异步电机调速系统的仿真与实验研究
- 格式:docx
- 大小:36.74 KB
- 文档页数:1
实验报告课程名称:机电一体化系统设计实验名称:交流异步电动机调速系统软件仿真专业班级:姓名:学号:指导教师:成绩:1.实验目的:熟悉SIMULINK环境;建立三相异步电动机恒压频比调速系统模型并仿真分析。
2.实验内容:设计并在simulinnk下搭建三相异步电动机恒压频比环调速系统3. 实验原理方案(10分)异步电机的调速有多种方法,转速开环恒压频比控制是交流电动机变频调速最基本的一种控制转速方式,在一般的变频调速装置里面都嵌入有这项功能,工作方式为恒压频比的调速方式能满足大多数场合交流电动机调速控制的要求,使用起来也相对方便,是通用变频器的基本模式。
但在低压时候需要一定的补偿电压,采用恒压频比控制,在基频以下的调速过程中的转差率会保持不变,电动机的所以会机械特性会相对较硬,电动机有较好的调速性能。
正选脉冲宽度调制三相逆变电路,是一种以三角波做载波的应用冲量等效原理而获得理想交流电源的电路装置,在调制比与载波比一定的条件下,通过调节外加直流电源的大小就可以获得在额定频率下产生额定电压的正选电压波,通过调节正弦波的频率就可以得到理想的电压频率波,而且调节输入正弦波的频率能得到线性的输出电压幅值。
MATLAB在电气领域中的运用随处可见,在这里可以运用MATLAB里的Simulink仿真出具体的模型,通过示波器来观察具体的波形,从而进行进一步的分析。
4. 实验实现方案(20分)首先采用三相双极性SPWM逆变电路产生三相交流电源,全控型器件可以选用IGBT,这样通过调节外加直流电源的大小便可获的理想的输出交流电压源幅值,然后通过改变给定的频率信号来改变异步电机的转速,基本模型如下图所示图1 调速系统模型图恒压频比变频调速系统基本原理结构如图2.7所示,系统由升降速时间设定环节,U—F曲线,SPWM调制和驱动等环节组成。
其中升降速时间设定环节G1用来限制电动机的升频速度,避免频率上升过快而造成电流和转矩的冲击,起到软启动控制的作用。
“运动控制系统”专题实验r2 r2+Rs1 r2+Rs2 r2+Rs3sm sm1 sm2 s Tem图6-1整个调速系统采用了速度,电流两个反馈控制环。
这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。
在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。
异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。
但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。
2.双闭环异步电机调压调速系统的机械特性。
转子变电阻时的机械特性:3.三相异步电机的调速方法三种类型:转差功率消耗型:调压、变电阻等调速方式,转速越低,转差功率消耗越大。
转差功率馈送型:控制绕线转子异步电机的转子电压,利用转差功率可实现调节转速的目的。
如串级调速。
转差功率不变型:转差功率很小,而且不随转速变换,如改变磁极对数调速,变频调速。
1)定子调压调速当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电势减少,转(2)空载电压为200V时n/(r/min) 1281 1223 1184 1107 1045I G/A 0.10 0.11 0.12 0.13 0.13U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.28312.闭环系统静特性n/(r/min) 1420 1415 1418 1415 1416 1412I G/A 0.11 0.14 0.16 0.19 0.21 0.26U G/V 203 200 201 200 200 199 M/(N·m) 0.2394 0.2795 0.3080 0.3777 0.3496 0.4482 静特性曲线:与开环机械特性比较,闭环静特性比开环机械特性硬得多,且随着电压降低,开环特性越来越软。
