中考数学复习专题 梯形
- 格式:ppt
- 大小:2.88 MB
- 文档页数:38
专题03 梯子模型、对角互补模型和梯形中位线定理梯子模型如下图,一根长度一定的梯子斜靠在竖直墙面上,当梯子底端滑动时,探究梯子上某点(如中点)或梯子构成图形上的点的轨迹模型(图 2),就是所谓的梯子模型。
[考查方向]已知一条线段的两个端点在坐标轴上滑动,求线段最值问题。
模型一:如图所示,线段AC的两个端点在坐标轴上滑动,LACB= ZAOC= 90°AC的中点为P,连接OP、BP、OB,则当 O、P、B三点共线时,此时线段 OB最大值。
即已知 RtAACB中AC、BC的长,就可求出梯子模型中 OB的最值模型二: 如图所示,矩形ABCD 的顶点 A、B分别在边 OM、ON上,当点A在边 OM上运动时,点 B随之在 ON 上运动,且运动的过程中矩形 ABCD形状保持不变,AB的中点为P,连接 OP、PD、OD,则当 O、P、D三点共线时,此时线段 OD 取最大值四边形中对角互补模型对角互补模型:即四边形或多边形构成的几何图形中,相对的角互补。
主要分为含90°与120°的两种对角互补类型。
该题型常用到的辅助线主要是顶定点向两边做垂线,从而证明两个三角形全等或者相似.模型一:含90°的全等型1.如图1,已知∠AOB=∠DCE=90º,OC平分∠AOB.则可以得到如下几个结论:①CD=CE,②OD+OE=OC,③S=S+S=OC.2.如图2,已知∠DCE的一边与AO的延长线交于点D,∠AOB=∠DCE=90º,OC平分∠AOB.则可得到如下几个结论:①CD=CE,②OE-OD=OC,③S-S=OC.图1 图2 图3模型二、:含60°与120°的全等型如图3,已知∠AOB=2∠DCE=120º,OC平分∠AOB.则可得到如下几个结论:①CD=CE,②OD+OE=OC,③S+S=OC.梯形中位线定理(1)定义:连接梯形两腰中点的线段叫做梯形的中位线(2)性质定理:梯形的中位线平行于两底,并且等于两底和的一半。
9.梯形知识考点:掌握梯形、直角梯形、等腰梯形的判定和性质,并能熟练解决实际问题。
精典例题:【例1】如图,在梯形ABCD 中,AB ∥DC ,中位线EF =7,对角线AC ⊥BD ,∠BDC =300,求梯形的高AH 。
分析:根据对角线互相垂直,将对角线平移后可构造直角三角形求解。
略解:过A 作AM ∥BD 交CD 的延长线于M 。
∵AB ∥DC ,∴DM =AB ,∠AMC =∠BDC =300 又∵中位线EF =7∴CM =CD +DM =CD +AB =2EF =14 又∵AC ⊥BD , ∴AC ⊥AM ,AC =21CM =7 ∵AH ⊥CD ,∴∠ACD =600 ∴AH =060sin ⋅AC =327 评注:平移梯形对角线、平移梯形的腰是解梯形问题时常用的辅助线。
例1图MH D C BAFE例2图G HDCB AFE【例2】如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是AD 、BC 的中点,∠B +∠C =900,AD =7,BC =15,求EF 的长。
分析:将AB 、CD 平移至E 点构成直角三角形即可。
答案:EF =4探索与创新:【问题】已知,在梯形ABCD 中,AD ∥BC ,点E 在AB 上,点F 在DC 上,且AD =a ,BC =b 。
(1)如果点E 、F 分别为AB 、DC 的中点,求证:EF ∥BC 且EF =2ba +; (2)如图2,如果nmFC DF EB AE ==,判断EF 和BC 是否平行?请证明你的结论,并用a 、b 、m 、n 的代数式表示EF 。
ba问题图1D C BAFE ba问题图2MDC BAFE分析:(2)根据(1)可猜想EF ∥BC ,连结AF 并延长交BC 的延长线于点M ,利用平行线分线段成比例定理证明即可。
略证:连结AF 并延长交BC 的延长线于点M∵AD ∥BM ,FC DF CM AD FM AF ==,nmFC DF EB AE == ∴在△ABM 中有EB AEFM AF = ∴EF ∥BC ,n m mBM EF AB AE +== ∴EF =BM n m m +=)(CM BC n m m++ 而n m FC DF CM AD ==,故mnaAD m n CM == ∴EF =BM n m m +=)(m na b n m m ++=nm namb ++ 评注:本题是一道探索型试题,其目的是考查学生观察、归纳、抽象、概括、猜想的能力,它要求学生能通过观察进行分析和比较,从特殊到一般去发现规律,并能概括地用数学公式表达出来。
