2018-2019学年七年级学科竞赛数学试题(含答案) (4)
- 格式:doc
- 大小:122.50 KB
- 文档页数:14
2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。
(C) $-\frac{1}{3}$。
(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。
注:本题也可用特殊值法来判断。
2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。
(B) $1$。
(C) $0$。
(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。
2018学年第二学期学科竞赛学习检测七年级数学试题卷一、选择题(本大题有10小题,每小题3分,共30分)1.若是方程3x +ay =1的一个解,则a 的值是( )(A )1(B )-1(C )2(D )-22.人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为( ) A .7.7×10﹣6B .7.7×10﹣5C .0.77×10﹣6D .0.77×10﹣53.下列运算正确的是( )A .a 2•a 3=aB .(a 3)2=a 5C .(3ab 2)3=9a 3b 6D .a 6÷a 2=a 44.对于下列说法,错误的个数是() ①πyx -2是分式;②当1x ≠时,2111x x x -=+-成立;③当3-=x 时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-⋅=-.A.6B.5C.4D.3 5.如图是一架婴儿车的平面示意图,其中AB //CD ,∠1=45, ∠3=40°,那么∠2等于( )A .80°B .85°C .90°D .95°6. “六·一”儿童节前夕,某超市用3 360元购进A 、B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( ) A.{12036243360x y x y +=+= B.{12024363360x y x y +=+= C.{36241203360x y x y +=+= D.{24361203360x y x y +=+=7.若关于x 的分式方程xx x m 2132=--+无解,则m 的值为( ) A .﹣1.5 B .1 C .﹣1.5或2 D .﹣0.5或﹣1.5 8.如图所示,长方形ABCD 的边:6:5AB BC =,现有60张大小完 全相同且长是宽的2倍的小长方形卡片,将其既不重叠又无空隙地放在长方形ABCD 四周内沿,则未被卡片覆盖的长方形EFGH 的长与宽的比为( ) A .5:4 B .6:5 C .10:9 D .7:69.如图, AB ∥CD ,E ,F 是AB ,CD 上的点. EC ,F A 分别平分∠AEF 和∠CFE 交于点G ; ED ,FB 分别平分∠BEF 和∠DFE 交于点H , 则图中互余的角共有()..................BFEAGH CD(第8题)(第5题图)A .8对B .16对C .25对D .36对10.把2009表示成两个整数的平方差的形式,则不同的表示法有( )A .16种B .14种C .12种D .10种二、填空填(本大题有6小题,每小题4分,共24分)11.已知一副三角板按如图方式摆放,其中AB ∥DE , 那么∠CBF =度. 12.计算:(1)(﹣π)0+2﹣2= .(2)若23n a =,则621n a -=.13.将方程x =3m -1,y =4-2m ,那么用含x 的代数式表示y ,则y =___________.14.如图1是长方形纸带,∠DEF =19°,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则 图3中的∠CFE 的度数是度.图1 图2 图315.因式分解:(1)33164mn n m -=___________.(2)))((4)(2b ac b a c ----=___________.; 16.如果x ,y ,z 是正数,且满足7x y z ++=,11187x y y z z x ++=+++,那么x y zy z z x x y+++++的值为.三、解答题(本大题有7小题,共66分)17.(6分)如图,已知∠1=∠2,∠B =∠C ,可推得AB ∥CD .理由如下:∵∠1=∠2(已知),且∠1=∠CGD (______________________________) ∴∠2=∠CGD∴CE ∥BF ______________________________) ∴∠__________=∠BFD (__________________) 又∵∠B =∠C (已知) ∴___________________∴AB ∥CD (___________________________________)(第11题图)ABCDEF18.(8分)如图,三角形ABC 的顶点都在方格纸的格点上,将三角形ABC 向左平移1格,再向上平移3格.(1)请在图中画出平移后的三角形DEF (A 、B 、C 的对应点分别为点D 、E 、F ), (2)求三角形DEF 的面积.(3)写出线段AD 与线段BE 之间的位置关系.19.(8分)计算: (1)ba ba b +-+22(2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦20.(10分)解方程(组) (1)5,325;x y x y +=-⎧⎨-=⎩ (2)22121--=--xx x .21.(本题10分)如图,将长方形ABCD 先向右平移a 个单位,再向上平移b 个单位,得到长方形EFGH ,并使得两个长方形有重叠长方形,延长BA 和HE 交于点M ,延长HG 和BC 交于点N ,构成长方形MBNH .已知AB =6,BC =8.(1)求重叠部分面积S 3(用含a ,b 的代数式表示). (2)设长方形APEM 和长方形CNGQ 的面积分别为S 1和S 2,若S 3=S 2+S 1,且a ,b 均为整数,求a ,b 的值.ES 2S 3S 1QP G FAMBNHCD(第21题图)22、观察下表:我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为.回答下列问题:⑴. 第3格的“特征多项式”为 ,第4格的“特征多项式”为 , 第格的“特征多项式”为 ;⑵.若第1格的“特征多项式”的值为 -10,第2格的“特征多项式”的值为 -16. ①.求的值;②.在此条件下,第的特征是否有最小值?若有,求出最小值和相应的值.若没有,请说明理由.23.(本题12分)当今是计算机时代,我们知道计算机装置有一个数据输入口A 和一个运算结果输出口B .小聪同学编入下列运算程序,将数据输入且满足以下性质: ①从A 口输入n=1时,从B 口得到311=a ;从A 口输入n=2时,从B 口得到2112a =; ②从A 口输入整数n (n ≥3)时,在B 口得到的结果a n 满足: 当n 是奇数时,2)2(2+-=-n a n a n n ;当n 是偶数时,2(26)22n n n a a n --=+.(1)求a 3和a 4的值.(2)当n 为正整数时,直接写出a n 的表达式(用n 的代数式表示). (3)求123499100a a a a a a ++++⋅⋅⋅++的值.2018学年第二学期学科竞赛学习检测七年级数学答案卷一、选择题(本大题有10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 选项CADBDBDCDC二、填空填(本大题有6小题,每小题4分,共24分)11. 60 12. 5/4 53 13. 10-2x /314. 123 15.4mn (m +2n ) (m -2n ) (a -2b +c )2 16. 517. 对顶角相等;同位角相等,两直线平行;C ;两直线平行,同位角相等;∠B =∠BFD ;内错角相等,两直线平行。
第1页,共4页 第2页,共4页平罗四中2018-2019学年度七年级下数学竞赛试卷学号:_______ 姓名:_____ 班级: 分数:_____A 组基础题60分一、选择题:(每题4分,共32分)1、在平面直角坐标系中,点P (-5,8)位于( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2、导火线的燃烧速度为0.8cm /s ,爆破员点燃后跑开的速度为5m /s ,为了点火后 能够跑到150m 外的安全地带,导火线的长度至少是( )A 、22cmB 、23cmC 、24cmD 、25cm3、不等式组⎩⎨⎧+-ax x x <<5335的解集为4<x ,则a 满足的条件是( )A 、4<aB 、4=aC 、4≤aD 、4≥a4、下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相 平 行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等。
其中 真命题的个数是( )A 、1个B 、2个C 、3个D 、4个 5、下列运动属于平移的是( )A 、荡秋千B 、急刹车时,汽车在地面上的滑动C 、风筝在空中随风飘动D 、地球绕着太阳转 6、一个正方形的面积是15,估计它的边长大小在( )A 、2与3之间B 、3与4之间C 、4与5之间D 、5与6之间 7、已知实数x ,y 满足()0122=++-y x ,则y x -等于( )A 、3B 、-3C 、1D 、-18、要使两点()111,y x P 、()222,y x P 都在平行于y 轴的某一直线上,那么必须满足 ( )A.21x x =B.21y y =C.21y x =D.21y y =二、填空题(每小题4分,共20分)9、已知a 、b 为两个连续的整数,且=+b a 。
10、若()0232=++-n m ,则n m 2+的值是______。
11、如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b上;若∠1=40°,则∠2的度数为 。
