结FE′,交BC于N,即得△NEF的周长最小29.①②④,以下略30.612142447-<-<-<-<-511132346。
2023年常州市武进区中考一模数学试题注意事项: 1、本试卷满分为120分,考试时间为120分钟.2、请将答案全部填写在答题卡上,在本试卷上答题无效。
一.选择题(本大题共8小题,每小题2分,共16分)1.|-2|=( ) A.12 B.2 C.-2 D.−122.下列各式中,运算结果等于a 2的是( )A.a 3-aB.a+a C .a ·a D.a 6 ÷a 3 3.2022年6月5日上午10时44分07秒,熊熊的火焰托举着近500000千克的火窗和飞船冲上云霄,这是我国长征2F 运载火篮将“神舟十四号”截人飞船送入太空的壮观情景.其中,数据500000用科学记数法可以表示为( )A.0.5×106B.50×104C.5×104D.5×1054.一元二次方程2x 2+x-1=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.李老师准备在班内开展“道练”心理“”安全“三场专题教育讲座,若三场讲座随机安排,则”心理“专题讲座被安排在第一场的概率为( )A.16B.14C.13D.126.某校举行“预防溺水,从我做起”演讲比赛,7位评委给选手甲的评分如下:90,93,88,93, 85,92,95,则这组数据的众数和中位数分别是( )A.95,92B.93,93C.93,92D.95,937.如图是y 关于x 的一个函数图象,根据图象,下列说法正确的是( )A.该函数的最大值为7B.当x ≥2时,y 随x 的增大而增大C.当x =1时,对应的函数值y =3D.当x =2和x =5时,对应的函数值相等8.如图,在矩形ABCD 中,AB =9,BC =7,M 、N 分别为边CD ,AB 上的点,将四边形ADAN沿MN'翻折至四边形EFMN ,点E 落在BC 边上,且BE =3,则DM 的长为( )A.52B.83 c.114 D.125二.填空题(本大题共10小题,每小题2分,共20分)9.要使√(x−1)有意义,则x的取值范围是______.10.如图,△ABC中,∠C=90°,sinA=45,则cosB=_____.11.在平面直角坐标系中,点P(-3,5)与点Q(3,m-2)关于原点对称,则m的值是______.12.已知m,n同时满足2m+n=3与2m-n=1.则4m2-n2的值是________.13.“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如: 从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,表示的方程为x+4y=23,则表示的方程是_______________.14.圆锥的母线长12cm,底面圆的直径长10cm,则该圆锥的侧面积等于 cm2.(结果用含π的式子表示)15.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____ .16.如图,AB是00的直径,点C、D在00上,∠ADC=30°,则∠BOC的大小是_______°.17.如图,已知F是△ABC内的一点,PD∥BC,FE∥AB,若四边形BDFE的面积为2,BD=13BA,BE=14BC·则AABC的面积是_____.18.如图,在x轴的上方作正方形OPMN,其对角线交点I(a,b)在第一象限,双曲线y=kx 经过点N和I,则ab的值是______.三.解答题(本大题共10小题,共84分)19.(8分)(1)计算:(-2022)0 -2tan45°+|-2|+9(2)化简:(1+a)(1-a)+(a+3)220.(8分)(1)解不等式组: (2)解方程:3x(x+1)=2(x+1)21.(6分)如图,四边形ABCD是菱形,点B,F分别在AB,AD上,AE=AF.求证:CE=CF.22.(8分)在“世界读书日”前夕,某校开展了“共享阅读,向上人生”的读书活动.活动中,为了解学生对书籍种类(A:艺术类,B:科技类,C:文学类,D:体育类)的喜欢情况,在全校范圈内随机抽取若干名学生,进行问卷调查(每个被调查的学生必须选择而且只能在这四种类型中选择一项)将数据进行整理并绘制成下面两幅不完整的统计图.(1)这次调查中,一共调查了_____名学生.(2)求出扇形统计图中“D”所在扇形的圆心角大小,并补全条形统计图;(3)若全校有1200名学生,请估计喜欢B(科技类)的学生有多少名?2.(8分)202年4月15日是第七个全民国家安全教育日,某故七、八年级举行了一次国家按全知识此赛,经过评比后,七年级的两名学生(用A,B表示)和八年级的两名学生(用C,D表示)获得优秀奖.(1)从获得优秀奖的学生中随机抽取一名分享经验,恰好抽到七年级学生的概率是_____;(2)从获根优秀奖的学生中随机抽取两名分享经险,请用列表法或画树状图法,求抽取的两名学生恰好一名来自七年级、一名来自八年级的概串.24.(8分)某商品经销店数购进A、B两种纪念品,用360元购进的A种纪念品与用450元购进的B种纪念品的数量相同,每件B种纪念品的进价比A种纪念品的进价贵10元. (1)求A、B两种纪念品每件的进价分别为多少元?(2)若该商店A种纪念品每件售价50元,B种纪念品每件售价65元,这两种纪合品共购进200件,这两种纪念品全部售出后总获利不低于2400元,求A种纪念品最多购进多少件?25.(8分)如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的00与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.(1)求证:FG是⊙O的切线:(2)若BG=1,BF=3,求CF的长.26.(8分)如图,一次函数y=kx+b(k≠0)的图象与x轴、y轴分别相交于C、B两点,与反比例函数y=mx(m≠0,x>0)的图象相交于点A,OB=1,如tan∠OBC=2,BC:CA=1:2.(1)求反比例函数的表达式:(2)点D是线段AB上任意一点,过点D作y轴平行线,交反比例函数的图象于点E,连接BE.当△BDE面积为254时,求点D的坐标.27.