数学系本科生毕业论文
- 格式:docx
- 大小:17.41 KB
- 文档页数:3
*** 学院2016届毕业论文(设计)论文(设计)题目浅析全概率公式的简单应用及其推广子课题题目 ********** * 姓名 ******* *学号 ******** 0所属院系 *******系专业年级 ********指导教师 *******芹2016年 5 月摘要全概率公式是概率论中的一个重要公式之一,在概率论的计算中起着很重要的作用。
常用来解决“多因一果”的复杂事件的概率问题。
实际上,复杂事件分解的关键就是要寻找一个完备事件组,而完备事件组的确定在实际问题中是有一定难度的,这也是全概率公式掌握起有一定难度的原因。
在本文中,我将通过大量的实例来说明在具体问题中如何确定完备事件组,并对全概率公式的应用进行了全面的探讨,在此基础上还得到了全概率公式的一些推广,并进一步分析证明了全概率公式在解决问题时的重要性和高效性,希望利用全概率公式可以使我们更加准确便捷的选择策略和处理问题。
关键词:全概率公式;完备事件组;差分方程;全概率公式的应用AbstractTotal Probability Formula is one of the most important formula in probability theory, and plays an important role in the calculation of probability theory. It is used to solve the probability problem of complex events about "many causes and one effect". In fact, the key of decomposing complex events is to searching a complete event group. However, it is difficult to determine the complete event group in practical issues and this is the reason why it is difficult to master the Total Probability Formula. In this thesis, the author will take a lot of examples to illustrate how to determine the complete event group in concrete problems, and discuss the application of the Total Probability Formula comprehensively. The author will obtain an expanding of the Total Probability Formula on the basis and prove the importance and efficiency of solving problems by analyzing the Total Probability Formula deeply. Moreover the author hopes that people can choose strategies and solve problems easily and accurately with the help of the Total Probability Formula.Keywords:Total Probability Formula;Complete Event Group;Difference Equation;The applicatio Of Total Probability目录引言 (1)第一章全概率公式的概述 (2)1.1准备知识 (2)1.2条件概率 (3)1.3全概率公式 (4)1.3.1离散型随机变量的全概率公式 (5)1.3.2连续型随机变量的全概率公式 (5)第二章全概率公式在解题中的应用 (8)2.1古典概率问题 (8)2.2求随机变量的分布 (9)2.3求二维随机变量函数的分布 (13)2.4列出差分方程求事件概率 (14)第三章全概率公式在实际生活中的应用 (18)3.1全概率公式在产品检验上的应用 (19)3.2全概率公式在传染病诊断中的应用 (20)3.3全概率公式在经济领域中的应用 (20)第四章全概率公式的推广 (21)4.1全概率公式的推广定理1 (22)4.2全概率公式的推广定理2 (22)4.3全概率公式的推广定理3 (23)4.4贝叶斯公式 (24)4.5全概率公式推广多元分布的边际分布 (25)小结 (25)参考文献 (26)谢辞 (27)引言概率论与数理统计是研究随机现象统计规律性的一门学科,起源于17 世纪的赌博问题。
数学毕业论文数学毕业论文(精选7篇)数学毕业论文篇1设计计划学是一门新兴的综合性边缘学科,它研究的是如何保证设计的优良度和高效性,以及如何指导设计的展开。
在设计需要科学计划这一概念已成为现代设计界共识的情况下,我国业界内部对设计计划学的认识与研究,还没有跟上设计发展需要的步伐。
针对我国设计教育现状,本书将就该学科的教学方面,提出一套科学的行之有效的设计计划方法。
以期为设计类学生深入理解设计,更好地掌握设计的方法提供必要的指导。
选题依据计划在今天已逐渐成为一门显学,大至国家事务,小至个人日常生活,社会各个领域都离不开计划,各类大大小小的成功项目,很大程度上都自觉或不自觉地导入,实施了相应的计划活动。
计划学的兴起是知识经济时代资源整合化的大势所趋。
而反映到艺术设计学的领域,我们可以发现,计划同样有极大的发展空间:如何设计,如何保证优良的设计,这都需要科学的调查研究,需要精准的分析定位,需要详实的设计依据,需要合理的组织安排,这些与我们通常理解的形式,风格的赋予层面的设计相异而相成的工作,就是设计计划的内容。
而如何正确进行设计计划,存在着一个方法论的问题。
在学科间的交叉融合成为当前学术主流的大环境下,设计计划应该可以打通各设计专业间的藩篱,为取得成功的设计提供行之有效的方法上的支持。
在设计先进国家,对设计计划方面已有一定程度的研究。
尤其在设计方法研究方面,已取得比较成熟的结果,出现了一些有效的方法,如技术预测法,科学类比法,系统分析设计法,创造性设计法,逻辑设计法,信号分析法,相似设计法,模拟设计法,有限元法,优化设计法,可靠性设计法,动态分析设计法,模糊设计法等。
这些方法侧重于不同的专业设计方向,而设计计划面临不同设计专业,更需要的是一种整合的灵活的解决问题的计划方法。
这就需要我们针对计划自身的学科特点,从现有的成型的方法群中进行提炼,总结出一套适应现在情况的设计计划方法来。
