人教版高二数学知识点归纳(最完整版)
- 格式:doc
- 大小:509.50 KB
- 文档页数:6
必修五数学知识点归纳资料第一章 解三角形1、三角形的性质:①.A+B+C=π,⇒ sin()sin A B C +=,cos()cos A B C +=-222A B C π+=-⇒sin cos 22A B C+= ②.在ABC ∆中, a b +>c , a b -<c ; A >B ⇔sin A >sin B , A >B ⇔cosA <cosB, a >b ⇔ A >B③.若ABC ∆为锐角∆,则A B +>2π,B+C >2π,A+C >2π;22a b +>2c ,22b c +>2a ,2a +2c >2b 2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C=== (2R 为ABC ∆外接圆的直径) 2s i n a R A =、2sin b R B =、2sin c R C = (边化角)sin 2a A R =、 sin 2b B R =、 sin 2cC R= (角化边) 面积公式:111sin sin sin 222ABC S ab C bc A ac B ∆===②.余弦定理:2222c o s a b c b c A =+-、2222cos b a c ac B=+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= (角化边)补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 3、常见的解题方法:(边化角或者角化边) 第二章 数列1、数列的定义及数列的通项公式:①. ()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值②. n a 的求法: i.归纳法ii. 11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 若00S =,则n a 不分段;若00S ≠,则n a 分段iii. 若1n n a pa q +=+,则可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +iv. 若()n n S f a =,先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式例如:21n n S a =+先求1a ,再构造方程组:112121n n n n S a S a ++=+⎧⎨=+⎩⇒(下减上)1122n n n a a a ++=- 2.等差数列:① 定义:1n n a a +-=d (常数),证明数列是等差数列的重要工具。
人教版高二数学各章知识点因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。
小编高二频道为你整理了《人教版高二数学重点知识归纳》,助你金榜题名!人教版高二数学各章知识点公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαco t(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)人教版高二数学各章知识点an=a1+(n-1)d(1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(geometricprogression).这个常数叫做等比数列的公比(commonratio),公比通常用字母q表示(q≠0).注:q=1时,an为常数列.人教版高二数学各章知识点解不等式问题的分类解一元一次不等式.解一元二次不等式.可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.解不等式时应特别注意下列几点:正确应用不等式的基本性质.正确应用幂函数、指数函数和对数函数的增、减性.注意代数式中未知数的取值范围.不等式的同解性|f(x)|0)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)。
高二人教版知识点汇总数学高二数学是中学数学学科中的重要阶段,对于学生的数学基础与思维能力的培养起着关键作用。
下面将对高二人教版数学教材中的知识点进行汇总,帮助同学们更好地掌握数学知识。
1. 数列与数列的运算数列是一组按照一定规律排列的数的集合。
常见的数列有等差数列和等比数列。
高二数学要求学生能够正确理解数列的性质,掌握数列的通项公式以及求和公式,并能应用于实际问题中。
2. 平面向量的基本概念平面向量是数学中的重要概念之一,具有大小和方向两个特征。
高二数学要求学生通过平面向量的运算,能够计算平面向量的模、方向角、数量积、向量积等,并能灵活运用平面向量解决平面几何问题。