学 号 学生姓名 专业班级课程设计(论文)题目异步电动机调压调速系统的设计及仿真课程设计(论文)任务 课题完成的功能:分别完成异步电动机的开环、单闭环和双闭环调压调速系统的设计;在此基础上,开发开环调压调速系统的仿真软件,并进行仿真实验。
设计任务及要求:1、设计开环、单闭环和双闭环调压调速系统的结构原理图;2、设计开环、单闭环和双闭环调压调速系统的控制方案,并在实验室中分别实现开环、单闭环和双闭环调压调速系统;3、以开环调压调速系统为例,开发仿真软件,仿真实验的结果与理论分析和实物实验相一致; 技术参数:1、电动机的额定功率0.12Kw ,额定电压220V ,额定电流0.6A ,额定转速1380pm 。
2、速度控制系统的精度在±1%以内。
进度计划1、熟悉课程设计题目,查找及收集相关书籍、资料(2天);2、设计系统的结构原理图(2天);3、实现各种调速系统(3天);4、仿真软件开发(1天);5、撰写课设论文(1.5天);6、设计结果考核(0.5天);指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字:年 月 日摘要简单介绍了异步电动机调压调速系统的几大组成部分,分析了异步电机调速的原理,在了解异步电动机调压调速的基本原理的基础上,依次设计了异步电动机开环、单闭环、双闭环调压调速系统的结构原理图、控制方案,并且在实验室实现了异步电动机调压调速系统。
以开环调压调速系统为例,基于Matlab语言开发仿真软件,并进行仿真实验,记录仿真数据。
关键词:异步电动机调压调速 Matlab 仿真目录第1章绪论 (1)第2章异步电动机调压调速系统 (2)2.1 三相异步电动机的结构与基本原理 (2)2.1.1 三相异步电动机定子 (2)2.1.2 三相异步电动机转子 (2)2.1.3 三相异步电动机气隙 (3)2.1.4 三相异步电动机的基本工作原理 (3)2.2 转差率 (4)2.3 异步电动机运行的三种状态 (4)第3章异步电动机调压调速系统的设计 (6)3.1 开环调压调速 (6)3.2 单闭环调压调速系统 (9)3.3 双闭环调压调速系统 (13)第4章开环调压调速系统仿真 (15)4.1 交流仿真调压程序 (15)4.2 各部分参数设置 (16)第5章课程设计总结 (22)参考文献 (23)第1章绪论目前,国外先进的工业国家生产直流传动的装置基本呈下降趋势,而交流变频调速装置的生产大幅度上升。
基于SVPWM的异步电机变频调速系统的研究异步电机变频调速系统是现代电力系统中常用的一种调速方法,其通过改变电机的供电频率达到调节电机转速的目的。
随着电力电子技术的发展,基于空间矢量脉宽调制(SVPWM)的异步电机变频调速系统逐渐成为研究的热点。
本文将从SVPWM工作原理、SVPWM调速系统的基本结构和控制策略等方面对基于SVPWM的异步电机变频调速系统展开详细研究。
首先,介绍SVPWM的工作原理。
SVPWM是一种综合利用直流信号和交流信号来控制逆变器输出的方法,其通过合理的调节直流信号和交流信号的幅值和相位来实现对逆变器输出电压的控制。
SVPWM可以有效地提高电机的工作效率和调速响应速度,同时减小电机的谐波失真。
其次,介绍SVPWM调速系统的基本结构。
SVPWM调速系统主要由电源模块、逆变器模块、电机模块和控制模块组成。
电源模块负责提供电源电压,逆变器模块将直流电压转换为交流电压供给电机,电机模块将交流电压转换为机械能,控制模块对整个系统进行调节和控制。
然后,详细介绍SVPWM调速系统的控制策略。
SVPWM调速系统的控制策略可以分为开环控制和闭环控制两种方式。
对于开环控制,控制算法主要基于电机的数学模型,通过计算电机的工作状态和控制信号来实现对电机转速的调节。
而对于闭环控制,则需要实时采集电机的转速信息,通过反馈控制来实现对电机转速的精确调节。
最后,对基于SVPWM的异步电机变频调速系统的未来发展进行展望。
随着电力电子技术的进一步发展,基于SVPWM的异步电机变频调速系统将进一步提高其控制精度和调速性能,为各个工业领域提供更加可靠和高效的动力系统。
综上所述,基于SVPWM的异步电机变频调速系统是一种非常有潜力的调速方法。
通过深入研究SVPWM的工作原理、调速系统的基本结构和控制策略,可以更好地实现对异步电机的精确调速控制。
同时,基于SVPWM的异步电机变频调速系统也将在未来的发展中得到进一步的完善和应用。