创新性及难度本文致力于从简明实效的角度,为设计计划人员提供易于操控,而且便于和各个专业设计师进行沟通、交流的方法。
数学本科毕业论文数学本科毕业论文数学作为一门精确而又抽象的学科,一直以来都是人们认为最难以理解的学科之一。
然而,对于数学专业的本科生而言,毕业论文是他们学术生涯的重要一环。
本文将探讨数学本科毕业论文的主题、研究方法以及一些值得注意的事项。
首先,选择一个合适的毕业论文主题是至关重要的。
数学领域的研究范围广泛,可以涉及纯数学、应用数学以及统计学等多个方向。
在选择主题时,学生应该根据自己的兴趣和擅长领域进行选择,同时也要考虑到导师的研究方向和实际可行性。
例如,一个对概率统计感兴趣的学生可以选择研究某种概率分布的性质或者应用统计方法解决实际问题。
其次,研究方法在数学本科毕业论文中起着重要的作用。
数学研究通常需要严密的逻辑推理和数学证明。
因此,学生在论文中应该清晰地描述研究问题、提出假设,并通过严格的数学推导和证明来验证假设。
同时,学生还可以运用数学建模、计算机模拟等方法来验证理论结果的正确性。
在研究方法的选择上,学生应该根据研究问题的性质和可行性进行权衡,并充分利用导师和同学的指导和讨论。
除了研究方法,数学本科毕业论文的撰写也需要一定的技巧。
首先,学生应该清晰地阐述问题陈述,并在引言部分对相关的背景知识进行介绍。
其次,学生应该逐步展开自己的研究思路,清晰地叙述每一步的推导和证明过程。
同时,学生还应该注意论文的结构和逻辑,确保每一部分都能够紧密衔接,形成一个完整的论证体系。
最后,在论文的结论部分,学生应该总结自己的研究成果,并对未来的研究方向提出一些建议。
除了论文的撰写,数学本科毕业论文的答辩也是一个重要的环节。
在答辩中,学生需要向评委会展示自己的研究成果,并回答评委们提出的问题。
因此,学生在答辩前应该充分准备,对自己的研究内容和方法进行深入理解,并思考可能的问题和解决方案。
此外,学生还应该注意表达清晰、语言流畅,以及展示自己的研究成果的可视化展示。
总而言之,数学本科毕业论文是学生学术生涯的重要一环。
在选择主题、研究方法和论文撰写上,学生应该认真思考和准备,并充分利用导师和同学的指导和讨论。
应用数学本科毕业论文数学以及应用数学是网络技术和电子信息技术的基础,随着这些行业的快速发展,相关行业需要大量能掌握应用数学知识并能将其转化为生产力的专业人才。
下面是店铺为大家整理的应用数学本科毕业论文,供大家参考。
应用数学本科毕业论文范文一:应用数学课程多元化的教学模式改革一、开展应用数学课程多元化的教学模式改革1.使应用数学课程资源数字化、网络化学习资源的数字化与网络化已成为现今各科发展的必然趋势。
我们通过建立应用数学课程电子试题库和网络公共邮箱等方式实现了数学资掘的共享。
2.建立应用数学课程的公共网络交流平台建立“应用数学交流QQ群”,使用QQ群公共邮箱进行群发邮件,资源共享,并在周末和晚上设立了应用数学课程公共答疑时间,进行每周的课程答疑,通过撰写群博客对教学内容进行补充。
这些活动的展开已在一些职业院校中得到了广泛的认可,对职业院校应用数学教育的改革将产生深远的影响。
二、开展数学实验课的教学1.教学目标数学实验课程的教学目标应该是培养学生的数学思维能力、科学计算能力和数据处理能力,使学生学会数学概念中的思想方法。
培养学生熟练使用数学软件解决实际问题的能力,让学生通过数学软件或者自编的程序自由地探索,从中发现、总结出可能存在的规律,然后加以验证。
2.教学内容选取数学实验课的教学内容应遵循实用性、开放性、适度性、趣味性的原则,以解决实际问题为出发点,以建立解决实际问题的数学模型为训练目的。
实验题材应具有启发学生思维、引导学生探索的特点,既能对理论教学进行适当的补充,使学生掌握所学的知识,又能培养学生独立解决问题的能力。
同时,要尽量选择生活中常见的问题,提高学生的学习兴趣。
在此原则基础上,将实验教学内容分为三个部分:(1)课堂演示实验。
对于抽象数学概念的引入,通过大量的实例,使学生对概念有一个感性的认识,再通过归纳,提炼出共性的定义,既能帮助学生理解概念,又能培养学生的归纳能力。
(2)基础计算实验。
本科数学专业毕业论文和中学数学相比较,大学数学内容多,抽象性和理论性强,很多学生对于大学数学的学习不能适应。
下面是店铺为大家整理的本科数学专业毕业论文,供大家参考。
本科数学专业毕业论文范文一:大学数学数学文化渗透思考摘要:大学教育中非常重要的一门基础学科就是数学,学好数学有利于大学生培养逻辑思维能力,提高创新意识。
在大学数学教学中渗透数学文化,能够让大学生对于数学知识有更加深刻的理解,激发大学生探究数学知识的兴趣,在学习中发现数学的乐趣,养成用严谨的态度看待周边的事物,为大学生今后步入社会做好准备。
关键词:大学数学;教学;渗透;数学文化一、数学文化的具体含义数学文化是指数学的思想、精神、观点、语言以及它们的形成和发展,还包含了数学家、数学史、数学教育和数学发展中的数学与社会的联系,数学与各种文化的关系等。
我国数学文化最早在孙小礼和邓东皋等人共同编写的《数学与文化》中被提及,这本书浓缩了许多数学名家的相关理论学说,记录了从自然辩证法角度对数学文化的思考。
数学不单单是一种符号或者是一种真理,其内涵包含了用数学的观点来观察周边的现实,构造数学模型,学习数学语言、图表和符合的表示,进行数学的沟通。
数学文化可以在具体的数学理念和数学思想、数学方法中揭示内涵。
数学从本质上与文学的思考方式是共通的,数学文化中的逻辑思维、形象思维、抽象思维等在文学思考方式中也有体现。
但是数学文化与其他文化相比较,也有其本身的独特性。
数学在历史发展的长河中不断改变和融合,现在已经成为世界上的一种通用语言,不再受到不同国家文化、语言的束缚,受到了各国人民的推崇和发展,数学文化利用科学的方式对人类生活中的其他文化的本质进行了深刻的揭示,是其他文化发展的基础。
二、教学中渗透数学文化的意义大学数学中综合了物理、计算机、电子等知识,教学课程包含了高等数学、线性代数、概率论与数理统计等,大学开展数学课程符合时代的发展潮流。
在大学数学教学中渗透数学文化,能够使学生在对数学进行系统化的学习之前,充分理解数学文化的内涵,发现数学文化与其他各种文化间的紧密联系,使大学生能够在数学教学的学习中提高数学学习能力,发展独立发现问题和解决问题的能力,开发大脑的潜能,树立正确的数学学习观念,通过学生深入了解数学的内容,从不同的角度对数学人文、科学方面等知识进行分析和理解。