(10分)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形:②矩形;③变形;④正方形”中,一定是“等角线四边形”的是_______(填序号):(2)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,且BC=DF,连接EF,AF,求证:四边形ABEF是等角线四边形:(3)如图2,△ABC中,∠ABC=90°,AB=4,BC=3,D为线段AB的垂直平分线上一点,若以点A,B,C,D为顶点的四边形是等角线四边形,求这个等角线四边形的面积.28.(12分)如图,抛做线y=-x2-2x+3与x轴交于A,B两点(A在B的右侧),与y 轴交于点C,顶点为D、抛物线的对称轴与x轴交于点F,E是对称轴上的一个动点. (1)若CE∥BD,求sin∠DEC的值:(2)若∠BCE=∠BDF,求点E的坐标:DE取得最小值时,连接并延长AB交抛物线于点M,请直接写出AM的长(3)当AE+√55度.。
2023年江苏省常州市中考数学摸底考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一张矩形纸片按如图甲和乙所示对折,然后沿着图丙中的虚线剪下,得到①,②两部分,将①展开后得到的平面图形是()A.三角形B.矩形C.菱形D.梯形2.一个五边形能画出的对角线条数为()A.2条B.3条C.4条D.5条3.在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数的平均数为()A.38 B.39 C. 40 D.414.已知在△ABC和△DFE中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是()A.AB=DE,AC=DF B.AC=EF,BC=DF C.AB=DE,BC=FE D.∠C=∠F,BC=FE 5.下列多项式的运算中正确的是()A.222()x y x y-=-B.22(2)(22)24a b a b a b----C.11(1)(1)1222la b ab+-=-D.2(1)(2)2x x x x+-=--6.某课外小组分组开展活动,若每组 7 人,则余下 3 人;若每组8人,则少5人,设课外小组的人数为 x人和分成的组数为y 组,根据题意可列方程组()A.7385y xy x=+⎧⎨+=⎩B.385y xx y=+⎧⎨=+⎩C.7385y xy x=-⎧⎨=+⎩D.7385y xy x=+⎧⎨=+⎩二、填空题7.如图,AB 是⊙O 的直径,D 在 AB 的延长线上,BD = BO,DC 切⊙O于点 C,则∠CAD= .8.已知I为△ABC的内心,∠B=50O,则∠AIC= .9.Rt△ABC中, 4cos2A-3=0,那么∠A=________.10.△ABC的两边分别为5,12,另一边c为奇数,且a+b+c•是3•的倍数,•则c•应为________,此三角形为________三角形.11.平行四边形相邻两边长分别为7和2,若较短的一条对角线与相邻两边所围成的三角形的周长为偶数.则这条对角线的长为.12.如图,l是四边形ABCD的对角线,如果AD∥BC,OB=OD有下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④A0=C0.其中正确的结论是 (把序号填上).13.P(2,a),Q(b,-3)关于x轴对称,则a= ,b= .14.如图,AB⊥BD,CD⊥BD,AB=DC,∠A=68°,则∠C= 度.15.为了了解某一路口的汽车流量,调查了10天每天同一时段里通过该路口的汽车车辆数,结果如下:167、183、209、195、178、204、215、191、208、197,试用计算器求出平均每天车辆数为(精确到1辆) 辆.16.袋中装有 6个小球,颜色为红、白、黑三种,除颜色外其他均相同. 若要求摸出一个球是自球和不是白球的可能性相等,则黑球和红球共有个.17.若1232n ,则n=_____.18.一个号码映在镜子里的像如图所示,则这个号码是________.19.看图填空.(A、0、B在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C平分∠AOD,0E平分∠BOD,则∠AOD=2 =2 .∠BOE= =12.20.华氏温度f和摄氏温度C的关系为9325f c=+,当人的体温为 37℃时,华氏温度为度.解答题21.为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品价格为元.3a5解答题三、解答题22.如图,在灯光下有一把遮阳伞,画出遮阳伞在灯光下影子的示意图.(用线段表示)23.某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛,八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组出哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?24.如图,在梯形ABCD中,AD∥BC,AB=CD,延长CB至E,使EB=AD,连AE,求证:AE=AC.25.某班组织一次数学测试,全班学生分为两组,这两组成绩(单位:分)的分布情况如下图所示.(1)全班学生数学成绩的众数是分.全班学生数学成绩为众数的有人,全班学生数学成绩的中位数是分;(2)分别计算这两个小组超过全班数学成绩中位数的人数占全班人数的百分比.26.如图争指出左面三个平面图形是右面这个物体的三视图中的哪个视图.27.如图已知∠B=∠C,AB=AC,则BD=CE,请说明理由(填充)解:在△ABD和△ACE中∠B=∠C()∠A= ( )AB= ( 已知)∴△ABD≌ ( )∴BD= ( )28.有这样一道题,计算)3()2(2)433(323323223y y x x y xy x xy y x x -+-++---- 的值,其中3,51-==y x ,有位同学说即使不告诉他x 的值,他也能求出来,你觉得他说的有道理吗?为什么?29.