交流异步电机调速系统实验报告引言在电力系统中,电机调速是一个非常重要且复杂的问题。
随着技术的不断发展,异步电机调速系统成为了广泛应用的一种方案。
本实验旨在通过搭建和调试一个交流异步电机调速系统,来研究其调速性能和控制策略。
实验目的1.理解交流异步电机调速系统的工作原理;2.掌握电机调速系统的基本组成和实验搭建方法;3.研究不同控制策略对电机调速性能的影响;4.分析实验结果,评价不同控制策略的优劣。
实验原理1.异步电机工作原理:异步电机由主电路和励磁电路组成。
主电路中的三相对称电压产生一个旋转磁场,而励磁电路中的电压和电流则产生感应转子电动势和转矩,使得电机运转起来。
2.异步电机调速原理:异步电机调速主要通过控制转子电阻、定子电压以及改变电机的励磁电流来实现。
常见的调速方法有直接转矩控制(DTC)、矢量控制(VC)等。
实验设备和步骤1.实验设备:–交流异步电动机–实验控制器–电压调节器–电流测量仪–速度测量仪–控制软件2.实验步骤:1.搭建电机调速系统的硬件连接,确保各设备按照要求连接并接通电源。
2.在控制软件中选择合适的控制策略,并设置调速参数。
3.运行实验控制器,观察电机的调速性能,并记录实验数据。
4.根据实验数据分析电机的调速性能,并评价不同控制策略的优劣。
实验结果分析根据实验数据,我们可以得出以下结论:1.不同控制策略对电机调速性能的影响:–直接转矩控制(DTC)可以实现较好的转矩和速度响应,但对转子电阻参数变化较为敏感。
–矢量控制(VC)具有较好的转矩和速度响应特性,并且对转子电阻参数变化不敏感。
2.不同电机负载对调速系统的影响:–在轻载情况下,不同控制策略的性能相对较为接近。
–在重载情况下,矢量控制(VC)表现出较好的调速稳定性和承载能力。
结论本实验通过搭建和调试交流异步电机调速系统,研究了不同控制策略对电机调速性能的影响,并分析了不同负载下的调速系统性能。
通过实验结果,我们得出了以下结论:1.矢量控制(VC)相比直接转矩控制(DTC)具有更好的转矩和速度响应特性,且对转子电阻参数变化不敏感。
关于异步电动机变频调速系统的仿真研究 电力传动是工业控制领域中的一个重要内容,它利用电动机将电能转变为机械能,从而满足工农业生产以及日常生活中的各种要求。
随着社会生产的不断发展,采用高水平的电动机调速系统是现代自动控制系统及其它驱动系统得以实现的关键之一。
近年来,随着电力电子技术、现代控制理论和计算机技术的迅速发展,交流调速系统正广泛应用于工业生产的各个领域,为了满足高性能的传动需要,必须对速度进行精确控制,矢量控制变频调速为满足这一要求而产生的。
1971年德国学者提出交流电动机的磁场定向控制原理,利用坐标变换将交流电动机等效为直流电动机,实现定子电流励磁分量和转矩分量的解耦,从而达到对转矩和磁链的分别控制的目的。
为了更好地了解矢量控制系统的调速性能,1 异步电动机的数学模型异步电动机的动态数学模型是一个高阶、非线性、强耦合的系统,虽然可以通过坐标变换进行适当简化,但并不能改变其非线性、多变量的本质。
因此要实现高动态调速性能的控制方案,必须基于异步电机的动态模型。
根据异步电动机三相静止坐标系和两相静止坐标系之间的变换,两相静止坐标系和旋转坐标系的变换,可以推导出异步电机在d 、q 坐标系上的数学模型,这个模型只规定了d q 轴相互垂直关系以及定子频率同步的旋转速度,但未规定坐标系与电机旋转磁场的相对位置。
如果取d 轴与转子磁链矢量r φ重合,即得到按转子磁场定向的旋转坐标系。
因为q 轴与转子磁链矢量r φ垂直,因此转子磁链矢量r φ在q 轴分量为零,得到按转子磁场定向的异步电机的电压方程[1]为:111(/)0/00000000sd sd s s s m r sq sq ss s m r r m r r rd r m sl i u R L p w L L L p i u w L R L p w L L R L R L p R L w σσσσφ⎡⎤+-⎡⎤⎛⎫⎢⎥⎢⎥ ⎪+⎢⎥⎢⎥ ⎪=⎢⎥⎢⎥ ⎪-+⎢⎥⎢⎥ ⎪-⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦其中,1w 为转子磁链的旋转速度,sl w 为转差角频率。
基于MATLAB的异步电机变频调速系统的仿真与分析1.引言随着工业自动化水平的不断提高,对电机变频调速系统的要求也越来越高。