绝密★启用前2018-2019学年人教版七年级数学竞赛试卷B注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共6小题,4*6=24)1.有一拉面师傅首先把一个面团搓成1.6米长的圆柱形面棍,对折,再拉长到1.6米;再对折,再拉长到1.6米;…这样对折10次,再拉长到1.6米,就做成了拉面.此时,若将手中的面条伸展开,把面条看作粗细均匀的圆柱形,它的粗细(直径)是原来面棍粗细(直径)的()A.B.C.D.2.某靶场有红、绿靶标共100个,其中红靶标的数量不到绿靶标数量的三分之一,若打中一个红靶标得10分,打中一个绿靶标得8.5分,小明打中了全部绿靶标和部分红靶标,在计算他所得的总分时,发现总分与红靶标的总数无关(包括打中的和没有打中的),则靶场有红靶标()个.A.22 B.20 C.18 D.163.编号为1到101的101个小球分放在两个盒子A和B中,40号小球在盒子A中,把这个小球从盒子A中移至盒子B中,这时盒子A中小球号码数的平均数增加了,B中小球号码数的平均数也增加了,则原来在盒子A中的小球个数为()A.70 B.71 C.72 D.734.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟5.将正整数按如图所示的位置顺序排列,根据图中的排列规律,2008应在()A.A位B.B位C.C位D.D位6.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为()A.1 B.2 C.3 D.5第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,4*6=24)7.现有长度分别12,3,4,7,8,9,10,13,14,15的线段各一条.若从中选出若干条(不截取)来拼接成正方形,则共有种不同的拼接法.8.袋中有红、黄、黑三种颜色的球各若干个,黄色球上标有数字5,黑色球上标有数字6,红色球上标的数字看不清.现从袋中拿出8个球,其中黄色球和黑色球的个数分别少于红色球的个数.已知8个球上的数字和是39,那么红色球上标的数字是;拿出黑色球的个数是.9.世界著名的莱布尼兹三角形如图所示,其排在第8行从左边数第3个位置上的数是.10.粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为mm.(,结果精确到1mm)11.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.12.一年共有12个月,闰年的二月是29天,又有4个小月,7个大月,所以闰年共有29×1+30×4×31×7=366(天).反过来思考:如果非负整数a,b,c满足等式:29a+30b+31c=366(*),那么a+b+c=,这样的数组(a,b,c)共有组,它们分别是.三.解答题(共4小题,52分)13.(12分)某仓库有50件同一规格的某种集装箱,准备委托运输公司送到码头,运输公司有每次可装运1件、2件、3件这种集装箱的三种型号的货车,这三种型号的货车每次收费分别为120元、160元、180元,现要求安排20辆货车刚好一次装运完这些集装箱.问这三种型号的货车各需多少辆?有多少种安排方式?哪些安排方式所需的运费最少?最少运费是多少?14.(12分)将正整数1、2、3、4、5、6…按下列规律进行排列:首先将这些数从“1”开始每隔一数取出,形成一列数:1、3、5、7排成一行;然后在剩下的数2、4、6、8…中从第一个数“2”开始每隔一数取出,形成第二列数:2、6、10、…排成第二行;照此下去,第三排的数由剩下的4、8、12、16、…中从第一个数“4”开始每隔一数取出4、12、20、…;如此一直继续下去,我们可以排成一张表如下表所示.(1)问32、42、72分别在表中的第几行?(2)对于表中第3列第n行的数,请你用关于n的代数式表示出来;(3)176在这个表中的第几行第几列.15.(14分)已知:五位数满足下列条件:(1)它的各位数字均不为零;(2)它是一个完全平方数;(3)它的万位上的数字a是一个完全平方数,干位和百位上的数字顺次构成的两位数以及十位和个位上的数字顺次构成的两位数也都是完全平方数.试求出满足上述条件的所有五位数.16.(14分)一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃:①能从任意一点(a,b),跳到点(2a,b)或(a,2b);②对于点(a,b),如果a>b,则能从(a,b)跳到(a﹣b,b);如果a<b,则能从(a,b)跳到(a,b﹣a).例如,按照上述跳跃方式,这只青蛙能够到达点(3,1),跳跃的一种路径为:(1,1)→(2,1)→(4,1)→(3,1).请你思考:这只青蛙按照规定的两种方式跳跃,能到达下列各点吗?如果能,请分别给出从点(1,1)出发到指定点的路径;如果不能,请说明理由.(1)(3,5);(2)(12,60);(3)(200,5);(4)(200,6).参考答案1.解:第一次对折后长度为1.6×2米,第二次对折后长度为1.6×2×2米,第三次对折后长度为1.6×23米,第四次对折后长度为1.6×24米,第十次对折后长度为1.6×210米,设原来直径为r,则原体积为1.6πr2,现在的体积为1.6×210πR2=1.6πr2,∴==,即它的粗细(直径)是原来面棍粗细(直径)的.故选:B.2.解:设红靶x个,则绿靶(100﹣x)个,打中红的数目为k,打中了全部绿靶标得分:S=8.5(100﹣x)=850﹣8.5x,又总分=S+10x=85+10k﹣8.5x为一常数,所以10k=8.5x,又由“靶标的数量不到绿靶标数量的三分之一“知:x<即x<25,又x,k为自然数,所以x=20,k=17,即靶场有红靶标20个.故选:B.3.解:设原来盒子A中有弹珠x个,则盒子B中有弹珠(101﹣x)个.又记原来A中弹珠号码数的平均数为a,B中弹珠号码数的平均数为b.则由题意得:,由②得:a=(159+x),由③得:b=(58+x),将a、b代入①解得:x=73,即原来盒子A中有73个弹珠.故选:D.4.解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x﹣6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以.即18路公交车总站发车间隔的时间是4分钟.故选:B.5.解:被4除余数是1的排在D位,被4除余数是2的排在A位,被4除余数是3的排在B位,被4整除的排在C位.2008÷4=502,所以2008排在C位.故选:C.6.解:由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上.由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上1是奇数,沿顺时针跳两个点,落在3上.由3起跳,是奇偶数,沿顺时针跳两个点,落在5上.2﹣1﹣3﹣5﹣2,周期为4;又由2011=4×502+3,∴经过2011次跳后它停在的点所对应的数为3.故选:C.7.解:12+3+4+7+8+9+10+13+14+15=95,故正方形的边长最多为23,而组成的正方形需要4个边长,故边长最小为22.22=10+12=9+13=8+14=7+15,22=10+12=9+13=8+14=3+4+15,23=10+13=9+14=8+15=12+4+7,故边长为22的正方形有2个,边长为23的正方形有1个,共3个.故答案为3.8.解:∵黄色球和黑色球的个数分别少于红色球的个数,∴红色球只可能有4、5、6个,∴①若红色球6个,则黄色球1个,黑色球1个,则红色球标的数字为:=(舍去);②若红色球5个,黄色球1个,黑色球2个,则红色球标的数字为:=(舍去);③若红色球5个,黄色球2个,黑色球1个,则红色球标的数字为:=(舍去);④若红色球4个,黄色球1个,黑色球3个,则红色球标的数字为:=4;⑤若红色球4个,黄色球2个,黑色球2个,则红色球标的数字为:=(舍去);⑥若红色球4个,黄色球3个,黑色球1个,则红色球标的数字为:=(舍去).∴红色球上标的数字是4;拿出黑色球的个数是3.故答案为:4,3.9.解:∵第8行最后一个数是,第7行最后一个数是,第6行最后一个数是,∴第7行倒数第二个数是﹣=,第8行倒数第二个数是﹣=,∴第8行倒数第三个数是﹣=,故答案是:.10.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′•cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.11.解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.12.解:∵一年是12个月,∴a+b+c=12∴由题意得:由②×29,得29a+29b+29c=348 ③由①﹣③,得b+2c=18∴b=18﹣2c∴0≤18﹣2c≤12∴3≤c≤9且为整数.当c=3时,b=12,a=﹣3,不符合题意,应舍去.当c=4时,b=10,a=﹣2,不符合题意,应舍去.当c=5时,b=8,a=﹣1,不符合题意,应舍去.当c=6时,b=6,a=0.当c=7时,b=4,a=1.当c=8时,b=2,a=2.当c=9时,b=0,a=3.∴原方程组的解为:,,,共4组.故答案为:12,4,(0,6,6),(1,4,7),(2,2,8),(3,0,9).13.解:设需要装运1件、2件、3件集装箱的货车分别为x辆、y辆、z辆,根据题意得.,①×3﹣②得2x+y=10则因为y≥0,所以0≤x≤5,故x只能取0、1、2、3、4、5共有、、、、、,这六种安排方法:设总运费为F元,则F=120x+160y+180z=120x+160(10﹣2x)+180(10+x),所以F=3400﹣20x,当x=5时,总运费最低,最低运费为F=3400﹣20×5=3300元.14.解:(1)∵32=1×25,∴32在第6行,∵42=2×21=21×21,∴42在第2行,∵72=8×9=9×23,∴72在第4行;(2)由分析(1)可知,第3列第n行的数为5×2n﹣1;(3)∵176=11×24,∴176必在第5行,第6列.15.