如图,一个长方体,(1)用符号表示出与棱A 1B 1平行的棱;(2)用符号表示出过棱AB 的端点且垂直于AB 的棱;(3)棱DD 1与棱BC 没有交点,它们平行吗?30.列式计算:(1)13 的相反数,加上-27 的绝对值,再加上负 31 的和.(2)从-3 中减去712-与16-的和,所得的差是多少? (3)和为-8. 6,一个加数为 -3. 2,求另一个加数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.C4.B5.D6.C二、填空题7.308.115°9.30°10.13,直角11.712.①②④13.3,214.6815.19516.317.-518.250219.(1)∠AOC,∠COD,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC,∠COD,∠DOE,∠BOD20.98.621.三、解答题22.线段 AB 就是阳伞柱灯光下的投影.23.共 6 对,恰好选出小敏和小强的概率是16. 24.连结BD25.(1)95,20,92.5;(2)第一组超过全班数学成绩中位数的人数占全班人数的百分比为111100%24%50+⨯=,第二组超过全班数学成绩中位数的人数占全班人数的百分比为94100%26%50+⨯=. 26.从左到右依次为主(或俯)视图、俯(或主)视图、左视图 27.略28.有道理,原式=-3y 3,与x 值无关,当3y =-时,原式=81 29.(1)AB ∥DC ∥D 1C 1∥A 1B 1 (2)AA 1⊥AB ,DA ⊥AB ,CB ⊥AB ,BB 1⊥AB (3)不平行. 30.(1)(13)|27|(31)17-+-+-=- (2)711(3)[()()]21264---+-=- (3)-8.6-(-3.2)=-5.4。
2023年江苏省常州市中考数学综合模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知α是等腰直角三角形的一个锐角,则sin α的值为( )A .12B .22C .32D .12.用两个全等的三角形拼成四边形,可拼成平行四边形的个数是( ) A .2个 B .3个 C .4个 D .5个3.根据下列条件能画出唯一△ABC 的是 ( )A .AB =3,BC =4,AC =8B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =64.下列命题中是真命题的是 ( )A .对角线互相垂直的四边形是平行四边形B .对角线相等的四边形是平行四边形c .对角线互相垂直且相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形5.在函数1y x =-中,自变量x 的取值范围是( )A .x ≥-lB .x ≠1C .x ≥1D .x ≤16.关于不等式22x a -+≥的解集如图所示,a 的值是( )A .0B .2C .-2D .-47.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个两位数,是“上升数”的概率是( )A .21B .52C .53D .187 8.使分式221a a a ++的值为零的a 的值是( ) A .1B .-1C .0D .0 或-1 9.观察下面的图形,由图甲变为图乙,其中既不是通过平移也不是通过旋转得到的图案是( )10.如图,在数轴上表示到原点的距离为3个单位的点有( )A .D 点B .A 点C .A 点和D 点 D .B 点和C 点二、填空题11.若锐角 ∠A 满足02sin(15)3A -=,则∠A= . 12.计算:cos45°= ,sin60°×cos30°= .13.已知,AB 和DE 是直立在地面上的两根立柱.AB =5m ,某一时刻AB 在阳光下的投影为3m ,同时测量出DE 在阳光下的投影长为6m ,则DE = m .14.已知函数y =(m +2)x m(m+1)是二次函数,则m=______________.115.若二次函数2y ax =的图象经过(1,一2),则a= .16.当三角形面积是8cm 2时,它的底边上的高h (cm )与底边长x(cm)之间的函数解析式是 .h=16x17.已知一个样本容量为40的样本,把它分成七组,第一组到第五组的频数分别为5,12,8,5,6,第六组的频率为0.05,第七组的频率为 .18.点(22)A ,关于原点O 对称的点A '的坐标为( , ).19.如图,从2街4巷到4街2巷,走最短的路线的走法共有 种.20.如图,将△ABC 沿CA 方向平移CA 长,得△EFA ,若△ABC 的面积为3cm 2,则四边形BCEF 的面积是__________cm 2.21.如图所示,AD 是△ABC 的中线,AB=8.AC=6,则△ABD 与△ACD 的周长之差是 .22.如图,0A的方向是北偏东l5°,0B的方向是西偏北50°.(1)若∠AOC=∠AOB,则OC的方向是;(2)OD是OB的反向延长线,0D的方向是;(3)∠BOD可看作是0B绕点0逆时针方向旋转至0D所形成的角,作∠BOD的平分线OE,OE 的方向是;(4)在(1)、(2)、(3)的条件下,OF是OE的反向延长线,则∠COF= .三、解答题23.太阳光线与水平线的夹角在新疆地区的变化较大,夏至时夹角最大,冬至时夹角最小,最小夹角约为28.现有两幢居民住宅楼高为15米,两楼相距20米,如图所示.(1)在冬至时,甲楼的影子在乙楼上有多高?(2)若在本小区内继续兴建同样高的住宅楼,楼距至少应该多少米,才不影响楼房的采光(前一幢楼房的影子不能落在后一幢楼房上)?(计算结果精确到0.1米)24.如图,花丛中有一路灯灯杆 AB,在灯光下,小明在D点处的影长 DE= 3m,沿 BD 方向行走到达G点,DG= 5m,这时小明的影长GH= 5m .如果小明的身高为 1.7m,求路灯灯杆AB 的高度(精确到0.1 m).25.如图,△ABC中,∠ABC=100°,AM=AN,CN=CP,求∠MNP的度数.26.如图,在△ABC中,AB=AC=41 cm,D是AC上的点,DC= 1cm,BD=9 cm,求△ABC 的面积.27.