本科毕业论文论文题目:范德蒙行列式及其应用学生姓名:学号:专业:数学与应用数学指导教师:学院:年月日毕业论文(设计)内容介绍目录中文摘要 (1)英文摘要 (1)一、引言 (2)二、范德蒙行列式定义及性质 (2)三、范德蒙行列式的应用 (3)(一)范德蒙行列式在多项式理论中的应用 (3)(二)范德蒙行列式对整除问题的应用 (5)(三)范德蒙行列式在矩阵的特征值与特征向量中的应用 (6)(四)范德蒙行列式在向量空间理论中的应用 (7)(五)范德蒙行列式在线性变换理论中的应用 (8)(六)范德蒙行列式在微积分中的应用 (10)(七)范德蒙行列式在求解行列式中的应用 (13)参考文献 (16)范德蒙行列式及其应用摘要:行列式最早出现在16世纪关于线性方程组的求解问题中,时至今日行列式理论的应用却远不如此.它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;线性变换;多项式Application of Vandermonde’s DeterminantAbstrac t:The determinant appeared at the earliest which was used to solve the problem concerning the liner equations in 16 centuries,but the days up to now the theoretical in determinant was far used in lots of domains.Vandermonde’s determinant is regarded an a kind of special determinant,which not only have the special form but also have the extensive application.The article inquired into the Vandermonde’s determinant in vector space, linear transformation,polynomial theories and determinant’s calculation of application. Keywords:Vandermonde’sDeterminant;vectorspace;lineartransformation,polynomial theories; determinant’s calculation of application.一 引言在高等代数中,行列式计算及其相关的证明是一个重点,也是难点.它最早出现在线性方程组的求解问题中,时至今日,行列式理论的应用越来越广泛,它是后期学习和应用线性方程组,向量空间,矩阵和线性变换的基础.正确而快速的解决行列式问题是其他一切工作的前提,也是科研工作中最为关键的一步.行列式的计算有一定的规律性和技巧性,掌握行列式的规律性有助于我们高效准确的解决科研工作中遇到的行列式问题.而范德蒙行列式是一种重要的行列式,在行列式计算中可以把一些特殊的或者是类似于范德蒙行列式的行列式转化为范德蒙行列式进行计算.由于范德蒙行列式有着独特的构造和优美的形式而被广大科研工作者广泛的应用,因而成为一个著名的行列式.二 范德蒙行列式定义及性质1. 范德蒙行列式的定义形如12222121111211 (1)n nn n n nx x x x x x x x x ---的行列式,称为1x ,2x ,…n x 的n 阶范德蒙行列式,记作 n V (1x ,2x ,…n x ).下面以递推法为例介绍范德蒙行列式的计算n V (1x ,2x ,…n x )=21311222221331111111122133111111000n n n n n n n n n n n x x x x x xx xx x x x x x x x x x x x x x x x ---------------=2131122133112222213311()()()()()()n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------------=21()x x -31()x x -…1()n x x -n-1V (2x ,…n x ).仿上做法有n-1V (2x ,…n x )=3242223()()n n n x x V x x --(x -x )(x -x ).再递推下直到11V =,故n V (1x ,2x ,…n x )=21()x x -31()x x -…1()n x x -.32422()n x x -(x -x )(x -x )(1n n x x --).1=1i j j i nx x ≤<≤-∏. 有以上的计算易得,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1n nn n n nx x x x x x x x x ---=∏(i j x x -). 有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.三 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.(一) 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助.例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0, 如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c a c a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c x c x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.(二) 范德蒙行列式对整除问题的应用多项式的根与整除性是密切相关的,所以有时候可以用范德蒙行列式的性质讨论某些多项式或者整数的整除题. 例4 设121(),(),(),n f x f x f x -是n-1个复系数多项式,满足 11n x x ++++2121()()()n n n n n f x xf x x f x --+++,证明121(1)(1)(1)0n f f f -====.证 设2121()()()n n n n n f x xf x x f x --+++=1()(1)n p x x x -+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得 212122(2)1211(1)(2)121(1)(1)(1)0,(1)(1)(1)0,(1)(1)(1)0.n n n n n n n n f f f f f f f f f ωωωωωω--------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 这个关于1(1)f ,2(1)f ,1(1)n f -的齐次线性方程组的系数行列式,因此21(,,,)0n V ωωω-=.