3. 平面与空间的几何关系高二数学对平面与空间的几何关系有较高的要求。
学生需要熟悉平面与直线、直线与直线之间的相交、平行、垂直关系,掌握平面与平面之间的位置关系,如相交、平行、垂直等。
4. 三角函数与三角恒等变换三角函数是高中数学中的重要内容之一。
高二数学要求学生能够熟练掌握正弦函数、余弦函数、正切函数等的定义和性质,并能够运用三角函数解决相关的实际问题。
此外,学生还需要掌握三角恒等变换,如和差化积、倍角公式、和差化积、半角公式等。
5. 导数与导数应用导数是高中数学的重点与难点之一。
高二数学要求学生熟练掌握导数的定义、运算法则、常用函数的导数以及导数的几何意义等,并能将导数应用于曲线的切线与法线方程、函数的单调性与极值、最值问题等实际问题中。
6. 三角函数的导数与积分高二数学进一步要求学生熟悉三角函数的导数与积分,包括正弦函数、余弦函数、正切函数等的导数和不定积分。
学生需要掌握三角函数的导数与积分的相关公式,并能运用于求导、积分等问题。
7. 解析几何与空间解析几何解析几何是高中数学的重要内容,学生需要掌握平面直角坐标系、空间直角坐标系以及直线、圆、曲线等在坐标系中的表示与性质。
此外,学生还需要熟练掌握点与直线、点与平面之间的位置关系,并能灵活运用解析几何解决实际问题。
高二数学知识点总结新教材人教版高二数学是中学数学学科中的重要一年,学生需要在这一年巩固和拓展他们在高一所学的数学知识。
以新教材人教版为教材,以下是高二数学的重要知识点总结。
一、函数与方程1. 函数及其性质函数是数学中的一种重要关系,表示不同数值之间的依赖关系。
在高二数学中,学生需要了解函数的定义,并掌握函数的性质,如奇偶性、单调性、周期性等。
2. 一次函数与二次函数一次函数是指最高次幂为一次的函数,二次函数是指最高次幂为二次的函数。
高二数学中,学生需要学习如何表示和绘制一次函数和二次函数,并掌握求解一次方程和二次方程的方法。
3. 指数函数与对数函数指数函数和对数函数是高二数学中的重要内容。
学生需要理解指数函数和对数函数的定义,并学会求解指数方程和对数方程。
4. 不等式不等式是高二数学中的重要内容,学生需要学会解不等式,并掌握不等式的性质和图像表示方法。
5. 数列与数列的通项公式数列是一组按照一定规律排列的数,数列的通项公式表示第n 个数与n之间的关系。
学生需要掌握求解数列的通项公式以及利用通项公式解决实际问题的方法。
二、解析几何1. 平面与空间直角坐标系平面与空间直角坐标系是解析几何的基础。
学生需要理解坐标系的定义和性质,并学会在坐标系中表示和计算点、线、圆等几何图形的相关属性。
2. 直线与圆的方程直线和圆是解析几何中的基本图形。
学生需要学习直线和圆的方程及其性质,并能够根据已知信息写出直线和圆的方程。
3. 二次曲线二次曲线是解析几何中的重要内容,包括抛物线、椭圆、双曲线等。
学生需要学会表示和计算二次曲线的相关属性,如焦点、顶点、离心率等。
4. 空间几何体的性质空间几何体包括球、柱体、锥体等,学生需要掌握这些几何体的性质及其相关计算方法。
三、数学推理与证明1. 数学归纳法数学归纳法是数学推理中的重要方法,学生需要理解数学归纳法的原理,并能够灵活运用数学归纳法解决问题。
2. 数学证明数学证明是高二数学中的重要内容,学生需要学会用严谨的推理和论证方法证明数学命题。
【篇一】高二上冊數學知識點總結一、變數間的相關關係1.常見的兩變數之間的關係有兩類:一類是函數關係,另一類是相關關係;與函數關係不同,相關關係是一種非確定性關係.2.從散點圖上看,點分佈在從左下角到右上角的區域內,兩個變數的這種相關關係稱為正相關,點分佈在左上角到右下角的區域內,兩個變數的相關關係為負相關.二、兩個變數的線性相關1.從散點圖上看,如果這些點從整體上看大致分佈在通過散點圖中心的一條直線附近,稱兩個變數之間具有線性相關關係,這條直線叫回歸直線.當r>0時,表明兩個變數正相關;當r<0時,表明兩個變數負相關.r的絕對值越接近於1,表明兩個變數的線性相關性越強.r的絕對值越接近於0時,表明兩個變數之間幾乎不存在線性相關關係.通常|r|大於0.75時,認為兩個變數有很強的線性相關性.三、解題方法1.相關關係的判斷方法一是利用散點圖直觀判斷,二是利用相關係數作出判斷.2.對於由散點圖作出相關性判斷時,若散點圖呈帶狀且區域較窄,說明兩個變數有一定的線性相關性,若呈曲線型也是有相關性.3.由相關係數r判斷時|r|越趨近於1相關性越強.【篇二】高二上冊數學知識點總結圓與圓的位置關係1、利用平面直角坐標系解決直線與圓的位置關係;2、過程與方法用座標法解決幾何問題的步驟:第一步:建立適當的平面直角坐標系,用座標和方程表示問題中的幾何元素,將平面幾何問題轉化為代數問題;第二步:通過代數運算,解決代數問題;第三步:將代數運算結果“翻譯”成幾何結論.