解:设,且a=m2(一位数),(两位数),(两位数),则M2=m2×104+n2×102+t2①由式①知M2=(m×102+t)2=m2×104+2mt×102+t2②比较式①、式②得n2=2mt.因为n2是2的倍数,故n也是2的倍数,所以,n2是4的倍数,且是完全平方数.故n2=16或36或64.当n2=16时,得mt=8,则m=l,2,4,8,t=8,4,2,1,后二解不合条件,舍去;故M2=11664或41616.当n2=36时,得mt=18.则m=2,3,1,t=9,6,18.最后一解不合条件,舍去.故M2=43681或93636.当n2=64时,得mt=32.则m=1,2,4,8,t=32,16,8,4都不合条件,舍去.因此,满足条件的五位数只有4个:11664,41616,43681,93636.16.解:(1)能到达点(3,5)和点(200,6).从(1,1)出发到(3,5)的路径为:(1,1)→(2,1)→(4,1)→(3,1)→(3,2)→(3,4)→(3,8)→(3,5).从(1,1)出发到(200,6)的路径为:(1,1)→(1,2)→(1,4)→(1,3)→(1,6)→(2,6)→(4,6)→(8,6)→(16,6)→(10,6)→(20,6)→(40,6)→(80,6)→(160,6)→(320,6)→(前面的数反复减20次6)→(200,6);(2)不能到达点(12,60)和(200,5).理由如下:∵a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数,∴由规则①知,跳跃不改变前后两数的公共奇约数.∵如果a>b,a和b的最大公约数=(a﹣b)和b的最大公约数,如果a<b,a和b的最大公约数=(b﹣a)和b的最大公约数,∴由规则②知,跳跃不改变前后两数的最大公约数.从而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数.∵1和1的公共奇约数为1,12和60的公共奇约数为3,200和5的公共奇约数为5.∴从(1,1)出发不可能到达给定点(12,60)和(200,5).。
文武镇初级中学2018-2019学年七年级数学下学期竞赛卷) C .风筝在空中随风飘动 D .急刹车时,汽车在地面上的滑动 12.一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 13.已知实数x ,y 满足()0122=++-y x ,则y x -等于( ) A .3 B .-3 C . D .-114.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是( )C .1.2元/支,2.6元/本D .1.2元/支,3.6元/本三、解答题(共70分)15.(6分)计算:-12+22--38-+816.(6分)解方程组⎩⎨⎧=-=+.1123,12y x y x17.(6分) 解不等式组:()20213 1.x x x ->⎧⎪⎨+-⎪⎩,≥并把解集在数轴上表示出来.F21GEDCBA人电脑体育音乐书画兴趣小组书电脑35%音乐体育图1 图218.(6分)如图所示,直线a、b被c、d所截,且c a⊥,c b⊥,170∠=°,求∠3的大小.19.(8分)育才中学现有学生2 870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中,“电脑”部分所对应的圆心角为度;(2)共抽查了名同学;(3)在图2中,将“体育”部分的图形补充完整;(4)爱好“书画”的人数占被调查人数的百分数是;(5)估计育才中学现有的学生中,有人爱好“书画”.20.(8分)如图,方格中有一条美丽可爱的小金鱼.(1)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).(2)若方格的边长为1,则小鱼的面积.21.(8分)今年春季我县大旱,导致大量农作物减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的产量分别是多少千克?22.(10分)已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.23.(12分)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。
2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1.已知21a ,32b,62c ,那么,,a b c 的大小关系是()A.ab cB.ac b C.bacD.b ca【答】C. 因为121a,132b,所以110ab,故ba .又(62)(21)6ca(21),而22(6)(21)3220,所以621,故ca .因此ba c .2.方程222334x xy y的整数解(,)x y 的组数为()A .3.B .4.C .5.D .6.【答】B. 方程即22()234xy y,显然x y 必须是偶数,所以可设2x y t ,则原方程变为22217ty,它的整数解为2,3,t y从而可求得原方程的整数解为(,)x y =(7,3),(1,3),(7,3),(1,3),共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为()A .63B .53C .263D .253【答】D.过点C 作CP//BG ,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE ,所以△ADF ≌△ECF ,所以CF =DF ,又CP//FG ,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE =23.连接BD ,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BD =2,所以BG =22225BDDG293.4.已知实数,a b 满足221a b ,则44a ab b 的最小值为()PGFEBCADA .18. B .0. C .1. D .98.【答】B.442222222219()2122()48aabbab a bab a b ab ab .因为222||1ab a b ,所以1122ab ,从而311444ab,故2190()416ab,因此219902()488ab,即44908aabb.因此44a abb 的最小值为0,当22,22a b或22,22ab时取得.5.若方程22320x pxp 的两个不相等的实数根12,x x 满足232311224()xxxx ,则实数p的所有可能的值之和为()A .0.B .34. C .1.D .54.【答】 B.由一元二次方程的根与系数的关系可得122x x p ,1232x x p ,所以2222121212()2464x x x x x x p p,332212121212()[()3]2(496)xxx x x x x x p pp.又由232311224()x x x x 得223312124()x x x x ,所以2246442(496)p p p pp ,所以(43)(1)0p pp ,所以12330,,14p p p .代入检验可知:1230,4p p 均满足题意,31p 不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p .6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a cb d .这样的四位数共有()A .36个.B .40个.C .44个.D .48个.【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111abct b c a,则t_________.【答】1.由1a t b 得1bt a,代入1bt c得11t tac ,整理得2(1)()0ct ac ta c ①又由1c t a 可得1ac at ,代入①式得22()0ctatac ,即2()(1)0c a t,又c a ,所以210t,所以1t.验证可知:11,1a b caa时1t;11,1a bcaa时1t .因此,1t .2.使得521m是完全平方数的整数m 的个数为.【答】1.设2521mn (其中n 为正整数),则2521(1)(1)mnn n ,显然n 为奇数,设21n k (其中k 是正整数),则524(1)mk k ,即252(1)m k k .显然1k,此时k 和1k 互质,所以252,11,m k k 或25,12,m k k 或22,15,m k k 解得5,4k m .因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BC AP=.【答】3.设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE ,PF ⊥AE ,则易证△ACE ≌△ACD ,所以CE =CD =12BC.又PF =PA sin ∠BAE =PA sin 60°=32AP ,PF =CE ,所以32AP =12BC ,因此BC AP=3.4.已知实数,,a b c 满足1abc,4a b c ,22243131319a b c aa bb cc ,则222abc =.【答】332.因为22313(3)(1)(1)(1)aa aa abc a bc a a bcbc a b c ,所以FEDBCAP2131(1)(1)a aa b c .同理可得2131(1)(1)b b b a c ,2131(1)(1)c cc a b .结合22243131319ab c aa bb cc 可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ,所以4(1)(1)(1)(1)(1)(1)9a b c a b c .结合1abc,4a b c,可得14ab bc ac. 因此,222233()2()2a bca bc ab bc ac .实际上,满足条件的,,a b c 可以分别为11,,422.第二试(A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.