如图,在直线a,b,c,d 构成的角中,已知∠1 =∠3,∠2=110°,求∠4 的度数.28.小敏在解方程2x+5=x+7时,是这样写解的过程的:2x+5=x+7=2x-x=7-5=x-2(1)小敏这样写对不对?为什么?(2)应该怎样写?29.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.30.如图所示,已知∠ACB=90° , AB=13 , AC=12 ,∠BCM=∠BAC,求cosB 及点B 到直线MN的距离.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.D5.C6.A7.B8.D9.A10.C二、填空题11.75°12.2,3413.1014.15.-216.17.0.0518.(22)--,19.620.921.222.(1)北偏东70°(2)南偏东40°(3)南偏西50°(4)20三、解答题23.解:(1)如图所示,作DE AB ⊥,垂足为E由题意可知28ADE ∠=,20DE BC ==在Rt ADE △中,AE ADE DC =6.1028tan 20≈⋅= ,则DC EB AE =-= 即冬至时甲楼的影子在乙楼上约4.4(2)楼距至少28.2米,才不影响楼房的采光.24. 28 A 甲B C 乙设 AB=x, BD=y ,△ABE 中,∵CD ∥AB ,∴△ECD ∽△EAB ,∴1.733x y =+ △ABH 中,∵FG ∥AB ,∴△HGF ∽△HBA ,∴1.7510x y=+,解得 x=5.95 即路灯杆 AB 的高度约为 6.0 m . 25.40°26.184.5 cm 227.110°28.(1)错,解方程不能用连等表示 (2)改正:x=229.4,15,2630.如图过 B 作BH ⊥MNM 于H ,222213125BC AB AC =-=-=,5sin sin 13BC A BCH AB ===∠,5cos 13B = ∵sin 5BH BH BCH BC ∠==,∴2513BH =,即 B 到直线的距离为2513.。
2023年江苏省常州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,小敏在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,若命中篮筐中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5 mD .4.6 m2.抛物线223y x x =-++的顶点在( )A . 第一象限B .第二象限 C. 第三象限 D . 第四象限 3.如图,在⊙O 中,直径CD=5,CD ⊥AB 于E ,OE= 0.7,则AB 的长是( ) A .2.4B .4.8C .1.2D .2.5 4.两个圆的圆心都是O ,半径分别为 r 1和 r 2,且 r 1<OA<r 2,那么点A 在( )A .半径为r 1的圆内B .半径为r 2 的圆外C .半径为r 1的圆外,半径为r 2的圆内D .半径为r 1的圆内,半径为r 2的圆外5.抛物线y =(x -1)2+2的对称轴是( )A .直线x =-1B .直线x =1C .直线x =-2D .直线x =2 6.已知AABC 的三个内角度数比为2:3:4,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 7.下列图形中.成轴对称图形的是 ( )8.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( )A .3:4B .2:3C .3:5D .1:29.用四舍五入法对60340取近似数,保留两个有效数字,结果为( )A .6.03×104B .6.0×104C .6×104D .6.0×10310.某单位第一季度账面结余-1. 3 万元,第二季度每月收支情况为(收入为正):+4. 1 万 元,+3. 5 万元,-2. 4 万元,则至第二季度末账面结余为( )A .-0.3 万元B . 3.9 万元C .4.6 万元D .5.7 万元二、填空题11.一个凸多边形的内角和与外角和相等,它是 边形 . 12.定理“在一个三角形中,等角对等边”,它的逆定理是 .13.当2a =-时,2(1)a a +-= .14.请举出一个主视图和俯视图相同,但是左视图不同的几何体: .15.如图 ,直线a ∥b ,则∠ACB = .16.当x=2时,代数式ax 3+bx+1的值为6;那么当x=-2时,这个代数式的值是_____.17.一个汽车牌照在镜子中的像为,则该汽牌照号码为 .18.填空:(1)若1041n a a a ÷=,,则n= ; (2)若104n a a a ÷=,则n= ;(3)若1232n =,则n= ; (4)若0.000520 5.2010n =⨯,则n= .19.若223P a ab b =++,223Q a ab b =-+,则代数式[2()]P Q P P Q -----= .20.已知x 2+4x -2=0,那么3x 2+12x +2000的值为 .21.一个两位数,个位上的数字为a ,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .三、解答题22.小明为了测量某一高楼 MN 的高,在离 N 点 200 m 的 A 处水平放置了一个平面镜,小明沿 NA 方向后退到点C 正好从镑中看到楼的顶点M ,若 AC=l5m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1 m).23.某市的A 县和B 县春季育苗,分别急需化肥90 t 和60 t ,该市的C 县和D 县分别储化肥l00 t 和50 t ,全部调配给A 县和B 县,已知C 、D 两县化肥到A 、B 两县的运费(元/吨)如下表所示:(1)设C 县运到A 县的化肥为x(t),求总运费W(元)与x(t)的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.24.已知分式:221A x =-,1111B x x=++-.()1x ≠±.