【篇三】高二上冊數學知識點總結1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.2、圓的方程(1)標準方程,圓心,半徑為r;(2)一般方程當時,方程表示圓,此時圓心為,半徑為當時,表示一個點;當時,方程不表示任何圖形.(3)求圓方程的方法:一般都採用待定係數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.3、高中數學必修二知識點總結:直線與圓的位置關係:直線與圓的位置關係有相離,相切,相交三種情況:(1)設直線,圓,圓心到l的距離為,則有;;(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r24、圓與圓的位置關係:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.設圓,兩圓的位置關係常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.當時兩圓外離,此時有公切線四條;當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當時,兩圓內切,連心線經過切點,只有一條公切線;當時,兩圓內含;當時,為同心圓.注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線5、空間點、直線、平面的位置關係公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內.應用:判斷直線是否在平面內用符號語言表示公理1:公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線符號:平面α和β相交,交線是a,記作α∩β=a.符號語言:公理2的作用:它是判定兩個平面相交的方法.它說明兩個平面的交線與兩個平面公共點之間的關係:交線公共點.它可以判斷點在直線上,即證若干個點共線的重要依據.公理3:經過不在同一條直線上的三點,有且只有一個平面.推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.公理3及其推論作用:它是空間內確定平面的依據它是證明平面重合的依據公理4:平行於同一條直線的兩條直線互相平行。
人教版高二数学知识点总结(必备6篇)人教版高二数学知识点总结第1篇1、不等式的定义:a—b>;0a>;b,a—b=0a=b,a—b;bb(2)a>;b,b>;ca>;c(传递性)(3)a>;ba+c>;b+c(c∈R)(4)c>;0时,a>;bac>;bcc;bac运算性质有:(1)a>;b,c>;da+c>;b+d。
(2)a>;b>;0,c>;d>;0ac>;bd。
(3)a>;b>;0an>;bn(n∈N,n>;1)。
(4)a>;b>;0>;(n∈N,n>;1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
人教版高二数学知识点总结第2篇直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长人教版高二数学知识点总结第3篇分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
人教版高二数学知识点目录高二数学知识点目录1. 函数与方程1.1 直线与线性函数1.2 二次函数1.3 幂函数与指数函数1.4 对数函数1.5 三角函数1.6 组合函数与反函数1.7 多项式函数1.8 有理函数与分式函数1.9 一次、二次函数综合应用2. 三角函数与解三角形2.1 三角函数的概念2.2 三角函数的性质2.3 同角三角函数的相互关系 2.4 解直角三角形2.5 平面坐标系与向量2.6 弧度制与三角函数2.7 三角函数图像的性质与变换 2.8 倍角公式与半角公式2.9 三角方程与不等式3. 解析几何3.1 平面直角坐标系3.2 直线的方程与位置关系3.3 圆的方程与位置关系3.4 直线与圆的位置关系3.5 抛物线与椭圆3.6 双曲线与三角形3.7 空间坐标系与方程3.8 空间平面与直线3.9 空间直线与平面的位置关系4. 一元函数微积分初步4.1 函数的极限与连续性4.2 导数与导数应用4.3 不定积分与定积分4.4 微分方程与微分中值定理 4.5 反函数与参数方程4.6 曲线与曲面积分4.7 微分方程应用4.8 一元函数微积分综合应用5. 统计与概率5.1 数据的整理与分析5.2 概率的基本概念5.3 随机事件与概率5.4 条件概率与独立性5.5 随机变量与概率分布5.6 高中数学统计与概率综合应用以上是人教版高二数学的知识点目录,涵盖了各个单元的重要内容。
每个小节都是基于该知识点的教材内容进行总结,旨在帮助学生更好地掌握和理解高二数学知识。
请根据具体需要自行参考相应知识点,深入学习和复习,以提高数学水平。
新人教版高二上数学知识点归纳在新人教版高二上数学课程中,包含了许多重要的数学知识点。