异步电机是目前工业中最为常见的一种电机类型,其变频调速系统在工业生产中发挥着至关重要的作用。
通过变频调速系统,可以实现电机的精确控制和能耗优化,提高生产效率和降低运行成本。
对异步电机变频调速系统进行仿真与分析,对于工业生产具有重要意义。
MATLAB是一款功能强大的技术计算软件,具有丰富的工具箱和仿真功能,可以方便地进行电机系统的建模和仿真分析。
本文将基于MATLAB对异步电机变频调速系统进行仿真与分析,探讨其性能特点和优化方法。
2.异步电机变频调速系统的基本原理异步电机的变频调速系统是通过改变电机的输入频率和电压,从而控制电机的转速和转矩。
基本原理是利用变频器对电源进行调节,改变电机的供电频率和电压,以实现对电机转速的精确控制。
在变频调速系统中,一般采用闭环控制结构,通过反馈电机转速信息,控制变频器的输出频率和电压,从而实现对电机的精确控制。
还需要考虑电机的负载特性和动态响应特性,以保证系统稳定性和性能优化。
在MATLAB中,可以利用Simulink工具箱进行异步电机变频调速系统的建模。
首先需要建立电机的数学模型,包括电机的电气特性、机械特性和传感器特性等。
然后,在Simulink中建立闭环控制系统模型,包括电机模型、变频器模型和控制器模型等。
通过建立完整的系统模型,可以对异步电机变频调速系统进行仿真分析。
可以通过改变输入信号和参数,观察系统的动态响应和稳定性能,进而优化系统的控制策略和调速性能。
4.仿真与分析通过MATLAB对异步电机变频调速系统进行仿真与分析,可以得到系统的各项性能指标和特性曲线。
其中包括电机的转速-转矩特性曲线、电机的效率曲线、系统的响应时间和稳定性能等。
在仿真过程中还可以考虑不同的工况和负载情况,对系统进行多种工况的分析和评估。
通过对系统性能的综合分析,可以得到系统的优化方案和改进措施,提高系统的控制精度和能效性能。
异步电动机变频调速系统的设计与仿真1. 异步电动机概述交流电动机,主要指笼式异步电动机和同步电动机。
它主要用于不需要变速的电力传动系统中,其原因是:1)不论是异步电动机还是同步电动机,唯有改变定子供电频率调速最为方便,而且可以获得优异的调速特性。
而大容量的变频电源却在长时期内没有得到很好的解决。
(2)异步电动机和直流电动机不同,它只有一个供电回路定子绕组,致使其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流均可方便地控制电动机的转速。
然而,自20世纪50年代末开始,电气传动领域中进行着一场重要的技术革命一将原来只用于恒速传动的交流电动机实现速度控制,以取代制造复杂、价格昂贵和维护麻烦的直流电动机。
随着电力电子器件及微电子技术的不断进步以及现代控制理论向交流电气传动领域的渗透,现在从数百瓦的伺服系统到数万千瓦的特大功率高速传动系统;从一般要求的小范围调速传动到高精度、快响应和大范围的调速传动;从单机传动到多机协调运转,几乎都可采用交流调速传动。
交流调速传动的客观发展趋势己表明,它完全可以直流传动相媲美、相抗衡,并有取代的趋势。
异步电机可以采用调压调速、改变极对数调速、串电阻调速、变频调速等。
在交流调速诸多方式中,变频调速是最有发展前途的一种交流调速方式,也是交流调速的基础和主干内容。
变频装置有交一直一交系统和交一交系统两大类。
交一直一交系统在传统电压型和电流型变频器的基础上正向着脉宽调制(PWM)型变频器和多重化技术方向发展,而交一交变频器应用于低速大容量可逆系统有上升趋势现代电力电子、微电子技术和计算机技术的飞速发展,以及控制理论的完善、各种工具的日渐成熟,尤其是专用集成电路、DSP和FPGA近年来令人瞩目的发展,促进了交流调速的不断发展。
目前异步电机变频调速控制己经成为一门集电机、电力电子、自动化、计算机控制和数字仿真为一体的新兴学科。
2. 异步电机数学模型异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。
实验四异步电动机变频调速系统(一)转速开环恒压频比控制变频调速系统实验一.实验目的1.通过实验掌握转速开环恒压频比控制调速系统的组成及工作原理。
2.掌握V/F控制方式下,选取不同的模式电机的静特性差异。