例5 设12,,n a a a 是正整数,证明()12,,n V a a a 能被()()2121221n n n n ----整除.证明 由()()()111222111111n nn n a a a a aa I aa a --=-1!2!!n =111222112111211121n n n a a a n a a a n a a a n ---. 知()12,,n V a a a 能被1!2!!n =()()2121221n n n n ----整除.(三) 范德蒙行列式在矩阵的特征值与特征向量中的应用例 6 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 7 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11j r r A x x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.(四) 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例8 设12,,,n t t t 是互不相同的实数,证明向量组21(1,,,)n i i i i a t t t -=,i=1,2,…n,n 是n 维向量空间的一组基.证 令21111121222221111n n n n nnn a t t t a t t t A a t t t ---⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为12,,,n t t t 是互不相同的实数,所以0T A A =≠,则12,,,n a a a 线性无关.例 9 设V 是数域F 上的n 维向量空间,任给正整数n m ≤,则在V 中存在m 个向量,其中任取n 个向量都线性无关.证明:因为n V F ≅,所以只需在n F 中考虑即可. 取()2111,2,2,,2n α-=,()()()2222121,2,2,2n α-=,()()()211,2,2,2mmm n m α-=,令()()()()()()111222212121122212221222nnnk k k n k k k n n k k k n D ---=,121n k k k m ≤≤≤≤≤,()()()()()()111222212121122212221222n nnk k k n k k k n n k k k n D ---=是范德蒙行列式,且0n D ≠,所以12,,,n k k k ααα线性无关.例 10 设V 是数域F 上的n 维向量空间,则V 的有限个真子空间不能覆盖V.证明:当n=1时,显然成立.设n>1时,令12,,,n ααα是V 的一个基,设}{112n n n S k k k F V ααα-=+++∣∈⊂,其中,n F 为F 中元素之集合.令112:,n n n F S k e ke k e ϕ-→→+++,12,,,n e e e 为单位向量.则易证ϕ是双射,从而S 中有无穷多个不同的元素.设,1,2,i V i t =为V 的真子空间,则S 中的元素在i V 中的个数小于n,否则,若,1,2,j i V j n β∈=111121112,.n n n nn n n k k k k βαααβααα--⎧=+++⎪⎨⎪=+++⎩则由,,1,2,,,i j k k i j n i j ≠=≠,知系数行列式为非零的范德蒙行列式,故有,1,2,,j k V j n α∈=,进而,1,2,i V V i t ==矛盾.从而S 中只有有限多个元素在1ti i V =中,而S 中有无穷多个元素,所以存在x S ∈,但1,ti i x V =∉即V 的有限个真子空间不能覆盖其自身.(五) 范德蒙行列式在线性变换理论中的应用在高等代数的学习中,线性变换一直是一个重点,也是难点,题目的变化也比较多,在有些题目中,我们可以巧妙地利用范德蒙行列式来解决这类题目. 例11 如果12,,,s λλλ是线性变换的全部两两不同的特征值,(1,2,,)i i V s λα∈,则当120s ααα+++=时,必有12s ====0ααα.证明 注意到(1)I i i i s αλαΛ=≤≤,对等式120s ααα+++=两边逐次作用,得112222211221111220,0,0.s s s ss s s s s λαλαλαλαλαλαλαλαλα---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 用矩阵表示为()()111122121110,0,,01s s s s s s λλλλαααλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭(1)矩阵1111221111s s s s s B λλλλλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭的行列式是范德蒙行列式,由于12,,,s λλλ两两不同,从而B 是可逆矩阵.在(1)式两边右乘1B -, 得12s ====0ααα.例12 数域F 上的n 维向量V 的线性变换σ有n 个互异的特征值12,,n λλλ,则1) 与σ可交换的V 的线性变换都是21,,,n e σσσ-的线性组合,这里e 为恒等变换.2)21,,,,n V αασασασα-∀∈线性无关的充要条件为1,ni i αα==∑这里()i i i σααλ=,1,2,i n =证明:1)设δ是与σ可交换的线性变换,且(),1,2,,i i i i n σαλα==则 }{i i V k k F λα=⎪∈是δ的不变子空间.令21121n n xe x x x δσσσ--=++++且(),1,2,,i i i k i n σαα==,则由以下方程组21111211121212221221121,,.n n n n n nn n n n k x x x x k x x x x k x x x x λλλλλλλλλ------⎧=++++⎪=++++⎪⎨⎪⎪=++++⎩ (1)因为方程组(1)的系数行列式是范德蒙行列式,且()1ij j i nD λλ≤<≤=-∏,所以方程组(1)有唯一解,故δ是21,,,n e σσσ-的线性组合.2)充分性因为1ni i αα==∑,所以()()()()111112212111,,,,,,1n n n n nn λλλλασασααααλλ----⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,并且()111122111101n i j j i nn nn λλλλλλλλ--≤<≤-=-≠∏,所以1111221111n n nn λλλλλλ---⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦是可逆矩阵,又因为12,,,n ααα是V 的一组基,()()1,,,n ασασα-线性无关.3)必要性 设12,,,n e e e 是分别属于1,,,n λλλ的特征向量,则12,,,n e e e 构成V 的一个基,因而有1122n n k e k e k e α=+++.