本文将对这些知识点进行归纳总结,以帮助学生们更好地掌握和理解数学知识。
一、函数函数是数学中一个重要的概念,它描述了两个变量之间的关系。
在高二上学期,我们学习了一次函数和二次函数。
一次函数可以用y = kx + b的形式来表示,其中k和b分别代表斜率和截距。
二次函数则可以表示为y = ax^2 + bx + c,其中a、b、c是常数。
二、三角函数三角函数是数学中另一个重要的概念,它们与三角形的关系密切。
我们学习了正弦函数、余弦函数和正切函数。
这些函数可以用来描述角度和三角形的关系,并在实际问题中有广泛的应用。
三、数列与数学归纳法数列是一系列按照一定规律排列的数,我们学习了等差数列和等比数列。
等差数列中,相邻两项之间的差值是常数;等比数列中,相邻两项之间的比值是常数。
数学归纳法则是一种证明数列性质的重要工具。
四、排列与组合排列与组合是数学中研究对象的不同选择和排列的方式。
我们学习了全排列、有重复排列、组合等概念和计算方法。
这些方法在概率与统计中有着重要的应用。
五、立体几何立体几何是数学中研究空间图形的分支,我们学习了立体几何中的体积和表面积计算方法。
常见的立体图形包括长方体、正方体、圆柱体、圆锥体和球体等。
六、导数和微分导数与微分是微积分的重要基础概念。
我们学习了导数的定义、常见函数的导数计算法则,以及导数在几何和物理问题中的应用。
导数描述了函数在某一点的变化率。
七、不等式不等式是数学中研究大小关系的概念。
我们学习了一元一次不等式、二次不等式和绝对值不等式的求解方法。
不等式在实际问题中经常出现,对理解数学模型和求解实际问题起着重要作用。
八、向量向量是数学中研究空间中的方向和大小的概念。
我们学习了向量的加法、减法、数量积和向量积的计算方法,以及向量在几何和物理问题中的应用。
九、概率与统计概率与统计是数学中研究事件发生可能性和数据分析的概念。
高二新版数学人教版知识点一、函数与方程1. 函数的概念与性质- 函数的定义- 函数的定义域和值域- 奇函数与偶函数- 单调性与最值2. 初等函数的性质- 幂函数、指数函数、对数函数- 三角函数、反三角函数- 二次函数、分式函数3. 方程与不等式- 一元一次方程与一元一次不等式- 一元二次方程与一元二次不等式- 一元高次方程的整数根与有理根- 一元高次不等式的解集表示二、数列与数列的极限1. 数列的概念与表示- 数列的定义- 通项公式与递推公式- 等差数列与等比数列2. 数列的性质与求和- 数列的有界性与单调性- 数列的前n项和与无穷级数- 等差数列与等比数列的前n项和公式3. 数列的极限- 数列极限的定义- 数列的收敛性与发散性- 数列极限的性质与计算方法- 常用数列的极限三、平面向量与空间向量1. 平面向量的概念与运算- 平面向量的定义- 平面向量的模、方向以及表示方法 - 平面向量的加法、减法与数乘2. 平面向量的线性相关与线性无关- 线性相关与线性无关的定义- 线性相关与线性无关的判定条件 - 线性相关与线性无关的应用3. 空间向量的概念与运算- 空间向量的定义及性质- 线段的中点坐标计算- 与坐标轴平行的向量四、解析几何1. 平面与直线- 平面方程的一般式与法向量- 直线的方程与位置关系- 直线与平面的交点计算2. 球面与立体- 球面的方程与性质- 球面上的点与平面的位置关系 - 立体的体积与表面积计算3. 空间几何体- 圆锥、圆台、棱台、棱锥- 空间几何体的投影及性质- 空间几何体的应用问题五、概率与统计1. 随机事件与概率- 随机事件与必然事件- 频率与概率的关系- 事件的运算与概率的性质2. 条件概率与独立事件- 条件概率的定义与性质- 事件的独立性与互斥性- 条件概率的乘法定理与全概率公式3. 统计与抽样- 平均数与中位数的计算- 方差与标准差的概念及计算- 利用统计数据进行推断综上所述,高二新版数学人教版的知识点主要涵盖了函数与方程、数列与数列的极限、平面向量与空间向量、解析几何以及概率与统计等内容。
高二数学知识点汇编人教版在高中数学学科中,数学知识点的掌握对于学生的学习和发展非常重要。
下面将为您汇编人教版高二数学相关的知识点,以帮助您更好地理解和学习这门学科。
一、函数与方程1. 一次函数一次函数是特殊的多项式函数,表达式为 y = kx + b,其中 k 表示斜率,b 表示截距。
学生需要掌握一次函数的图像特征、方程和性质。
2. 二次函数二次函数是一种常见的非线性函数,表达式为 y = ax^2 + bx + c,其中 a 不为零。
学生需要了解二次函数的图像、顶点、轴对称性及其相关的方程和性质。
3. 指数与对数函数指数函数和对数函数是互为反函数的特殊函数。
学生需要了解指数函数的定义、性质,以及对数函数的定义、性质,并能够应用指数与对数函数解决实际问题。
4. 三角函数三角函数包括正弦函数、余弦函数、正切函数等。
学生需要了解三角函数的定义、性质,以及三角函数的图像和周期性。