二.实验数据及分析转速开环恒压频比控制静特性n(r/min)1475 1488 1501 1511 1525 1543Ia(A) 2.5 2.2 2.0 1.9 1.8 1.7T(N.m) 100% 83.9% 68.1% 54.6% 37.4% 15%n(r/min)902 916 931 945 953 966Ia(A) 2.3 2.1 1.9 1.7 1.7 1.6T(N.m) 100% 82.7% 64.0% 46.4% 33.6% 16.5%n(r/min)475 488 495 508 518 528 Ia(A) 1.9 1.7 1.6 1.6 1.5 1.5T(N.m) 85% 69.2% 56.1% 45.1% 28.0% 21.7%n(r/min)472 485 495 506 508 525 Ia(A) 2.0 1.8 1.7 1.7 1.6 1.6T(N.m) 62.5% 50.5% 39.2% 27.4% 20.8% 3.6%三.思考题1.说明转速开环恒压频比控制静特性特点答:其他条件相同,转速与频率大致成正比;频率一样时,转速越高,带动转矩能力越差。
2.说明低频补偿对系统静特性的影响。
答:由于临界转矩随f减小而减小,f较低时,电动机负载能力较弱。
低频补偿可以增强系统负载能力,同转速时有低频补偿情况T较小。
3.说明载波频率的大小对电机运行影响答:低频时转矩大,噪音小,但此时主元器件开关损耗大,整机发热较多,效率下降。
高频时转矩变小,电流输出波形比较理想。
(二)异步电动机带速度传感器矢量控制系统实验一.实验目的1.通过实验掌握异步电动机带速度传感器矢量控制系统的组成及工作原理;2.掌握异步电动机带速度传感器矢量控制系统静、动特性。
异步电动机SPWM变频调速原理与仿真分析摘要在分析SPWM原理的基础上,利用MATLAB/SIMULINK软件构造了SPWM调速系统的仿真模型并说明了规则采样法的可行性。
该模型主要利用S-函数模拟自然采样法和规则采样法的控制规则并应用电力系统工具箱构建逆变桥和电机,能够比较好的模拟真实的系统并实现变频调速的功能。
通过对仿真结果的分析,对比自然采样法和规则采样法控制性能的差异,得出了规则采样法在工程实际中应用的可行性。
关键词:SPWM,异步电机,MATLAB,仿真,规则采样法,自然采样法The Simulation and Analysis of the Fundmental Principle of Asynchronous Motor SPWM Speed AdjustingABSTRACTBase on analizing SPWM principle, the SPWM velocity modulation system's simulation model has been constructed by using the MATLAB/SIMULINK software.After analizing the results of simulation,the feasibility of the regular sample law is given out. This model mainly uses the S- function analogue natural sampling law and the regular sampling method control rule and construct inverter and machine ,this model can simulate the real system and realize the frequency conversion velocity modulation function. The simulation results is given out in this paper, though analizing the simulation results and constrasting the difference of the control performance of natural sampling law and regular sampling,the application feasibility of the regular sampling law in