若0,1,2,i k i n ≠=,则i i k e 是σ的属于i λ的特征向量,故结论成立.若存在}{1,2,,j n ∈,使0j k ≠,不妨设12,,,r k k k 去不为零,而120r r n k k k ++====,因而有1122r r k e k e k e α=+++则()()()()()111111112222212121,,,,,,,,,n n n r r n r r r r r k k k k k k e e e e e e A k k k λλλλασασαλλ----⎡⎤⎢⎥⎢⎥==•⎢⎥⎢⎥⎢⎥⎣⎦. 利用范德蒙行列式可知A 有一个r 阶子式不为零,所以秩(A )=r ,从而()()()1,,,n r ασασα-=,又因为r n <线性无关,所以()()()1,,,n ασασα-线性无关,矛盾.从而1,ni i αα==∑1,2,i n =.(六) 范德蒙行列式在微积分中的应用如果视多项式为实函数,则范德蒙行列式还可以应用到微积分领域.例13 ()f x 在[],a b 上连续,在(),a b 内存在2阶导数,证明a x b <<上有()()()()()1"2f x f a f b f a x a b a f c x b -----=-,这里(),c a b ∈.特别的,存在,(,)c a b ∈,使()()2,()2()"()24b a a bf b f f a f c -+-+=. 证 在[],a b 上构造函数()()()()()22221111y y f y a a f a F x x x f x b b f b =,为范德蒙行列式,则()f x 在[],a b 上连续,在(),a b 内存在2阶导数.因()()()0F a F x F b ===,故有中值定理,存在12a x x x b <<<<,使()()12''0F x F x ==,故再运用一次中值定理,存在()12,c x x ∈,使()''0F c =,即()()()()()''2''22002111f c a a f a F c x x f x b b f b ==0 . 展开行列式即得()()()()()1"2f x f a f b f a x a b a f c x b -----=-. 特别的,取2a bx +=,则有相应的()',c a b ∈,使上式成立,即()()()()212"22a b f f a f b f a a b b a af c a b b +⎛⎫- ⎪-⎝⎭-+--=+-,化简即得()()2,()2()"()24b a a bf b f f a f c -+-+=.反复利用微分中值定理,可以类似的证明下面更一般的结论:设()f x 在[],a b 内存在n-1阶导数,12n a x x x b <<<<=.证明存在(),c a b ∈,使()()()()()111!n ni i i j j if x f c n x x -=≠=--∑∏. 例 14 设()f x 在区间I上n 阶可导()2n ≥,若对()()()()00,,,,n n n x I f x M f x M M M ∀∈≤≤为正常数,证明:存在n-1个正常数121,,,n M M M -使对x I ∀∈,有()()()1,2,1.k k f x M k n ≤=-证明:设121,,n a a a I -∈,且()0,i i j a a a i j ≠≠≠,由泰勒公式,对于1,2,,1i n =-,有()()()()()11!!n xn k ni i i k f f f x a f x a a k n ξ-=+=++∑,有此得 ()()()()()11!!n xn kn i i i k f f a f x a f x a k n ξ-==+--∑, 因此 ()()()()()1012!!!nx n k n i i i n k f f A a f x a f x a M M k n n ξ-=≤+++≤+∑,其中11max ni i n A a ≤<-=,令()()()11,,1,2,,1!x n ki i k f a A x x I i n k -==∈=-∑,则()()02,1,2,,1!i n AA x M M x I i n n ≤+∈=-,由于方程组的系数行列式D 为()()()2311111231222223111112!3!1!2!3!1!2!3!1!n n n n n n n a a a a n a a a a n D a a a a n ---------=-=()211112122212121111111!21!1n n n n n n n a a a a a a a a a n a a a -------=-!,其中后面的行列式为121,,,n a a a -范德蒙行列式,由()i j a a i j ≠≠及0i a ≠知0D ≠,故由克莱姆法则知,存在于X无关的常数()()()()()()121,,k k k n λλλ-,使得:()()()()()11n k k i i i f x A x λ-==∑,(),1,2,,1x I i n ∀∈∀=-,由此推得,1,2,,1x I k n ∀∈∀=-,有()()()()()()()110112!n n k k k i n k i i i i A fx A x M M M n λλ--==⎡⎤≤≤+=⎢⎥⎣⎦∑∑.例15 设函数()f x 在0x =附近有连续的n 阶导数,且()()()()'00,00,,00n f f f ≠≠≠.若121,,,n c c c +为一组两两互异的实数,证明,存在唯一的一组实数121,,,n λλλ+,使得当0h →时,()()110n i i i f c h f λ-=-∑是比n h 高阶的无穷小.证明:由题设条件可得,()()1,2,1i f c h i n =+在0x =处带有皮亚诺型余项的马克劳林展开式:()()()()1100!k k nk nk h c f c h f h k ==+ο∑,()()()()2200!k k nk n k h c f c h f h k ==+ο∑,当0h →时,若()()110n i i i f c h f λ-=-∑为比n h 高阶的无穷小.则121112211222112211112211++=1,++=0,++=0,++=0.n n n n n nn nn n c c c c c c c c c λλλλλλλλλλλλ++++++++⎧⎪+⎪⎪+⎪⎨⎪⎪⎪+⎪⎩ 这是以121,,,n λλλ+为未知数的线性方程组,其系数行列式为:()121222121111211110n n ijj i n nn n n c c c D c c c c c c c c ++≤<≤++==-≠∏.