下面三个结论:①A ,B 相等,②A ,B 互为相反数,③A ,B 互为倒数,请问哪个正确?为什么?25.如图①所示,长方形通过剪切可以拼成直角三角形,方法如下:仿照上图,用图示的方法,解答下列问题:(1)如图②所示,已知直角三角形,设计一种方案,将它分成若干块,再拼成一个与之等面积的长方形;(2)如图③所示,对任意一个三角形,设计一种方案,把它分成若干块,再拼成一个与它等面积的长方形.26.某市汽车站A到火车站F有四条不同的路线.如图所示,其中最短的路线是什么?(用字母表示)?27.某县教育局专门对该县2004年初中毕业生毕业去向做了详细调查,将数据整理后,绘制成统计图,根据图中信息回答:(1)已知上非达标高中的毕业生有2328人,求该县2004年共有初中毕业生多少人?(2)上职业高中和赋闲在家的毕业生各有多少人?(3)今年被该县政府确定为教育发展年,比较各组的百分率,你对该县教育发展有何积极建议?请写出一条建议.28.如图是武汉市目前水资源结构的扇形统计图,请根据图形回答下列问题:(1)图中各个扇形分别代表了什么?你知道地下水所占的百分比是多少吗?(2)从统计图中你能确定武汉市的供水资源主要来自哪里?29.有一种“24 点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J、Q、K 分别表示11、12、13,A表示 1). 小明、小聪两人抽到的 4 张牌如图所示,这两组牌都能算出“24 点”吗?为什么?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?30.学校现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新建校舍的面积是拆除时校舍面积的3倍还多1000平方米.这样,计划完成的校舍总面积比现有校舍面积增加20%.已知拆除旧校舍每平方米需费用80元,建造新校舍每平方米需费用700元,问完成计划需费用多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.C5.B6.A7.D8.A9.B10.B二、填空题四12.在一个三角形中,等边对等角13.114.答案不唯一,如横放的圆柱15.78°16.-417.SM1796318.(1)14;(2)14;(3)-5;(4)-419.12ab20.200621.1120a+三、解答题22.∴BC⊥CA,MN⊥AN,∴∠C=∠N,∵∠BAC=∠MAN..∴△BCA∽△MNA.∴BC ACMN AN=,即1.615200MN=, 1.620015213()MN m=⨯÷≈⋅.23.(1)W=10x+4800(40≤x≤90);(2)C县运到A县40 t,运到B县60 t;D县运到A县50 t 24.解:A B,互为相反数正确.因为:1111Bx x=-+-11(1)(1)(1)(1)x xx x x x-+=-+-+-(1)(1)(1)(1)x xx x--+=+-221Ax-==--.25.(2)26.从A经过线段BE到F27.(1)7760人 (2)1017人;923人 (3)如“赋闲在家的学生比例大,而职高发展不足,建议发展职高以吸纳赋闲在家的学生.”又如“普通高中之中,达标高中所占比例偏低,建议把更多的非达标高中发展为达标高中.”28.(1)长江水,地下水,水库水,湖泊水;7% (2)长江水29.(1)小明抽到的牌可以这样算:①(3-2+5)×4=24,②(3+4+5)×2 = 24 ,③ 52 - 4 + 3 = 24 , ④5+3+42 =24 ,允许包含乘方运算时可列式为 5+3+24 =24 (2)小聪抽到的牌可以这样算:①(11 + 10)+(5-2) =24 ,②11×10÷5+2 = 24 ,③11×2+10÷5=24,④lO÷5×11+2=24,允许包含乘方运算时可列式为 52-11+10 =2430.3970000元。
2023年江苏省常州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在菱形ABCD 中,∠ADC=120°,则BD :AC 等于( )A .3:2B .3:1C .1:2D .1:32.三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是( )A .9B .11C .13D .11或133.如图是甲、乙在同一条道路上跑步时路程s 与时间t 之间的关系图.甲追上乙后8s 到达终点,这时乙离终点还有( )A .3 mB .4 mC .5 mD .6 m4.如果61x -表示一个正整数,那么整数x 可取的值的个数是( ) A .2 B .3 C .4 D .55.若9x 2+kx+16是一个完全平方式,则k 的值等于( )A.12B.24C.-24D.±246.下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a7.如图是某只股票从星期一至星期五的最高股价与最低股价的折线统计图,则这5天中最高股价与最低股价之差最大的一天是( )A .星期二B .星期三C .星期四D .星期五(第6题图)星期日最低股价日最高股价股价(元)11.51110.5109.598.58五四三二一8.第五次全国人13普查资料显示,2000年海南省总人口为786.75万,如图表示海南省 2000年接受初中教育这一类别的数据丢失了,那么,结合图中信息,可推知2000年海南省接受初中教育的人数为 ( ) A .24.94万 B .255.69万 C .270.64万 D .137.21万2000年海南省受教育程度人口统计图9.如图,每个小正方形的边长都是1,图中A 、B 、C 、D 、E 五个点分别为小正方形的顶点,则下列说法不正确的是( )A .△ABE 的面积为 3B .△ABD 的面积是4. 5C .线段 BE 与 DE 相等D .四边形 BCDE 不可能是正方形二、填空题10.半径分别为6cm 和4cm 的两圆内切,则它们的圆心距为 cm .11.如图□OABCD 中,点E 为边 CD 上一点,AE 的延长线交 BC 的延长线于点 F. 请写出图中的一对相似三角形△ ∽△ .(只使用图中已知字母,不再添加埔助线)12.