5. 一元二次方程一元二次方程是高中数学中重要的方程之一,表达式为 ax^2 + bx + c = 0,其中 a 不为零。
学生需要了解一元二次方程的求解方法,包括因式分解、配方法、求根公式等。
二、平面向量1. 平面向量的定义平面向量是有大小和方向的量,通常用有向线段表示。
学生需要了解平面向量的定义、表示方法和基本性质。
2. 平面向量的运算平面向量的运算包括加法、减法、数量乘法等,学生需要了解不同运算的定义和性质,并能够应用平面向量解决几何问题。
3. 平面向量的坐标表示平面向量可以用坐标表示,学生需要了解平面向量在坐标系中的表示方法,并能够进行坐标表示与几何表示之间的转化。
三、立体几何1. 空间几何体的特征空间几何体包括点、直线、平面、线段等,学生需要了解不同几何体的特征和性质,能够进行相应的判断和推理。
2. 空间几何体的投影学生需要了解投影的概念和性质,应用投影解决几何问题,包括点投影、直线投影和平面投影等。
3. 空间角和线段长度学生需要了解空间角和线段长度的概念和计算方法,能够应用相关知识解决空间几何题目。
必修五数学知识点归纳资料第一章 解三角形1、三角形的性质:①.A+B+C=π,⇒ sin()sin A B C +=,cos()cos A B C +=-222A B C π+=-⇒sin cos 22A B C+= ②.在ABC ∆中, a b +>c , a b -<c ; A >B ⇔sin A >sin B , A >B ⇔cosA <cosB, a >b ⇔ A >B③.若ABC ∆为锐角∆,则A B +>2π,B+C >2π,A+C >2π;22a b +>2c ,22b c +>2a ,2a +2c >2b 2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C=== (2R 为ABC ∆外接圆的直径) 2s i n a R A =、2sin b R B =、2sin c R C = (边化角)sin 2a A R =、 sin 2b B R =、 sin 2cC R= (角化边) 面积公式:111sin sin sin 222ABC S ab C bc A ac B ∆===②.余弦定理:2222c o s a b c b c A =+-、2222cos b a c ac B=+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= (角化边)补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 3、常见的解题方法:(边化角或者角化边) 第二章 数列1、数列的定义及数列的通项公式:①. ()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值②. n a 的求法: i.归纳法ii. 11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 若00S =,则n a 不分段;若00S ≠,则n a 分段iii. 若1n n a pa q +=+,则可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +iv. 若()n n S f a =,先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式例如:21n n S a =+先求1a ,再构造方程组:112121n n n n S a S a ++=+⎧⎨=+⎩⇒(下减上)1122n n n a a a ++=- 2.等差数列:① 定义:1n n a a +-=d (常数),证明数列是等差数列的重要工具。
② 通项: 1(1)n a a n d =+-,0d ≠时,n a 为关于n 的一次函数;d >0时,n a 为单调递增数列;d <0时,n a 为单调递减数列。
③ 前n 项和:1()2n n n a a S +=1(1)2n n na d -=+, 0d ≠时,n S 是关于n 的不含常数项的一元二次函数,反之也成立。
④ 性质:i. m n p q a a a a +=+ (m+n=p+q )ii. 若{}n a 为等差数列,则m a ,m k a +,2m k a +,…仍为等差数列。
iii. 若{}n a 为等差数列,则n S ,2n n S S -,32n n S S -,…仍为等差数列。
iv 若A 为a,b 的等差中项,则有2a bA +=。
3.等比数列: ① 定义:1n na q a +=(常数),是证明数列是等比数列的重要工具。
② 通项: 11n n a a q -= (q=1时为常数列)。
③.前n 项和, ()111,11,111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩,需特别注意,公比为字母时要讨论.④.性质:i. ()q p n m a a a a q p n m +=+∙=∙。