the project has been obtained.KEYWORDS: SPWM ,aynchronous motor,MATLAB,simulation, regular sampling law, ntural sampling law目录摘要 (I)ABSTRACT .................................................................................................................................................... I I 1 绪论 (1)1.1交流调速系统的发展 (1)1.2交流调速系统的基本类型 (2)1.2.1 异步电动机调速系统的基本类型 (2)1.2.2 同步电动机调速的基本类型 (4)2 Siulink 仿真基础 (5)2.1 Simulink简介 (5)2.1.1 Simulink 启动 (5)2.1.2 Simulink 组成 (5)2.1.3 仿真过程 (6)2.2 Simulink 模块库简介 (6)2.3电力系统工具箱简介 (6)2.4 S-函数简介 (6)2.4.1 S-函数的基本概念 (6)2.4.2 S-函数的使用 (7)2.4.3 与S-函数相关的一些术语 (7)2.4.4 S-函数的工作原理 (8)2.4.5 编写M文件S-函数 (9)3 异步电动机变压变频调速系统 (11)3.1概述 (11)3.2变压变频调速的基本控制方式 (11)3.2.1 基频以下调速 (11)3.2.2 基频以上调速 (12)3.3异步电动机电压-频率协调控制时的机械特性 (12)4 PWM控制技术 (15)4.1 正弦脉宽调制原理及其优点 (15)4.1.1 SPWM原理 (15)4.1.2 SPWM的优点 (18)4.1.3关于SPWM的开关频率 (19)4.2 同步调制和异步调制 (19)4.2.1 异步调制 (19)4.2.2 同步调制 (19)4.2.3 分段同步调制 (20)4.3 SPWM波形的生成 (20)4.3.1 自然采样法 (20)4.3.2 规则采样法 (21)5 异步电动机SPWM变频调速仿真系统的设计 (23)5.1自然采样法系统的设计 (23)5.1.1 三角波的生成 (23)5.1.2 自然采样法SPWM 脉冲的生成 (25)5.1.3 直流电源 (25)5.1.4 逆变器的设计 (25)5.1.5 系统总框图的设计 (26)5.2 规则采样法系统的设计 (26)5.2.1 规则采样法脉冲的生成 (26)5.2.2 规则采样法系统总框图的设计 (28)5.3仿真分析 (28)5.3.1 额定转速(50HZ)的波形 (29)5.3.2 性能对比分析 (30)致谢 (36)参考文献 (37)1 绪论1.1 交流调速系统的发展[1]直流电气传动和交流电气传动在19世纪先后诞生。
异步电机调速系统的仿真与实验研究
一、简介
异步电机作为目前工业生产中最常见的电动机之一,应用广泛。
而电机调速系统也是控制技术中的重要一环。
因此,对异步电机调速系统进行仿真与实验研究,有助于提高工业生产效率和降低生产成本。
二、异步电机调速系统
异步电机调速系统主要分为开环控制和闭环控制两种。
在开环控制下,调速器只能控制电机的输出电压或电流大小,无法保证输出转速和负载变化对输出转速的影响。
而在闭环控制下,调速器可以根据反馈信号实时调整输出电压或电流大小,从而实现对输出转速的控制。
三、仿真研究
为了减少实验成本和时间,我们通常会先进行仿真研究。
仿真研究可以实现对调速系统各个参数的调整和模拟,以便得到最优的控制策略。
在异步电机调速系统的仿真研究中,常用的仿真软件有MATLAB、Simulink、PSpice等。
四、实验研究
在完成了仿真研究后,我们需要进行实验研究,以验证仿真结果的正确性。
实验研究需要建立实际的调速系统,包括电机、变频器、控制器、传感器等。
然后,在实验过程中对调速系统进行分析和改进,以得到更加准确的控制策略。
五、结论
通过异步电机调速系统的仿真与实验研究,我们可以得到更加准确的控制策略和更优秀的性能。
这将有助于提高工业生产效率和降低生产成本。
同时,本研究也为今后对异步电机调速系统的控制与优化提供了参考。