解设直角三角形的三边长分别为,,a b c (a b c ),则30a b c .显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c 及30a b c 得303a b c c ,所以10c . 由a b c 及30a b c 得302a b c c ,所以15c . 又因为c 为整数,所以1114c .……………………5分根据勾股定理可得222abc ,把30ca b 代入,化简得30()4500ab a b ,所以22(30)(30)450235a b ,……………………10分因为,a b 均为整数且a b ,所以只可能是22305,3023,ab解得5,12.a b ……………………15分所以,直角三角形的斜边长13c ,三角形的外接圆的面积为1694.……………………20分二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2ADBD CD .DPOABC2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共4页)证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PAPD PO ,2ADPD OD . ……………………5分又由切割线定理可得2PAPB PC ,∴PB PC PD PO ,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,……………………20分∴PD BD CD OD,∴2AD PD OD BD CD .……………………25分三.(本题满分25分)已知抛物线216yxbx c 的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x )两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2,若AM//BC ,求抛物线的解析式.解易求得点P 23(3,)2b bc ,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c的两根,所以21396x b bc ,22396x bbc ,又AB 的中点E 的坐标为(3,0)b ,所以AE =296b c .……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AEPE DE ,即2223(96)()||2bc b c m ,又易知0m,所以可得6m. ……………………10分又由DA =DC 得22DA DC ,即22222(96)(30)()bc mb mc ,把6m代入后可解得6c (另一解0c 舍去).……………………15分又因为AM//BC ,所以OA OM OBOC,即223||3962|6|396b b c bbc.……………………20分把6c 代入解得52b (另一解52b舍去). 因此,抛物线的解析式为215662y xx . ……………………25分2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共5页)精品文档强烈推荐2018年全国初中数学联合竞赛试题参考答案及评分标准第4页(共7页)精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有。
2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准•第一试,选择题和填空题只设7分和0分两档;第二试各题, 请按照本评分标准规定的评分档次给分•如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数第一试(A)一、选择题:(本题满分42分,每小题7分)21.设二次函数y x 2ax 22a的图象的顶点为A,与x轴的交点为B, C •当△ ABC为等边三角形时,其边长为A. 6 .%【答】C.由题设知A( a, 弩).设B(x ,0) , C(x ,0),二次函数的图象的对称轴与2 1 2x轴的交点为D,则BC | x1 x21X)224x x1 2又AD _3 BC,则|2所以,△ ABC的边长BC 2a22a2.a2a2(舍去)ABCD2.如图,在矩形中, BAD BD的平分线交于点,AB CAE 15 BE,则CJ ,J2 1. D. 1.3【答】D.延长AE交BC于点F,过点由已知得EBH ACB BAF30 .FADE作BC的垂线,垂足为H .AFB HEF 45 , BF ABE-、—AC设BE x,则2 HF HE x , BH W3x .2因为BF BH HF ,所以3x122x,解得x 3 1.所以BE2 3.设p,q均为大于3的素数,则使p25pq 4q为完全平方数的素数对(p, q)的个数为(A.1 . 【答】B. B.2.C.3.D.4.2 2 2设p 5 pq 4q m ( m 为自然数) (m p 2q)(m p 2q) pq .【答】C.0的整数组(x, y, z)的个数为由对称性,同样可得由于p, q 为素数,且 m p 2q p, m p 2q q ,所以 m p 2q 1 , m p 2q pq ,从而 pq 2 p 4q 1 0,即(p 4)(q 2) 9,所以(p, q)(5,11)或(7, 5).所以,满足条件的素数对 (p, q)的个数为 2.4.若实数 a, b 满足a2,2(1 a)2b(1 b)2 4a A.46 .B.64.C.82.D.128.(y @ z) @ x xy z xy yz zx xyz , (z @ x) @ yz xyyz zx xyz .所以,由已知可得x y z xy yz zx xyz0,即(x 1)( y1)(z 1)1.所以,x, y, z 为整数时,只能有以下几种情况:1, x 11, x 11, 1, 或 y11, 或 y11,或1, 1,z 1所以, 1, z 11, z 11, (x, y, z) (2,2,0)或(2,0,2)或(0,2,2)或(0,0,0),故共有4个符合要求的整数组.1,2 ,则(p 2q)2 pq m 2 , 即(1由条件—ba)2(1b)22 22a 2 2b 2 4aba 3b 3 0,2即(a b) 2[(a b)2 4ab] (a2 b)[(a b)23ab]又 a b 2,所以 22[4 4ab] 2[43ab] 0 ,解得 ab1.所以 a 2 b 2 (ab)22ab 6 ,a 3b 3 ( a b)[( a b)23ab] 14, a 5 b 5 (a 22 3 32 2 b 2 )(a3 b 3)a 2b 2(a b) 82.5.对任意的整数x, y ,定义x@ y xxy , 则使得 (x@y) @z(y@z) @x (z@x) @yA.1 . 【答】D.B.2 .C.3 .D.4.(x @ y) @ z (x y xy) @ z (x y xy) (x yxy)z z xyyz zx xyz ,1_£ 2018 2019 B.61 •_£2020C.62•因为 M 2018133,所以 M 1~~201833 61 335.__ 1 ___ 1 __ 1 1345 ■^050 ) -2030 13^050 20 83230 ,1 83230 1185 1 所以M 1345 61 1345,故M 的整数部分为61.、填空题:(本题满分 28分,每小题7 分)1.如图,在平行四边形 ABCD 中,BC 2AB ,CE AB 于E ,F 为AD 的中点,若 AEF48, 则 B ___ •【答】84 .设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知 FGCD 为菱形•由AB // FG // DC 及F 为AD 的中点,知H 为CE 的中点• 又CE AB ,所以CE FG ,所以FH 垂直平分CE ,故 DFC GFC EFG AEF 48 . 所以 B FGC 180 2 48 84 •3 115 k 3孙三k 3 4k15 26•设M A.60 • 【答】B.-,则」的整数部分是 2050 MD.63 •又 M (丽^1^^12030才(203T120324(x y ) 15,则x y 的最大值为2由X 3y 3(x42(X y )( x xy令X y k ,注又因为x 2xy15可得(x y )( X 2152 .14(x y)2xy(X3Xyy 2) 11 X y) 1「即2y )2 43y 214 0,故由①式可得k 3 _3xyk _14 k152,所以xy A FG2.若实数 X, y 满足【答】3.117)x 2于是,x, y可看作关于t的一元二次方程t 2 ktk3 1k 坐(k ) 2 4 ——4 ---------- 2 0 ,3k3 2化简得k 3 k 30 0,即(k 3)(k 2 3k 10) 0,所以0 k 3.故x y的最大值为3.3. __________________________________________________ 没有重复数字且不为5的倍数的五位数的个数为__________________________________________________________ .【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数•相应地个位数只能选除0,5及万位数之外的7 个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数•所以,此时满足条件的五位数的个数为8 7 8 7 6 18816个•当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选,十位有6个数可选•所以,此时满足条件的五位数的个数为8 8 7 6 2688个•所以,满足条件的五位数的个数为18816 2688 21504 (个).5.55222 a b c4. 