如图表示△AOB 和它缩小后得到的△GOD ,它们的相似比为 . 13.如图,直角三角形APO 的面积为 3,则此双曲线的函数解析式为 .14.如图,P 为菱形ABCD 的对角线上一点,PE ⊥AB 于点E ,PF ⊥AD 于点F ,PF=3cm ,则P 点到AB 的距离是 cm.15.△ABC 中,AB=AC ,∠A=∠C ,则∠B=_______°.16.已知 A ,B 的坐标分别为(-2,0),(4,0),点P 在直线2y x =+上,如果△ABP 为等腰三角形,这样的 P 点共有 个.17.如图,在方格纸上有一个顶点都在格点上的△ABC ,则这个三角形是________三角形.18.如图,点D 是△ABC 内部一点,DE ⊥AB 于E ,DF ⊥BC 于F ,且DE=DF ,若∠ABD=26°,则∠ABC= .19.等边三角形三个角都是 .20.若A=3x -2,B=1-2x ,C=-5x ,则A ·B+A ·C=________.21.按图示程序计算,若输入的 x 值为32则输出的结果为 .22.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .三、解答题23.画出图中各个几何体的三视图.24.已知锐角△ABC,如图,画内接矩形DEFG,使 DE 在BC边上,点G、F分别在AB、AC 边上,DE:GD=2:1.25.图纸上画出的某个零件的长是a(mm),如果比例尺是 1:20,那么这个零件实际的长是多少?如果比例外尺是4: 1 呢?26.观察下列各图,填写表格:一边上的小圆圈数12345小圆圈的总数1361015(1)第 6 个图形中应该有多少个小圆圈?(2)如果用 n 表示等边三角形一边上的小圆圈数,用 m 表示这个三角形中小圆圈的总数,那么m 和n 的关系是什么?是哪种函数关系?27.房梁的一部分如图所示,其中BC ⊥AC ,∠A=30°,AB=7.4 m ,点D 是AB 的中点,且DE ⊥AC ,求BC 、DE 的长.28.用分数或整数表示下列各负整数指数幂的值:(1)32-;(2)31-;(3)3(3)--;(4)20.0l -29.解方程组2345y x x y =⎧⎨-=⎩和124223x y x y ⎧-=⎪⎨⎪+=⎩各用什么方法解比较简便?求出它们的解.30.解下列方程:(1)3(1)2x x -=; (2)123x x --=.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.C5.D6.D7.B8.B9.D二、填空题10.211.ADE ,FCE12.2:113. 6y x=14. 315.6016.417.等腰18.52°19.60°20.217212-+-x x 21.1222. 答案:4三、解答题23.24.(1)画矩形 G ′D ′E ′F ′,使 D ′E ′在BC 边上,G ′在 AB 边上,且 D ′E ′:D ′G ′=2:1;(2)连结 BF ′,并延长交 AC 于F ;(3)过F 画 FE ⊥BC 于E ,画 FG ∥BC 交AB 于G ;(4)过G 画 GD ⊥BC 于D ;所作四边形 DEFG 就是所求的矩形.25.比例尺是 1:20 时,零件实际长为20a(mm)..当比例尺为 4:1 时,零件实际长为4a (mm).. 26.(1)第 6 个图形中应有 21 个小圆圈(2)123m n =++++,即(1)2n n m +=,是二次函数关系. 27.BC=3.7 m ,DE=1.85 m28.(1)18;(2) 1;(3)127-;(4) 10000 29.对于方程组2345y x x y =⎧⎨-=⎩,用代入法解得12x y =-⎧⎨=-⎩;对于方程组124223x y x y ⎧-=⎪⎨⎪+=⎩,用加减法解得5412x y ⎧=⎪⎪⎨⎪=⎪⎩30.(1) 3x =;(2) 2.5x =。
2023年江苏省常州市中考数学第一次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,矩形()ABCG AB BC <与矩形CDEF 全等,点B C D ,,在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是( )A .0B .1C .2D .32. 如图,△ABC 中,AC=8,AB = 12,BC = 10,E 是AC 中点,∠AED =∠B ,则△ADE 与△ACB 的周长之比为( )A .1:2B .1:3C .2:3D .2:53.已知函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .a >0,c >0B .a <0,c <0C .a <0,c >0D .a >0,c <04.若方程01)2(222=+-++-x m mx m m是关于x 的一元二次方程,则m 的值是( ) A .0或2B .-1或3C .2D .无实数解 5.如果菱形的周长是8cm ,高是1cm ,那么这个菱形两邻角的度数比为( )A .1:2B .1:4C .1:5D .1:6 6.下列各图中,是轴对称图案的是( )7.5x +,则x 的取值范围是( )A .x>-5B .x<-5C .x ≠-5D .x ≥-58.下列各点在函数12y x =-的图象上的是( ) A . (2,-1) B .(0,2) C .(1,-1)D .(1,0) 9.如图,AB ∥CD ,如果∠l 是∠2的2倍,那么∠1等于( )A .60°B .90°C .120°D .150°10.近似数0.07030的有效数字和精确度分别是( )A .4个,精确到万分位B .3个,精确到万分位C .4个,精确到十万分位D .3个,精确到十万分位二、填空题11.在阳光明媚的上午,小波上午 9:30 出去时测量了自已的影子,出去一段时间后,回来时,他发现这时的影长和上午出去时的影长一样长,则小波出去的时间约为 小时. 12.如图,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环,则该圆环的面积为 .13.如图,四个函数的图象分别对应的函数关系式是①2y ax =;②2y bx =;③2y cx =;④2y dx =,则 a 、b 、c 、d 的大小关系是 .14.