故上述方程组有唯一解,即存在唯一一组实数121,,,n λλλ+,使得当0h →时,()()110n iii f c h f λ-=-∑是比nh高阶的无穷小.(七) 范德蒙行列式在求解行列式中的应用行列式的计算是高等代数的重点内用之一,在一些行列式的求解问题中,常可见到范德蒙行列式的踪影,此时提示我们可利用行列式的性质或拆项,升降等方法,将给定行列式转化为范德蒙行列式的形式,从而利用其结果,求出原行列式的值,恰当灵活的运用范德蒙行列式会大大简化某些复杂行列式的计算.例16 122222221211112111=nn n n n n n n na x a x a x D a x a x a x a x a x a x ---+++++++++.解 将原n 阶行列式升阶为一个n+1阶行列式122222221211112111110000nnn n n n n n na x a x a x D a x a x a x a x a x a x ---+++=++++++. 然后将此n+1阶行列式第一行乘以()1,2,i a i n -=加到第i+1行可得12222212121111n nnnn n na x x x D a x x x a x x x -=--=1222212122111000n nnn n nx x x x x x x x x -12222212121111n nnnn n na x x x a x x x a x x x =()()()121112nn ijiijj i ni j i nx x x x x x a x x ≤≤≤=≤≤≤•----∏∏∏.例 17 设0x y z >>>,试证明:()2221,,0xx yz f x y z y y xz xy yz xzz z xy=<++. 证明:()()()()222222312222xx yz x x yz x y z x x D yy xz c x y z c c y y xz x y z y y zz xyzz xy x y z z z +++-=+++-+++-+++- ()()()()222x x xy yz xzy y xy yz xz xy yz xz y x z x z y zz xy yz xz++=++=++---++故()2221,,x x yzf x y z y y xz xy yz xzzz xy=++=()()()y x z x z y ---. 由已知0x y z >>>,有()0y x -<,()0z y -<,()0z x -<,所以有(),,0f x y z <例18 计算行列式()()()()()()()()()0001010111101n nnn n nnn n nn nn n n n a b a b a b a b a b a b D a b a b a b +++++++=+++解:设01000111101n nn n n n n n n n n nn n n n nC C a C a C C a C aD C C a C a =,01111012111n nn n n n n nb b b b b b D ---=,对2D 进行各行依交换,就可以得到范德蒙行列式,于是()()0010112112112011111111nnn n nn n n nnnnn n nnn a a b b b a a D D D C CC b b b a a ++=•=•-=12n n nnC C C()0ijj i na a ≤<≤-∏()()121n n +-()0ijj i nb b ≤<≤-∏.参考文献[1] 同济大学数学系.线性代数(第五版).北京:高等教育出版社.2007(9)[2] 北大数学系编.王萼芳等修订.高等代数.第三版.北京:高等教育社.2003(2).[3] 郭大钧等.吉米多维奇数学分析习题集解(第三版).济南:山东科学技术出版社.2005(3).[4] 张禾瑞,郝炳新.高等代数[M].北京:高等教育出版社.1999[5] 白述伟.高等代数选讲[M].哈尔滨黑龙江教育出版社.1996.[6] 同济大学.高等代数与解析几何[M].北京:高等教育出版社.2005:223.[7] 刘丽,林谦,韩本三,等.高等代数学习指导与习题解析[M].成都:西南财经大学出版社.2009:39.170.253.[8] 邹应.数学分析习题及其解答[M].武汉:武汉大学出版社.2001:168.169.176.[9] 吴良森,毛羽辉.数学分析习题精解:多变量部分 [M].北京:科学出版社,2005.[10] 毛纲源.线性代数解题方法和技巧[M].武汉:湖南大学出版社.山东师范大学本科毕业论文(设计)题目审批表山东师范大学本科毕业论文(设计)开题报告论文题目:学院名称:专业:学生姓名:学号:指导教师:年月日山东师范大学本科毕业论文(设计)教师指导记录表指导教师意见评阅人意见答辩委员会意见学院学位分委员会意见山东师范大学本科毕业论文(设计)答辩记录表学院:(章)系别:专业:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:。
新疆财经大学本科毕业论文题目 : 微分和积分在不等式中的应用学号: 2005101412 学生姓名:阿卜杜瓦哈普·阿卜杜热西提院部:应用数学学院专业:应用数学年级:数学06-2班指导教师姓名职称:阿孜古丽·伊克木(讲师)完成日期:年月日摘要微积分和不等式都是数学中极为重要的内容,本文在回顾了几种常用的证明不等式的初等方法后,利用微分中值定理、泰勒公式、函数的单调性、极(最)值的判定法、定积分的性质等一些微积分知识探讨不等式的证明方法,最后指出了微积分在不等式证明中的具体应用.微积分是数学中的重要组成部分,是研究函数的性质,证明不等式,探求函数的极值、最值,求曲线的斜率和解决一些物理问题的有力工具.微积分的应用为解决数学问题提供了新的思路,新的方法和新的途径,可以说微积分是打开数学知识大门的一把钥匙.微积分在实际生活中的应用非常广泛,在不等式证明中也发挥着巨大的作用。
不等式的证明方法很多,灵活地运用微积分的性质及相关定理是解决许多不等式证明问题的关键.本篇论文归纳和总结了一些证明不等式的方法与技巧,利用微积分证明不等式的基本思想和基本方法,提出了运用这些方法和技巧能够使不等式的求解过程更为简单的思路..关键词:微积分;不等式;微分中值定理;泰勒公式;函数的单调性;极(最)值的判定法;目录前言 (1)第一章微积分 (2)§1微积分的发展 (2)§2微积分的概念 (3)第二章不等式 (7)§1不等式的定义和性质 (7)§2常用的证明不等式的方法 (8)第三章微积分在不等式中的应用 (12)§1利用微分证明不等式 (12)§2利用积分证明不等式 (19)结论 (23)参考文献 (24)致谢 (25)前言在高等数学中常常要证明一些不等式.而不等式的证明方法很多,在以往多采用代数或几何方法,现在可借助于微积分的知识,这是普遍应用的一种方法。