已知实数a,b, c满足a b c 0 ,a be 1 ,则-abc【答】5 .21 2222 13 3 3由已知条件可得ab bc ca 2 [(a b c)2 (a2 b2 c2)] 2,a b3 c 3abc,所以a5 b55,2.2 2、/ 3 .3c (a b c )(a b c3) [a2 (b3c3) .2/3 3、b (ac )2 3 3c (a b )]3abc [a2b2 ( a b) a2 c2 ( a c ) b 2 c2 (b c)] 2 23abc (abc2 2 2 2 a c bb c a)3abc 1 abc(ab bc ca) 3abc 2abc-5c K2 abc5a b c 5所以—abc 2第一试(B)一、选择题:(本题满分42分,每小题7分)2 x21.满足(x x 1) 1的整数x的个数为A.1 .B.2C.3.【答】C.当x 220 且x2.x 1 0 时,x 2.当x2x 1 1时,x 2 或x 1.当x2x 1 1且x 2为偶数时,x 0.所以,满足条件的整数x有3个.2.已知x1,x2,x3( X1X2 x3 )为关于x的方程x 34x1 X12 x22 X32A.5 .B.6C.7 .( ) D.4 .3 X2 ( a 2) x a 0的三个实数根,则( ) D.8 .【答】A.2 方程即(x 1)(x 2x a ) 0,它的一个实数根为 1,另外两个实数根之和为 2,其中必有一根小 于1,另一根大于1,于是x 2 1, x l x 3 2,故 (x 3x )( x 3x ) 2( x x 1 ) 2( x x ) 1 5 . 3 13.已知点E , F 分别在正方ABCD 的边 CD , AD 上, CD 4CE , EFB tan ABF A. 1 . B. 3 . C. & . D. ■ 3 .2 5 2 2【答】B.FBC ,贝U 不妨设CD 4,则CE 1, DE 3.设DF x 」U AF 4 x , EF J x 29 .作BH EF 于H .因为 EFB FB C AFB :, BAF △ BAF ^△BHF ,所以 BH BA 4.由SSS SS 得四边形ABF BEF DE F BCEABCD2 1 42 - 4 2 4 (4 x) 1 2 4 x 2 9 1 2 31x 2 41,解得x 8512AF 3所以AF 4 x 5 ,tan ABF AB 5 .4.方程3 x 3 x 的实数根的个数为 ( )A.0 .B.1 .C.2.D.3.【答】B. 90 BHF , BF 公共,所以FB令y 9 x ,则y 0 ,且x y 2 9,原方程变为它3 y 』y 2 9,解得y6,从而可得x 8或x 27 . 检验可知: x 8是增根,舍去;x 27是原方程的实数根. 所以,原方程只有1个实数根 5.设a, b, c 为三个实数,它们中任何一个数加上其余两数之积的 2017倍都等于2018,则这样的三元数组(a, b, c )的个数为A.4 .B.5.【答】B. C.6 . D.7.由已知得,a 2017bc 2018, b2017ac 2018, c 2017ab2018,两两作差,可得(a b)(12017c) 0 , (b c)(12017a) 0 , (c a)(12017b) 0 .1由(a b)(1 2017c) 0,可得a b 或c~2017 .(1 )当a b c 时,有2017a2 a 2018 0,解得 a 1 或a 20182017(2 )当a b c 时,解得a b ___ L , c 2018 12017 2017(3)当a b时,c 1,此时有:a 1 , b 2018 1,或a 2018 1 , b 12017 2017 2017 2017 2017 故这样的三元数组(a, b, c)共有5个.3 6.已知实数a, b满足a2 33a2 5a 1, b33b25b5,则a b ()A.2 .B.3 .C.4 .D.5【答】A.有已知条件可得(a 1)32(a 1) 2 , (b 1)32(b1)2,两式相加得(a 1) 32( a 1) (b 1) 32(b 1)因式分解得(a b 2)[( a 1) 2 ( a 1)b 1) (b 1) 22] 0 . 因为2(a 1)2 (a 1)(b 1)2(b 1)2 2 [(a 1)1 2(b 1)]23 (b 1)2 2 0 ,2 4所以a b 2 0,因此 a b 2.二、填空题:(本题满分28分,每小题7分)1.已知p, q, r为素数,且pqr 整除pq qr rp 1,则p q r .【答】10 .设k p qr rp 1 1 1 1 1 由题意知k是正整数,又p, q, r 2,所以k 3,从pqr p q r pqr 2而k 1 ,即有pq qr rp 1pqr,于F是可知p, q, r互不相等.当2 p q r 时,pqr pq qr rp 1 3qr,所以q 3,故q 2 .于是2qr qr 2q 2r 1,故(q 2)(r 2) 3,所以q 2 1, r 2 3,即q 3, r 5 ,所以,(p, q, r) (2,3,5).再由p, q, r的对称性知,所有可能的数组(3,5,2),(p, q, r)共有6组,即(2,3,5) , (2,5,3) , (3,2,5), (5,2,3) , (5,3,2).于是p q r 10.2.已知两个正整数的和比它们的积小 1000,若其中较大的数是完全平方数,则较小的数为 _____________ .【答】&2 2 Q Q设这两个数为 m , n (m n),贝U m n mn 1000,即(m 21)( n 1) 1001.又 10011001 1 143 7 91 1177 13,所以(m 21, n 1) = (1001,1)或(143, 7)或(91,11)2 2或(77,13),验证可知只有(m 2 1, n 1) (143,7)满足条件,此时 m 2 144, n 8 .3 .已知D 是厶ABC 内一点,E 是AC 的中点,AB 6 , BC 10 , BAD BCD ,EDC ABD ,贝U DE ________ .【答】4.延长CD 至F ,使DF DC ,贝U DE // AF 且DE 丄AF ,2所以 AFD EDC ABD ,故A, F, B, D 四点共圆,于是整数对(m, n)的个数为【答】16.综合可知:符合条件的正整数对 (m, n)有 8+ 4 + 2+1 + 1 = 16 个.2 2 21)]2 4(m 2 4n 250) 0 ,整理得因为二次函数的图象在 x 轴的上方,所以 514n 49,即(m 1)(2n 1)2 .因为 m, n 为正整数,所以(m 1)(2n 1)25 .2n 1 彳5?,故 n 5. [2(m 2n4mn 2m 1 2,所以 1时, _53, 故亍223,符合条件的正整数对 (m, n)有8 个;2时, 5,故m4,符合条件的正整数对(m, n)有4个;3时, 257 ,m — 187,符合条件的正整数对(m, n)有2 个; 4时, 25 m —179,符合条件的正整数对(m, n)有1 个;5时,1125,故m 1411 ,符合条件的正整数对 (m, n)有1个.BFDBAD BCD ,所以 BF BC 10,且 BD FC ,故 FABFDB 90 .又AB 6,故 AF . 102628,所以DE 丄 AF 4 .24.已知二次函数yx 22(m 2n 1)x(m 2 4n 250)的图象在x 轴的上方,则满足条件的正第二试 (A )、(本题满分 2 20分)设a, b, c, d 为四个不同的实数,若 a, b 为方程x 10cx 11d 0的根,c, d c d 的值. a b 2 为方程x 10ax 11b 0的根,求 解由韦达定理得 10c , 10a ,两式相加得 abed 10(a c). 2 因为a 是方程x 2 10cx 11d0的根, 2 所以a 2 10ac 11d 0 ,又 d 10a c ,所以 2a 2110a 11c10ac10分 2类似可得c 2110c 11a 10ac 0.15分①一②得(a ©(a c 121) 0 .因为a c ,所以ac 121,所以a10(a c) 1210 .20分二、(本题满分25分)如图,在扇形 OAB 中, AOB 4,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F . (1 )当四边形 (2)求 CE 90,OA 12,点 C 在 OA 上, AC分别过 由ODODEC 的面积S 最大时,求EF ; 2DE 的最小值. O, E 作CD 的垂线,垂足为 M , N .6, OC 8,得 CD 10.所以OCD S ECD-' CD (OM EN )^2 CD OE _12 10 12 60, 当OEDC 时,S 取得最大值60.此时,EF OE OF12 -(2)延长 OB 至点G,使BG因为ODOE 」, DOE OEOG2所以CE 2DECE EG故CE 2DE 的最小值为& 10.OB 6 8 10 CG36 512,连结 GC,GE .E\ M F :” h” NJ !*____G10分EOG ,所以△ ODE OEG ,所以 DE 1,故 EG 2DE . EG 220分242 82 8 10,当C, E, G 三点共线时等号成立.25分2018年初中数学联赛试题参考答案及评分标准第11页(共10页)三、(本题满分25分)求所有的正整数 m, n ,使得33 2 2m n m n(m n)22 2 2 S (m n)[(m n)3mr] m n (m n)2第二试 (B )、 (本题满分20分)若实数a, b, c 满足(a b (a bc)(1」〕)的值.a bc解 记a bc x , ab bc ca y ,abc111(ab c)(ab 5c b c 5a c a 5b )x[3x 212(a b c)x36(ab bc ca )]c)(11 1 ) -9,求a b 5c b c 5a c a 5b 5z ,则11 1x( x 6ax 6b x 6c ) x (9 x 236》m 3 rh m 2 n 2因为 m, n 为正整数,故可令mnm np, q 为正整数,且 (p, q) 1. S (m n)凹 P 厘(mP 2n)3 pq q 2 2P因为 S 为非负整数,所以2P I q ,又(P, q)1,故 P 1,(m n) | mn .①10分所以mn n是整数,所以(m n) | n 2,故n 22 ,即 n mn .又由m 3 n 3 m 2n 2n 3m 2n 2m 3 所以 由对称性,同理可得mm 2 (n 2 故m m) m 2n , n . 