一加油站贮存油500 t ,平均每天加油 y(t)与可加天数 x(天 )之间的函数解析式是 .15. 如图,在数轴上,A ,B 两点之间表示整数的点有 个.16.在四边形ABCD 中,已知∠A+∠B=180°,要使四边形ABCD 是梯形,还需添加一个条件,如果这个条件是与角有关的,那么这个条件可以是 .17.定理“对角线互相平分的四边形是平行四边形”的逆定理是: .18.为了了解某中学九年级250名学生升学考试的数学成绩,从中抽取了50名学生的数学成绩进行分析,下面是50名学生数学成绩的频数分布表.频数分布表根据题中给出的条件回答下列问题:(1)在这次抽样分析的过程中,样本是 ; (2)补全频数分布表中的空白之处; (3)在这次升学考试中,该校九年级数学成绩在90.5~100.5分范围内的人数约为 人.19.如图,将△ABC 绕着点A 按逆时针方向旋转70°后与△ADE 重合,已知∠B=105°,∠E=30°,那么∠BAE= 度.20. 分解因式:46mx my += .21.已知1a +1b =92()a b +,则b a a b+=_______. 22.“普通纸放在火上,•纸被点燃”是 事件;“月球绕着地球转”是 事件;“石狮子在天上飞”是 事件(填“必然”或“不确定”或“不可能”).23.某足协举办了一次足球比赛,记分规则为:胜一场积3分,平一场积1分,负一场积0分,若甲队比赛了5场后共积7分,则甲队平 场.24.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户 5 月份交水费 45 元, 则所用水为 度.月用水量不超过12度的部分 超过 12度不超过 18度的部分 超过 18度的部分 收费标准(元/度) 2.00 2.50 3. 00三、解答题25.如图,两建筑物的水平距离 BG 为 27m ,从点A 测得点D 的俯角α=30°,测得点C 的俯角β= 60°,求 AB 和CD 两建筑物的高.26. 为了方便看电视,并有利于彩电在开机时产生热量的散发,将一台 54寸的大背投彩电放置墙角,如图所示是它的俯视图,已知∠DAO=22°,彩电后背AD=110厘米,平行于前沿 BC ,且与 BC 距离为60 厘米,则墙角0到前沿 BC 的距离是多少? (精确到1厘米)27.如图,在矩形 ABCD 中,AB =6 cm ,BC=12 cm ,点P 从点A 出发,沿 AB 边向点 B 以1cm/s 的速度移动,同时点 Q 从点B 出发沿 BC 边向点C 以2cm/s 的速度移动,回答下列 问题:(1)设运动后开始第 t(s)时,五边形 APQCD 的面积为 S(m 2),写出 S 与t 的函数关系式,并指出自变量 t 的取值范围;(2)t 为何值时S 最小?求出 S 的最小值.28.下列语句中,哪些是命题,哪些不是命题?若是命题,指出它的题设和结论.(1)立方等于本身的数是0或1;(2)画线段AB=3 cm .29.若2228162n n ⨯⨯=,则n 的值是多少?30.当m 取什么整数时,方程组2630x my x y -=⎧⎨-=⎩的解是正整数?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.C5.C6.B7.D8.C9.C10.C二、填空题512.9π 13.a>b>c>d.14. 500y x=15. 416.∠B+∠C ≠180°等17.平行四边形的对角线互相平分18.(1)被抽取的50名学生的数学成绩;(2)划记:;频数:6,10,50;(3)85 19.2520.2(23)m x y +21.25 22. 必然,必然,不可能23.1或424.20三、解答题25.如图,过A 作AM ∥BC ,交 CD 的延长线于M ,由题意得,四边形 ABCM 是矩形. ∵∠MAC=60°,∴∠BAC=30°.在 Rt △C 中,tan BC BAC AE ∠=,∴0273tan 30BC AB ==在 Rt △AMD 中,tan AM DM MAD ∠=,∵∠MAD=30°,∴DM=AM ×tan30°=273∴27393183CD AB DM =-=-=答:AB 的高为183m .26.在△AOD 中,AD=110,∴sin 22o OD AD =⋅,cos 22oOA AD =⋅, 利用面积法得斜边 AD 边上的高为2sin 22cos 22sin 2cos 2238.2o oo o AO OD AD AD AD AD⋅⋅==≈厘米 ∴0到 BC 的距离为38.2+60≈98 厘米.27.(1) PBQ ABCD S S S ∆=-矩形=1126(6)22t t ⨯--⋅=2672t t -+, t 的取值范围为 0≤t<6.(2) 2672s t t =-+2(3)63t =-+,∴当 t=3 时,63s =最大值cm 2. 28.(1)是;题设:一个数的立方等于它本身;结论:这个数是0或1;(2)不是 29.因为2228162n n ⨯⨯=,所以34222(2)(2)2n n ⨯⨯=,34222222n n ⨯⨯=,1342222n n ++=,即7122n +=,解得3n = 30.26(1)30(2)x my x y -=⎧⎨-=⎩,由②,得3x y =.代入①,得66y my -=,所以66y m =-. 因为y 是正整数,所以66m-是正整数,6m -= 1,2,3,6,而m 是整数, 于是m 的取值是5,4,3,0。
2023年江苏省常州市中考数学全真模拟试卷 _1 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题
1.如图,点 A.B、C是⊙O上的点,∠BOC=120°,则∠A=()
A.120°B.80°C. 60 D. 50°
2.在△ABC和△A′B′C′中,已知 AB=A′B′,∠B=∠B′,要保证△ABC ≌△A′B′C′,可补充的条件是()
A.∠B+∠A=90°B. AC=A′C′C.BC=B′C′D.∠A+∠A′=90°3.如图,AB∥CD,∠1=110°, ∠ECD =70°,∠E 等于()
A.30°B. 40°C. 50°D. 60°