数学本科毕业论文范例数学系本科毕业论文数学本科毕业论文范例篇1试谈小学数学口算教学的有效策略口算,即在不借助任何计算工具的前提下,单纯依靠个体思维以及个体语言活动就能顺利计算出某道题结果的一种计算方法。
口算教学是目前数学教学中应用较为广泛的一种,在小学数学中渗透并推广口算教学是新课改的要求,具有重要意义。
新课改明确规定小学数学教师应特别注重对学生估算、口算能力的培养,通过口算、估算锻炼学生思维,提升学生的数学综合能力。
但是纵观当下小学数学教学,口算教学并不乐观,学生的口算能力逐渐下降,故优化口算教学势在必行。
一、有意识激发小学生数学口算的兴趣小学生独特的生理和心理特征使其对外界的事物充满好奇,但兴趣来得快,去得也快,故如何激发和保持兴趣是教师应关注的话题。
一开始小学生可能会对口算感兴趣,并能在教师的引导下愉快地口算,但久而久之,兴趣会逐渐减退,甚至消磨殆尽。
鉴于此,数学教师应多途径、有意识地激发与保持小学生的口算兴趣。
当然,兴趣的激发离不开灵活多变的教学方式与丰富多彩的教学内容。
第一,教师可利用多媒体创设趣味情景,激发学生口算兴趣。
第二,可以将趣味故事融入口算教学。
第三,可以通过开展情景游戏或者进行小竞赛激发学生兴趣。
例如,在苏教版三年级数学上册《两、三位数乘一位数》的教学中,为了唤起学生口算的兴趣,教师可以为学生编制小故事:小熊和妈妈踏春旅游途中意外地被一道五彩门所困,看门精灵说如果小熊可以口算出“18某6”便可以放行,你能帮助小熊吗这样的故事能充分激发学生的兴趣,激励其迎接挑战。
再如,教师可以让小组成员进行口算大赛,题目为“125某4=111某8=269某3=”可以将全班学生分为四个小组,并挑选四个小组成员代表在黑板上进行口算比赛,看看哪个小组成员可以又快又准确地口算出答案。
二、口算教学要实现与生活实践的融合口算可锻炼学生思维。
小学生思维较为活跃,通过口算可以使其充分利用活跃的思维进行学习、思考,为日后开展高难度的数学思维活动奠定基础。
数学系优秀毕业论文(通用12篇)数学系优秀毕业论文(通用12篇)难忘的大学生活将要结束,同学们毕业前都要通过最后的毕业论文,毕业论文是一种有计划的检验学生学习成果的形式,那么问题来了,毕业论文应该怎么写?下面是小编精心整理的数学系优秀毕业论文(通用12篇),欢迎大家分享。
数学系优秀毕业论文篇1摘要:《数学课程标准》指出:数学的知识、思想和方法必须由学生在现实的数学实践活动中理解和发展,而不是单纯地依靠教师的讲解去获得。
因此,教师要以学生的生活和现实问题为载体和背景,以学生的直接体验和生活信息为主要内容,把教科书中的数学知识巧妙而灵动地转化为数学活动。
关键词:应用数学;走进生活;数学活动《义务教育数学课程标准》指出:数学的知识、思想和方法必须由学生在现实的数学实践活动中理解和发展,而不是单纯地依靠教师的讲解去获得。
因此,教师要以学生的生活和现实问题为载体和背景,以学生的直接体验和生活信息为主要内容,把教科书中的数学知识巧妙而灵动地转化为数学活动。
引领学生通过自主探究、合作交流等实践活动,发现、理解、掌握数学知识,并在运用所学知识解决实际问题的过程中形成技能,提升能力。
下面结合自己的教学实践,谈几点粗浅做法与思考。
一、走进生活,应用有价值的数学知识数学来源于生活,离开了生活,数学将是一片死海,没有生活的数学是没有魅力的。
同样,生活离开了数学,那将是一个无法想象的世界。
因此,在教学中,应从学生的生活经验和已有知识出发,巧妙创设真实的生活场境,提供大量的数学信息。
这样,既让学生感受到了数学与生活的密切联系,又彰显了数学鲜活的生命力,促使学生萌生主动运用数学解决实际问题的意识。
(一)课前调查,萌发应用意识教师要善于把日常生活中遇到的问题呈现在学生面前,引领学生用数学的眼光观察生活,为数学知识的学习收集素材,让学生在生活的每个角落都感受到数学的存在,切实体会到数学渗透在我们生活的方方面面,促使学生自觉地将数学与生活联系起来,萌发应用意识。
数学系本科毕业论文范文标题:线性代数在图像处理中的应用摘要:本文主要探讨线性代数在图像处理中的应用。
首先介绍了线性代数的基本概念和相关知识,然后通过实际案例分析了线性代数在图像处理中的具体应用。
通过矩阵运算、线性变换、特征值分解等方法,可以实现图像的平移、旋转、缩放等操作,进而达到图像增强、图像恢复和图像压缩等目的。
本文通过具体案例和实验结果,验证了线性代数在图像处理中的重要性和有效性。
关键词:线性代数,图像处理,矩阵运算,线性变换,特征值分解第一部分:引言在现代社会中,图像处理技术得到了广泛的应用和发展。
图像处理是利用计算机科学和数学等相关知识对图像进行处理和分析的一种技术方法。
而线性代数作为一门重要的数学学科,具有广泛的应用范围和强大的计算能力。
本文旨在研究线性代数在图像处理中的应用,通过具体实例,探讨线性代数如何在图像处理中发挥作用。
第二部分:线性代数基本概念和相关知识2.1矩阵和向量的表示矩阵是线性代数的基本工具之一,它是由数行数列排列成的矩形阵列。
向量则是矩阵的特殊形式,由数行或数列排列而成。
矩阵和向量的表示形式以及行列运算规则是线性代数的基础。
2.2线性变换线性变换是指从一个向量空间到另一个向量空间的一种映射关系。
线性变换具有保持加法运算和数量乘法运算的性质,可以用矩阵来表示和描述。
2.3特征值和特征向量特征值和特征向量在线性代数中起到了重要作用。
特征值是一个数,特征向量是对应于这个数的非零向量。
特征值和特征向量可以用来描述线性变换对向量空间的影响。
第三部分:线性代数在图像处理中的应用3.1图像平移对图像进行平移操作,可以实现图像在平面上的移动。
通过矩阵的加法和乘法运算,可以将图像的每个像素点按照指定的平移量进行调整,从而实现图像平移的效果。
3.2图像旋转图像旋转是指将图像按照指定角度进行旋转的操作。
通过线性变换的知识,可以利用旋转矩阵将图像进行旋转变换,使图像绕其中一点或绕图像中心旋转。
数学系本科生毕业论文
数学是一切学科的基础,促进了其他学科的发展。
下文是店铺为大家搜集整理的关于数学系本科生毕业论文的内容,欢迎大家阅读参考! 数学系本科生毕业论文篇1
浅谈培养数学意识发展思维能力
“数学是思维的体操”,是人类生产生活的重要工具。
在数学教学过程中,不仅要教会学生如何学习,而且要有目的、有计划地培养学生的思维能力,积极探寻开展思维训练的方法与途径。
这有利于培养学生良好的数学思维品质,使学生养成积极钻研的学习习惯,促进学生思维发展,有效提高数学教学质量,切实提升学生的思维能力和数学素质。
那么,在平时的数学教学中,该如何有意识地培养学生的数学思维呢?