所以20分n 代入①,得2 | m , n 代入②,得2m 34m 4 0,即 m2.所以, 满足条件的正整数m, n 为m25分3 2 x 6(a b c)x 36(ab be ca)x 216abc 5 x 336xy 216Z , ........................... 10分---------------- 是非负整数.(m n)竺£ ( mn )2 .m nm n2018年初中数学联赛试题参考答案及评分标准第10页(共10页)2结合已知条件可得 一x( 9X _361) 9,整理得xy ^Zz .所以 36xy 216z 5 2 5 x 3(a b c)(l a 1) xy z 27 2 20分 二、(本题满分 角形,AB AC , 25分) 如图, DE DC . 点E 在四边形 ABCD 的边AB 上,△ ABC 和厶CDE 都是等腰直角三 ACE 30,求 DP . (1 )由题意知ACB DCE 45 , BC .:2AC , EC 2DC, DCAECAC DC ,所以△ ADC BEC ,故 DAC BC EC45,所以 DAC ACB ,所以 AD // BC .10分 2 )设 AE x , 因为 ACE 30,可得 AC 3x , CE2x , DE 设AC 与DE 交于点P ,如果 (1)证明:AD // BC ;( 2) EBC 解 所以 PE DC 因为 EAP CDP 90 , EPA CPD ,所以△ APE DPC ,故可得 S APE — 12 S DPC •15分EPC S APES ACE —fx 2 , S EPC S DPC S CDE x 2,于是可得S DPCDPCA2S EPC (3 1)x .(2S 20分 25分PESEPC-个四位数,x 的各位数字之和为 m , x 1的各位数字之和为2的素数.求x .n ,并解 设xabcd , 由题设知 m 与n 若d9,则nm 1 ,所以(m, 若c9 ,则n m 1 9 m 8若b 9, 显然a 9, 所以n m13 , m n 26 39 36 ,矛盾. 若b 9 , 则n m 1 9 9 m于是可得x 8899 或 9799.故(m, n) n 的最大公约数 n) 1,矛盾, 1 9 9 三、(本题满分25分)设x 是 且m 与n 的最大公约数是一个大于(m, n)为大于2的素数.(m,8),它不可能是大于 2的素数,矛盾,故 c 9 .9 m 26,17,故 ( m, n) ( m,17) 10分故(m, n) ( m, 26) 13,但此时可得17 ,只可能 n 17, m 34 .15分20分 25分。
绝密★启用前2018-2019学年人教版七年级数学竞赛试卷A注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共6小题,4*6=24)1.根据图中骰子的三种不同状态显示的数字,推出?处的数字是()A.1 B.2 C.3 D.62.如图,∠1=65°,∠2=85°,∠3=60°,∠4=40°,则∠5=()A.45°B.50°C.55°D.60°3.n个连续自然数按规律排成下表这样,从2003到2005,箭头的方向应为()A.↑→B.→↑C.↓→D.→↓4.平面上六条直线两两相交,其中仅有3条直线经过同一点,则它们彼此截得不重叠线段有()条.A.36 B.33 C.24 D.215.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+F=1D,则A×B=()A.B0 B.1A C.5F D.6E6.将1,2,3,4,…,12,13这13个整数分为两组,使得一组中所有数的和比另一组中所有数的和大10,这样的分组方法()A.只有一种B.恰有两种C.多于三种D.不存在第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,4*6=24)7.设p,q均为质数,且p+q=99,则p、q的积pq=.8.计算:[(11++)﹣(12++)]÷[(11﹣﹣)﹣(12﹣﹣)]=.9.某文具店只有8元一支和9元一支两种规律的钢笔,甲、乙两人到该店购买钢笔,已知两人购买的支数相同,且一共花费了172元,则每人在该店购买了支钢笔.10.假设a,b,c,d都是不等于0的数,对于四个数ac,﹣bd,﹣cd,﹣ab,考察下述说法:①这4个数全是正数;②这4个数全是负数;③这4个数中至少有一个为正数;④这4个数中至少有一个为负数;⑤这4个数的和必不为0其中正确说法的序号是.(把你认为正确说法的序号都填上)11.一只蚂蚁从原点出发,在数轴上爬行,向右爬行12个单位长度后,向左爬行22个单位长度;再向右爬行32个单位长度后,向左爬行42个单位长度.这样一直爬下去,最后向右爬行92个单位长度后,向左爬行102个单位长度,到达A点则A点表示的数是.12.在密码学中,称直接可以看到的内容为明码,对明码进行某种处理后得到的内容为密码.对于英文,人们将26个字母按顺序分别对应整数0到25,现有4个字母构成的密码单词,记4个字母对应的数字分别为x1,x2,x3,x4,已知:整数x1+2x2,3x2,x3+2x4,3x4除以26的余数分别为9,16,23,12,则密码的单词是.三.解答题(共4小题,52分)13.(12分)某租赁公司拥有100辆汽车,当每辆车的月租金为3000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月公司需要维护费150元,未租出的车每辆每月公司需要维护费50元.(1)已知1月份每辆车的月租金为3600元时,能租出多少辆车?(2)已知2月份的维护费开支为12900元,问该月租出了多少辆车?(3)比较1、2两月的月收益,哪个月的月收益多?多多少?(4)试推测,当每辆车的月租金定为多少元时,租赁公司的月收益最大?(第4问只要求写出结果,不要求写出推算过程)、(注:月收益等于该月的租金与维护费之差).14.(12分)已知非负实数x,y,z满足,记W=3x+4y+5z.求W的最大值与最小值.15.(14分)有三堆石子的个数分别为20、10、12,现进行如下操作:每次从三堆的任意两堆中分别取出1粒石子,然后把这2粒石子都加到另一堆上去.问:能否经过若干次这样的操作,使得(1)三堆石子的石子数分别为4、14、24;(2)三堆石子的石子数均为14.如能满足要求,请用最少的操作次数完成;如不能满足,请说明理由.16.(14分)在△ABC中,A(3,0),B(0,4),C(0,0).(Ⅰ)已知AB的长可能是4,4,5,5,5,5,试通过测量或者估算,写出你认为正确的那个值(只须写出结果);(Ⅱ)设P是△ABC内一点,且到三边的距离相等,试求点P的坐标(要写出过程);(Ⅲ)坐标平面上到直线AB,BC,CA等距离的点一共有多少个?它们分别在哪些象限?如果第四象限存在满足条件的点,试求出它的坐标.(前两问只须写出结果,第三问要写出过程)参考答案1.解:根据图1可知,1和4,5点相邻,根据图2可知,1和2,3点相邻,∴图3中的下面为1,∴“?”处的数是6点.故选:D.2.解:如图,连接BC,在△EBC中,∠3+∠ECB+∠EBC=180°,∴∠ECB+∠EBC=180°﹣∠3=180°﹣60°=120°.在四边形ABCD中,∠1+∠2+∠4+∠EBC+∠ECB+∠5=360°,∴∠5=360﹣∠1﹣∠2﹣∠4﹣(∠EBC+∠ECB)=360°﹣65°﹣85°﹣40°﹣120°=50°.故选:B.3.解:从表中的图象可知2003=500×4+3,2004=(500+1)×4,2005=(500+1)×4+1,则2003是一组中的第四个数,2004是下一组中的第一个数,2005是第二个数.所以箭头方向为:→↓.故选:D.4.解:由题意得:有3条直线经过同一点,则每一条直线都被其他5条直线截成4段,此时共有4×6=24条线段,但是因为其中有3条直线经过同一点,那么就少了3条线段,所以它们彼此截得不重叠线段有24﹣3=21条.故选:D.5.解:∵A×B=10×11=110,110÷16=6余14,∴用十六进制表示110为6E.故选:D.6.解:1+2+…+13=91,分为两组,一组的和为x,另一组的和为x﹣10,x+x﹣10=91,x=,∵x为整数,∴没法分,故选:D.7.解:∵p+q=99,∴p,q为一个奇数、一个偶数,∵p,q均为质数,在所有偶数中只有2是质数,∴p=2或q=2,当p=2时,q=99﹣2=97;当q=2时,p=99﹣2=97,∴pq=2×97=194.故答案为:194.8.解:原式=[11++﹣12﹣﹣]÷[11﹣﹣﹣12++],=(﹣+﹣)÷(﹣﹣﹣),=﹣÷(﹣),=.故此题应该填.9.解:设两人共买了x只8元的钢笔,y只9元的钢笔,每人买了n只(x、y、n均为整数),根据题意得:8x+9y=172①,x+y=2n②,由①②得:x=18﹣172,y=172﹣16n,因为xy均为整数,则x=18﹣172≥0,y=172﹣16n≥0,解得:9≤n≤10,因为n也为整数,则n=10.答:每人在该店购买了10支钢笔.10.解:假设a>0,b>0,c>0,d>0;则ac>0,﹣bd<0,﹣cd<0,﹣ab<0可以排除①②⑤.故答案为③④11.解:规定向右为正,向左为负,依题意,得12﹣22+32﹣42+…+92﹣102,=(1﹣2)(1+2)+(3﹣4)(3+4)+…+(9﹣10)(9+10),=﹣(1+2+3+4+…+9+10),=﹣55.故本题答案为﹣55.12.解:(1)从题中知x1,x2,x3,x4是四个英文字母的明码,所以它们只是代码,与数字没有关系,不要被1,2,3,4混淆(2)从题中知a对应0,b对应1,…z对应25.(明码加1得到字母的序号)(3)计算x1,x2,x3,x4的数值.从“整数x1+2x2,3x2,x3+2x4,3x4除以26的余数分别为9,16,23,12”中找答案.首先发现3x4的余数是12这项比较好算,推测3x4可能是12,x4可能是4,x4可能代表“e”.然后根据x3+2x4除以26的余数是23,推测整个式子的数值可能是23,把x4的值代入,得到x3的值为15,代表p.3x2除以26的余数是16,而16无法被3整除,考虑16+26,即42,猜测x2为42除以3,得14,代表o同样方法可以推测x1的值为7,代表h(4)检验单词的正确性,hope合适.