4.数据5,7,4,0,5,4,8,8,6,4的中位数和众数分别是()
A. 5,4 B.4,5 C.5,5 D.4.5,4
5.不等式组
11
1
x
x
-<
⎧
⎨
≥-
⎩
的解集在数轴上表示正确的是()
A.B.C.D.6.下列说法中,错误的是()
A.长方体、立方体都是棱柱
B.竖放的直三棱柱的侧面是三角形
C.竖放的直六棱柱有六个侧面,侧面为长方形
C.球体的三种视图均为同样大小的图形
7.若4
48
n=,则n等于()
A .2
B . 4
C . 6
D . 8 8.如图,在□ABCD 中,∠B=100°,延长AD 至点F ,延长CD 至点
E ,连结E
F ,则∠E+∠F 等于( )
A .100°
B .80°
C .50°
D .40
° 9.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )
A .12
B .9
C .4
D .3
10.下列命题:①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半; ③90°的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对 的弧也相等;⑥同弧或等弧所对的圆周角相等. 其中真命题的个数为( )
A .1 个
B .2 个
C .3 个
D .4个 11.以下列长度(同一单位)为长的四条线段中,不成比例的是( ) A .2,5,10,25
B .4,7,4,7
C .2,21,2
1,4 D .2,5,25,52 12.如图,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走.按照这种方式,小华第四次走到场地边缘E 处时,∠AOE =56º,则α的度数是( )
A .52º
B .60º
C .72º
D .76º
13.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( )
A 32)m
B .(32)m
C m
D .4m
14. 学校升旗要求学生穿校服,但有一些粗心大意的学生忘记了,若有学生 l200名,没 有穿校服的学生有 60 名,则任意叫一名学生没有穿校服的概率是( )
A .121
B .119
C .120
D . 110
15.如图,PB 为⊙O 的切线,B 为切点,连结PO 交⊙O 于点A ,PA=2,PO=5,则PB 的长为(• )
A .4
B
C .
D .16. 下列各结论中,正确的是( )
A .6=-
B .2(9=
C 16±
D .216(25
-= 二、填空题
17.已知等腰梯形的上、下底边长分别是2,10,腰长是5,则这个梯形的面积是 . 18.根据如图计算,若输入的x的值为 1,则输出的y的值为 .
19.在△ABC 中,AB= AC= 6,BC= 5,AD⊥BC 于 D,则 CD= .
20.若m,n 为实数,且满足2
+++-+=,则 mn= .
|2|(28)0
m n m n
21.如图所示,已知AB=DE,BE=CF,AC=DF.请说明∠A=∠D的理由,并完成说理过程.解:∵BE=CF( ).
∴BE+EC=CF+ ,即 = .
在△ABC与△DEF中,AB=DE( ),
= (已证), = (已知),∴△ABC≌△DEF( ).
∴∠A=∠D( ).
三、解答题
22.如图,由 5个大小完全相同的小正方形摆成如图①③的形状,现移动其中的一个小正方形,请在图②,图③,图④中分别画出满足以下各要求的图形(用阴影表示).
(1)使得图形成为轴对称图形,而不是中心对称图形;
(2)使得图形成为中心对称图形,而不是轴对称图形;
(3)使得图形既是轴对称图形,又是中心对称图形.
23.如图,MN∥PQ,同旁内角的平分线AB,BC和AD,CD相交于点B,D.
(1)猜想AC和BD之间的关系;
(2)试证明你的猜想.
24.如图,已知∠B=∠AEF=40°,∠C=58°,求∠BAC与∠F的度数.
25.写出下列命题的逆命题,并判断真假:
(1)如果一个三角形是直角三角形,那么它的两个锐角互余;
(2)在角的内部到一个角的两边距离相等的点在这个角的平分线上;
(3)等腰三角形的两个底角相等;
(4)正多边形的各边相等.
26.如图.正方形ABCD边长为2,A为坐标原点,点C在y轴正半轴上.求各顶点的坐标.
27.如图,△ABC 和△DBC 都是直角三角形,∠A=∠D=90°,AB=DC .说明:△EBC 是等腰三角形.
28.在Rt △ABC 中,∠C=90°,∠A=5∠B .求∠A 和∠B 的度数.
29. 如图所示,AB 、CD 被EF 所截,MG 平分∠BMN ,NG 平 分∠DNM ,已知∠1+∠ 3
=90°,试问 AB ∥CD 吗?请说明理由.
30.(1)先化简,再选择使原式有意义而你又喜欢的一个数,代入化简后的式子求值. (1)21
(1)11a
a a +÷--;
(2)解方程11
222x
x x +=--
【参考答案】
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题
1.
C
2.
C
3.
B
4.
A
5.
B
6.
B
7.
C
8.
B
9.
A
10.
B
11.
C
A
13.
A
14.
C
15.
A
16.
A
二、填空题
17.
18
18.
4
19.
2.5
20.
-8
21.
已知,EC,BC,EF,已知,BC,EF,AC,DF,SSS,全等三角形对应角相等
三、解答题
22.
略
23.
(1)互相平分且相等;(2)证矩形ABCD
24.
∠BAC=82°,∠F= 42°
25.
(1)若一个三角形的两锐角互余,则这个三角形是直角三角形.是真命题;(2)角平分线上的点到角两边的距离相等.是真命题;(3)有两个角相等的三角形是等腰三角形.是真命题;
(4)各边都相等的多边形是正多边形.是假命题
A(0,0)、B(1,1)、C(0,2)、D(-1,1) 27.
说明Rt △ABC ≌△Rt △DCF
28.
∠A=75°,∠B=15°
29.
AB ∥CD ,由∠BMN+∠DNM=180°可说明 30.
(1)1a +,代入计算略(0a ≠,1±) (2)0x =。