一、培养求异意识,发展思维的创新性
教师可以从学生原有生活经验入手,引导学生多讨论、多交流,不断发展学生的求异思维意识。
在数学教学过程中,数学教师要善于发现教材的特点,从“疑”入手,鼓励学生进行开放性思考,不断发展学生的求异能力,让学生多掌握一些解题方法。
正所谓“没有大胆的猜测就没有伟大的发现”,只有大胆放手,拒绝束缚,才可能会有伟大的发现。
例如,学习“圆的认识”这一内容时,为了使学生体验到圆与日常生活的密切相关,感悟数学知识的魅力,进一步培养学生初步学会用数学知识解释、解决生活中的实际问题的能力,教师设计了生活化的开放性问题。
教学片段如下。
师:如果让你画出一个圆,你会使用什么方法?生:圆规。
师:除了圆规,还能通过什么途径?生1:硬币。
生2:茶杯的底部。
生3:学具盒里的圆片。
……在上述教学过程中,教师用“还能通过什么途径”设计了开放性的提问,引导学生能够与众不同地去思考和观察问题,让学生认识到生活中各种各样的圆的应用,也有效激发了学生的求异意识。
这样不仅大大丰富了课堂教学内容,也能有效发展学生思维的独创性,提高学习效率。
二、提升变通意识,发展思维的灵活性
变通,是激活学生思维、培养创新意识的有效途径。
在平时的解题教学中,教师要逐渐引导学生学会摆脱思维定式,不受固定模式的制约。
尤其是当思维遇到瓶颈、闭塞时,更需要教师引导学生学会对问题进行变通,帮助学生以巧妙的转换、假设、化归等手段,找到新旧知识与原有解题经验间的相同处,逐步养成在分析问题和解决问题的过程中自由调节的变通意识,这对提高学生思维的灵活性是极为有效的。
例如,有一道习题如下:小青做了22张卡片,小燕做的卡片比小青的3倍少8张。
你能算出小燕一共做了多少张卡片吗?刚看到题目时,有部分学生觉得题目中“比小青的3倍少8张”比较拗口。
为此,数学教师可以引导学生将这句话进行适当转化。
经过指点,有学生认为,“小燕做的卡片比小青的3倍少8张”这句话,可以从如下三个步骤去理解:第一步,谁做的贺卡多?第二步,求出22张卡片的3倍是多少。
第三步,求比3倍少8张是多少。
经过逐层转化说法,学生不再觉得这句话拗口,大问题转化成了小问题,学习自然变得简单轻松,解起题来也能做到游刃有余。
可见,在数学学习过程中,教师要善于引导学生以变应变,对所学知识进行合理转化,从而可以及时调整自己的思维方向,避免解题钻入“牛角尖”。
只有这样,才能使学生在分析问题、解决问题时的思维方式更加灵活,从而提高解题效率。
三、开展变式训练,发展思维的深刻性
从思维科学的角度出发,在数学教学中开展变式训练,有利于学生把握思维的本质属性,让本质属性逐渐清晰,成为稳固的知识技能。
在平时的数学教学中,教师应关注变式训练,改变情境或扩展外延,帮助学生掌握不变的本质,真正吃透知识,提高学生综合应用的能力,从而发展学生思维的深刻性。
例如,有一道习题如下:红山子弟小学四(1)班原有40名学生,有新生转入后,现为50人。
现在的班级人数是原来人数的百分之几?变式1:红山子弟小学四(1)班原有40名学生,有新生转入后,现为50
人,比原来增加了百分之几?变式2:红山子弟小学四(1)班现有50名学生,比原来增加了25%,请问原来共有学生多少名?变式3:红山子弟小学四(1)班原有40名学生,现在人数比原来增加了25%,请问现在四(1)班有多少名学生?通过一题多变的变式训练,使学生对某一数量关系的发展有一个清晰的认识。
在设计变式练习题时,教师应注意有计划、有目的,“变”要为“练”服务,才能使学生真正练得巧、练得精,练到点子上。
四、结束语
综上所述,对学生思维能力的培养,能够有效提高学生的数学学习能力,是学生一生取之不竭的财富。
在数学教学过程中,有目的、有计划地对学生进行数学思维训练,有利于发展学生数学思维能力。
但是,学生的思维品质的培养和提升不是一朝一夕所能完成的,这需要教师能够秉持新课标理念,从平时的课堂教学入手,用心去鼓励和启发学生,逐渐培养学生思维的独创性、灵活性和深刻性,才能促进学生数学思维的全面提升。