故答案为hope.13.解:(1)月租金为3600元时,未租出的车辆数为(3600﹣3000)÷50=12辆,故租出了100﹣12=88辆.(2)设2月份租出了x辆,则150x+50(100﹣x)=12900,解得x=79,因此2月份租出了79辆车.(3)1月份的收益为(3600﹣150)×88﹣50×12=303000元,2月份的月租金为3000+50×21=4050元,所以2月份的月收益为4050×79﹣12900=307050元,故2月份收益多,多4050元.(4)月租金为4050元时,收益最大.14.解:设=k,则x=2k+1,y=﹣3k+2,z=4k+3,∵x,y,z均为非负实数,∴,解得﹣≤k≤,于是W=3x+4y+5z=3(2k+1)﹣4(3k﹣2)+5(4k+3)=14k+26,∴﹣×14+26≤14k+26≤×14+26,即≤W≤.∴W的最大值是35,最小值是.15.解:设20个为A堆,10个为B堆,12个为C堆,(1)为达到用最少的操作次数完成,并且满足从两堆中取出,考虑思路是有两组石子的数目要降低,∴因此需以如下方式调配石子:X=10﹣﹣>A=4 降6,Y=20﹣﹣>B=14 降6,Z=12﹣﹣>C=24 升12,∴需要6次,(2)不能满足,∵为达到三堆石子的石子数均为14,三堆石子需分别满足降6,升4,升2,意味着有两堆石子的数目要升高,这与题目不符,∴不满足.16.解:(Ⅰ)根据A(3,0),B(0,4),可以只计测量得出答案;也可以利用勾股定理求出:AB=5;(Ⅱ)由于点P在第一象限,且到两坐标轴的距离相等,则设P(a,b),则S△P AB+S△PBC+S△PCA=S△ABC=6,即5a+4a+3a=12,所以a=1,故所求点P的坐标为(1,1).(Ⅲ)一共有4个点,除上述P点外,还有三点,它们分别在第一象限,第二象限,第四象限.显然,第四象限的点可设为Q(b,﹣b),其中b>0.由于S△QAB+S△QBC﹣S△QCA=S△ABC=6,所以5b+4b﹣3b=12,b=2,故所求点Q的坐标为(2,﹣2).。
(第6题图)(第7题图) 朝晖初中2018年初一年级数学竞赛试卷竞赛时间:5月22日8:30~10:30一、选择题(每小题6分,共48分;以下每题的4个结论中,仅有一个是正确的,请 将正确答案的英文字母填在题后的圆括号内.)1.如果a 是有理数,代数式112++a 的最小值是--------------------------( ) (A) 1 (B) 2 (C) 3 (D) 42.正五边形的对称轴有--------------------------------------------------( ) (A )10条 (B )5条 (C )1条 (D )0条3.已知等腰三角形的两边长分别为是3和6,,则这个三角形的周长是--------( )(A )9 (B )12 (C )15 (D )12或154.从一幅扑克牌中抽出5张红桃,4张梅花,3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情---------------( ) (A )可能发生 (B )不可能发生 (C )很有可能发生 (D )必然发生 5.如果1=++cc bb aa ,则abcabc 的值为---------------------------( )(A )1- (B )1 (C )1± (D )不确定6.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )(A )36cm 2 (B )33cm 2 (C )30cm 2 (D )27cm 27.如图是一块矩形ABCD 的场地,长AB =102m ,宽AD =51m ,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为-----------( )(A )5050m 2 (B )4900m 2 (C)5000m 2 (D)4998m 28.如果一个方程有一个解是整数,我们称这个方程有整数解. 请你观察下面的四个方程:(1)1346=+y x (2)1073=+y x (3)4)2)(3(=+-y x(4)2005111=+y x 其中有整数解的方程的个数是-------------------------------------( ) (A) 1 (B) 2 (C) 3 (D) 4 二、填空题(每小题6分,共42分) 9.观察下列算式:4 × 1 × 2+1=324 × 2 × 3+l=524 × 3 × 4+l=724 × 4 × 5+1=92用代数式表示上述的规律是 .10.七0一班连班主任一起共48人到公园去划船. 每只小船坐3人,租金20元,每只大船坐5人,租金30元. 他们租船要付的最少租金是 元.11.2005减去它的21,再减去剩余数的31,再减去剩余数的41,…,依此类推,一直到减去剩余数的20051,那么最后剩余的数是 .12.一个正n 边形恰好有n 条对角线,那么这个正n 边形的一个内角是 度.13.如图,DE 是△ABC 的AB 边的垂直平分线,分别交AB 、BC 于D 、E ,AE 平分∠BAC ,若∠B=30°,则∠C= 度.14.设∆ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a ,则第三边的长c 的取值范围是 .15.根据下列5个图形及相应点的个数的变化规律,则在第100个图形中有 个点.三、解答题(共60分)16.(15分)如图,∆ABC 中,AB=6,BD=3,AD ⊥BC 于D ,∠B=2∠C ,求CD 的长.17.(15分)两个代表团从甲地乘车往乙地,每车可乘35人。
2018-2019学年七年级学科竞赛数学试题(含答案)一.选择题(共6小题)1.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是()A.11点10分B.11点9分C.11点8分D.11点7分2.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=()A.30 B.40 C.45 D.503.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个 B.3个 C.4个 D.5个4.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A.15号B.16号C.17号D.18号5.若k为整数,则使得方程(k﹣1999)x=2001﹣2000x的解也是整数的k的值有()A.4个 B.8个 C.12个D.16个6.四点钟后,从时针到分针第二次成90°角,共经过()分钟(答案四舍五入到整数).A.30 B.33 C.38 D.40二.填空题(共5小题)7.关于x的方程:≠0,则x=.8.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款元.9.一轮船从甲地到乙地顺流匀速行驶需4小时,从乙地到甲地逆流匀速行驶需6小时,有一木筏由甲地漂流至乙地,需小时.10.如图是在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形的边长为1,则正方形A的面积是.11.已知不论x取何数值,分式的值都为同一个定值,那么的值为.三.解答题(共5小题)12.附加题:某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15,7,11,3,14台,现在为使各校电脑台数相等,各调几台给邻校:一小给二小,二小给三小,三小给四小,四小给五小,五小给一小.若甲小给乙小﹣3台,则乙小给甲小3台,要使电脑移动的总台数最小,应做怎样安排?13.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.14.一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离.15.小明解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并正确求出方程的解.2018年08月19日136****0321的初中数学组卷参考答案与试题解析一.选择题(共6小题)1.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是()A.11点10分B.11点9分C.11点8分D.11点7分【分析】根据题意假设该手表从4时30分走到10时50分所用的实际时间为x 小时,该手表的速度为57分/小时,再进行计算.【解答】解:慢表走:57分钟,则正常表走:60分钟,即如果慢表走:6小时20分(即380分),求正常表走了x分钟,则57:60=380:x,解得x=400,400分钟=6小时40分,所以准时时间为11时10分.故选:A.【点评】本题要注意手表的实际时间和准确时间的关系,然后找出其中关联的等量关系,得出方程求解.2.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=()A.30 B.40 C.45 D.50【分析】根据题中所给的关系,找到等量关系,由于共交电费56元,可列出方程求出a.【解答】解:∵0.50×100=50<56,∴100>a,由题意,得0.5a+(100﹣a)×0.5×120%=56,解得a=40.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.此题的关键是要知道每月用电量超过a度时,电费的计算方法为0.5×(1+20%).3.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个 B.3个 C.4个 D.5个【分析】根据最后输出的结果,可计算出它前面的那个数,依此类推,可将符合题意的那个最小的正数求出.【解答】解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0;∴5x+1=0.8,得:x=﹣0.04<0,不符合题意,故x的值可取131,26,5,0.8共4个.故选:C.