ii.{}仍为等比数列则为等比数列 ,,,,2k m k m m n a a a a ++,公比为k q 。
iii. {}232,,,,n n n n n n a S S S S --K 为等比数列则S 仍为等比数列,公比为n q 。
iv.G 为a,b 的等比中项,ab G ±= 4.数列求和的常用方法:①.公式法:如13,32+=+=n n n a n a②.分组求和法:如52231-++=+n a n n n ,可分别求出{}3n ,{}12n +和{}25n -的和,然后把三部分加起来即可。
③.错位相减法:如()nn n a ⎪⎭⎫⎝⎛⨯+=2123,()23111111579(31)3222222n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+-++ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12n S =234111579222⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…+()()111313222nn n n +⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭两式相减得:()231111111522232222222nn n S n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,以下略。
④.裂项相消法:如()n n nn a n n n n a n n -+=++=+-=+=111;11111,()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭等。
⑤.倒序相加法.例:在1与2之间插入n 个数12,3,,,n a a a a ⋅⋅⋅,使这n+2个数成等差数列,求:12n n S a a a =++⋅⋅⋅+,(答案:32n S n =) 第三章 不等式1.不等式的性质:① 不等式的传递性:c a c b b a >⇒>>,② 不等式的可加性:,,c b c a R c b a +>+⇒∈>推论:d b c a d c b a +>+⇒⎭⎬⎫>> ③ 不等式的可乘性:000;0;0>>⇒⎭⎬⎫>>>><⇒⎭⎬⎫<>>⇒⎭⎬⎫>>bd ac d c b a bc ac c b a bc ac c b a ④ 不等式的可乘方性:00;00>>⇒>>>>⇒>>n n n n b a b a b a b a 2.一元二次不等式及其解法:①.()c bx ax x f c bx ax c bx ax ++==++>++222,0,0注重三者之间的密切联系。
如:2ax bx c ++>0的解为:α<x <β, 则2ax bx c ++=0的解为12,x x αβ==; 函数()2f x ax bx c =++的图像开口向下,且与x 轴交于点(),0α,(),0β。
对于函数()c bx ax x f ++=2,一看开口方向,二看对称轴,从而确定其单调区间等。
②.注意二次函数根的分布及其应用.如:若方程2280x ax -+=的一个根在(0,1)上,另一个根在(4,5)上,则有(0)f >0且(1)f <0且(4)f <0且(5)f >03.不等式的应用: ①基本不等式:()()222220,0,,2,22a b a b ab a b ab a b a b +>>≥+≥+≥+ 当a >0,b >0且ab 是定值时,a+b 有最小值; 当a >0,b >0且a+b 为定值时,ab 有最大值。
②简单的线性规划:()00>>++A C By Ax 表示直线0=++C By Ax 的右方区域. ()00><++A C By Ax 表示直线0=++C By Ax 的左方区域解决简单的线性规划问题的基本步骤是:①.找出所有的线性约束条件。
②.确立目标函数。
③.画可行域,找最优点,得最优解。
需要注意的是,在目标函数中,x 的系数的符号,当A >0时,越向右移,函数值越大,当A <0时,越向左移,函数值越大。
⑷常见的目标函数的类型: ①“截距”型:;z Ax By =+②“斜率”型:y z x =或;y bz x a-=- ③“距离”型:22z x y =+或22;z x y =+22()()z x a y b =-+-或22()().z x a y b =-+-画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 . 第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,zB为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值.。