【点评】本题立意新颖,借助新运算,实际考查一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.4.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A.15号B.16号C.17号D.18号【分析】因为12月份有31天,故他们最多相差28天.又小明和小莉的出生日期都是星期五,故他们的出生日期相差7的整数倍.故他们的出生日期可能相差7、14、21、28天.【解答】解:设小明的出生日期为x号.(1)若他们相差7天,则小莉的出生日期为x+7,应有x+7+x=22,解得x=7.5,不符合题意,舍去.(2)若他们相差14天,则小莉的出生日期为x+14,应有x+14+x=22,解得x=4,符合题意;所以小莉的出生日期是14+4=18号;(3)若相差21天、28天显然不合题意.故选:D.【点评】本题用到的知识点为:都在周五出生,他们的出生日期可能相差7、14、21、28.应分情况讨论.5.若k为整数,则使得方程(k﹣1999)x=2001﹣2000x的解也是整数的k的值有()A.4个 B.8个 C.12个D.16个【分析】先把原方程变形为(k﹣1999)x+2000x=2001,得出x=,然后求出2001的因数有16个.【解答】解:原方程变形得:(k﹣1999)x+2000x=2001,∴x=,∵k为整数,∴2001的因数有:1,3,23,29,69,87,667,2001,﹣1,﹣3,﹣23,﹣29,﹣69,﹣87,﹣667,﹣2001.∴共有16个.故选:D.【点评】本题主要考查了二元一次方程的解的定义,要会用代入法判断二元一次方程的解.该题主要用的是排除法.6.四点钟后,从时针到分针第二次成90°角,共经过()分钟(答案四舍五入到整数).A.30 B.33 C.38 D.40【分析】此题可以用淘汰的方法,把度数设为未知数X,从4点到五点这段时间时针走的为30×(),分针走的为360×().【解答】解:设走了X分钟则得到方程:360×()﹣120﹣30×()=90解得:X=38答:共经过38分钟.故选:C.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.二.填空题(共5小题)7.关于x的方程:≠0,则x=a+b+c.【分析】观察等式发现x所处的位置相同,因而要将x 从分式中分解出来,并且、、因而将3分解为这三个形式,因而原等式转化为.再提取公因式,化简为.最后判断出x与a、b、c的关系.【解答】解:∵⇒∵是一元一次方程的系数∴必然是∴只能是x=a+b+c故答案为a+b+c【点评】本题考查因式分解的应用、解一元二次方程.本题同学们需注意“1”的妙用,有时为了解题的需要将1写成分式的形式,如本题中的、、.8.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款204元.【分析】先求出第一次购书时的实际定价,再根据第二次购书节省的钱数列出方程,再求解即可.【解答】解:第一次购书付款72元,享受了九折优惠,实际定价为72÷0.9=80元,省去了8元钱.依题意,第二次节省了26元.设第二次所购书的定价为x元.(x﹣200)×0.8+200×0.9=x﹣26,解得x=230.故第二次购书实际付款为230﹣26=204元.【点评】解答本题需注意第二次所购的书有九折的部分,有八折的部分,需清楚找到这两部分实际出的钱.9.一轮船从甲地到乙地顺流匀速行驶需4小时,从乙地到甲地逆流匀速行驶需6小时,有一木筏由甲地漂流至乙地,需24小时.【分析】根据顺流时:行驶速度+水流速度=总路程÷总时间,逆流时:行驶速度﹣水流速度=总路程÷总时间,可得到两个关于行驶速度和水流速度的方程组,解得水流速度,即可得漂流所需时间.【解答】解:设总路程为1,轮船行驶速度为x,水流速度为y,根据题意得:,解得y=,木阀漂流所需时间=1÷=24(小时).故答案填:24.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解,准确的找到等量关系并用方程组表示出来是解题的关键.10.如图是在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形的边长为1,则正方形A的面积是49.【分析】设右下方两个相等的正方形的边长为x,则根据题意知,正方形A的边长为x+3,此色块图为一个长方形,可根据长=长列方程.【解答】解:设右下方两个相等的正方形的边长为x,则根据题意知,正方形A 的边长为x+3,此色块图为一个长方形,则(x+2)+(x+3)=(x+1)+x+x,2x+5=3x+1,x=4,正方形A的边长为x+3=4+3=7,故正方形A的面积为7×7=49.【点评】本题考查理解题意和识别图形的能力,关键是设出左上角正方形的边长,然后表示出其他正方形的边长,根据正方形的性质,列出方程,最后求出面积.11.已知不论x取何数值,分式的值都为同一个定值,那么的值为.【分析】根据不论x取何数值,分式的值都为同一个定值,即可求得分式的定值,进而把x=1代入求得a,b的关系,从而求解.【解答】解:设=k,则ax+3=k(bx+5),∵x不论取何值该等式都成立,∴a=bk,5k=3,∴=.故答案是:【点评】本题主要考查了分式的求值,根据条件求得a,b之间的关系是解决本题的关键.三.解答题(共5小题)12.附加题:某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15,7,11,3,14台,现在为使各校电脑台数相等,各调几台给邻校:一小给二小,二小给三小,三小给四小,四小给五小,五小给一小.若甲小给乙小﹣3台,则乙小给甲小3台,要使电脑移动的总台数最小,应做怎样安排?【分析】首先用A、B、C、D、E分别表示这五所小学的位置,并设A向B调x1台电脑,B向C调x2台电脑,…,E向A调x5台电脑,进而表示出y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,利用函数最值求出即可.【解答】解:如图,用A、B、C、D、E分别表示这五所小学的位置,并设A向B 调x1台电脑,B向C调x2台电脑,…,E向A调x5台电脑,依题意有:7+x1﹣x2=11+x2﹣x3=3+x3﹣x4=14+x4﹣x5=15+x5﹣x1=50÷5=10,所以,x2=x1﹣3,x3=x1﹣2,x4=x1﹣9,x5=x1﹣5,设调动的电脑的总台数为y,则y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,这样,这个实际问题就转化为求y的最小值问题,并由上面所得结论知:当x1==3时,y的最小值为|3|+|3﹣3|+|3﹣2|+|3﹣9|+|3﹣5|=12,即调动的总台数为12.因为x1=3时,x2=0,x3=1,x4=﹣6,x5=﹣2,故一小就向二小调3台电脑,二小不调出,三小向四小调一台电脑,五小向四小调6台电脑,一小向五小调2台电脑.【点评】此题主要考查了函数的最值问题,根据已知得出y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,进而利用绝对值性质求出是解题关键.13.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.【分析】(1)从出故障地到把人都送到考场需要时间是×3;(2)汽车送第一批人的同时,第二批人先步行,可节省一些时间.【解答】解:(1)(分钟),∵45>42,∴不能在限定时间内到达考场.(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后先步行的4人相遇,5t+60t=13.75,解得.汽车由相遇点再去考场所需时间也是.所以用这一方案送这8人到考场共需.所以这8个人能在截止进考场的时刻前赶到.方案2,8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需,汽车从出发点到A处需先步行的4人走了,设汽车返回t(h)后与先步行的4人相遇,则有,解得,所以相遇点与考场的距离为:.由相遇点坐车到考场需:.所以先步行的4人到考场的总时间为:,先坐车的4人到考场的总时间为:,他们同时到达则有:,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.【点评】此题在设计方案的基础上,这样设计方案会更节省时间,汽车送第一批人的同时,第二批人先以5千米/时速度步行,汽车把第一批人送到距考场S千米的A处后,回来接第二批人.同时,第一批人也以5千米/时的速度继续赶往考场,使两批人同时到达考场,在汽车来回接人的过程中,多了第一批人在步行,显然所用时间比设计方案少,故此方案这8人都能赶到考场,且最省时间.14.一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离.【分析】设甲、乙两地的距离为x,汽车以每小时60千米的速度行驶了4小时30分钟,共行驶了60×4.5=270千米;车行驶了4小时30分钟后速度变为每小时40千米,则实际行驶的时间=(x﹣270)÷40+4.5小时;若按每小时60千米的速度由甲地驶往乙地需要的时间=甲、乙两地的距离÷60;由题意得:实际行驶的时间﹣按每小时60千米的速度由甲地驶往乙地需要的时间=小时.【解答】解:设甲、乙两地的距离为x千米,4小时30分钟=小时,45分钟=小时,依题可列方程:,解得:x=360.答:甲、乙两地的距离为360千米.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.15.小明解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并正确求出方程的解.【分析】把x=4代入小明粗心得出的方程,求出a的值,代入方程求出解即可.【解答】解:由题意可知:(在去分母时,方程左边的1没有乘10,由此求得的解为x=4),2(2x﹣1)+1=5(x+a),把x=4代入得:a=﹣1,将a=﹣1代入原方程得:+1=,去分母得:4x﹣2+10=5x﹣5,移项合并得:﹣x=﹣13,解得:x=13.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.。