考纲要求命题趋势1.了解梯形的有关概念与分类,掌握梯形的性质,会进行梯形的有关计算.2.掌握等腰梯形的性质与判定.3.能灵活添加辅助线,把梯形问题转化为三角形、平行四边形的问题来解决.等腰梯形的性质和判定是中考考查的内容,实际问题中往往和特殊三角形、特殊四边形的知识结合在一起综合运用.知识梳理一、梯形的有关概念及分类1.一组对边平行,另一组对边不平行的________叫做梯形.平行的两边叫做______,两底间的________叫做梯形的高.2.________相等的梯形叫做等腰梯形,有一个角是直角的梯形叫做直角梯形.3.梯形的分类:梯形⎩⎨⎧一般梯形特殊梯形⎩⎪⎨⎪⎧直角梯形等腰梯形4.梯形的面积=12(上底+下底)×高=中位线×高.二、等腰梯形的性质与判定1.性质:(1)等腰梯形的两腰相等,两底平行.(2)等腰梯形同一底上的两个角________.(3)等腰梯形的对角线________.(4)等腰梯形是轴对称图形,过两底中点的直线是它的对称轴.2.判定:(1)两腰相等的梯形是等腰梯形.(2)同一底上的两个角相等的________是等腰梯形.(3)对角线相等的________是等腰梯形.三、梯形的中位线1.定义:连接梯形两腰________的线段叫做梯形的中位线.2.性质:梯形的中位线平行于两底,且等于________的一半.四、梯形问题的解决方法梯形问题常通过――→转化辅助线三角形问题或平行四边形问题来解答,转化时常用的辅助线有:1.平移一腰,即从梯形的一个顶点作另一腰的平行线,把梯形分成一个平行四边形和一个三角形.2.过顶点作高,即从同一底的两端作另一底所在直线的垂线,把梯形转化成一个矩形和两个直角三角形.3.平移一条对角线,即从梯形的一个顶点作一条对角线的平行线,把梯形转化成平行四边形和三角形.4.延长梯形两腰使它们相交于一点,把梯形转化成三角形.5.过一腰中点作辅助线.(1)过此中点作另一腰的平行线,把梯形转化成平行四边形;(2)连接一底的端点与一腰中点,并延长与另一底的延长线相交,把梯形转化成三角形.自主测试1.若等腰梯形ABCD的上底长AD=2,下底长BC=4,高为2,那么梯形的腰DC的长为( )A.2 B. 3 C.3 D. 52.如图,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M,N分别是AB,CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )A.7米 B.6米 C.5米 D.4米3.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论中,错误的是( )A.∠ADE=∠CDEB.DE⊥ECC.AD·BC=BE·DED.CD=AD+BC4.已知梯形的上底长为2,下底长为5,一腰长为4,则另一腰长x的取值范围是__________.考点一、一般梯形的性质【例1】如图,在梯形ABCD中,AD∥BC,BD=CD,∠BDC=90°,AD=3,BC=8,求AB的长.解:如图,作AE⊥BC于点E,DF⊥BC于点F.∴AE∥DF,∠AEF=90°.∵AD∥BC,∴四边形AEFD是矩形.∴EF=AD=3,AE=DF.∵BD =CD ,DF ⊥BC ,∴DF 是△BDC 边BC 上的中线.∵∠BDC =90°,∴DF =12BC =BF =4.∴AE =4,BE =BF -EF =4-3=1.在Rt △ABE 中,AB 2=AE 2+BE 2,∴AB =42+12=17.方法总结 遇到梯形问题,一般情况下通过作腰或对角线的平行线、高线、连对角线、延长两腰转化为三角形、平行四边形、直角三角形、矩形等问题来解决.触类旁通1 如图,在梯形ABCD 中,AD ∥BC ,AB ∥DE ,AF ∥DC ,E ,F 两点在边BC 上,且四边形AEFD 是平行四边形.(1)AD 与BC 有何等量关系?请说明理由.(2)当AB =DC 时,求证:四边形AEFD 是矩形. 考点二、等腰梯形的性质与判定【例2】如图,在等腰△ABC 中,点D ,E 分别是两腰AC ,BC 上的点,连接AE ,BD 相交于点O ,∠1=∠2.(1)求证:OD =OE ;(2)求证:四边形ABED 是等腰梯形.分析:(1)根据已知条件可知利用全等三角形证明BD =AE ,根据∠1=∠2可以证明OA =OB ,根据等式性质可知OD =OE ;(2)先证明四边形ABED 是梯形,然后证明两腰相等即可.证明:(1)∵△ABC 是等腰三角形,∴AC =BC . ∴∠BAD =∠ABE .又∵AB =BA ,∠2=∠1,∴△ABD ≌△BAE ,∴BD =AE . 又∵∠1=∠2,∴OA =OB .∴BD -OB =AE -OA ,即OD =OE .(2)由(1)知,OD =OE ,∴∠OED =∠ODE .∴∠OED =12(180°-∠DOE ).同理,∠1=12(180°-∠AOB ).∵∠DOE =∠AOB ,∴∠1=∠OED ,∴DE ∥AB . ∵AD 不平行于BE ,∴四边形ABED 是梯形, ∵AE =BD ,∴梯形ABED 是等腰梯形.方法总结 在证明一个四边形是等腰梯形时,必须先证明它是梯形,然后再通过两腰相等或同一底上的两个角相等,或者是对角线相等来证明梯形是等腰梯形.触类旁通2 如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,M ,N 分别为AO ,DO 的中点,四边形BCNM是等腰梯形吗?为什么?考点三、有关梯形的计算【例3】如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=2,BC=42,求DC的长.分析:由于△ABC是等腰直角三角形,且BC=42,可得出BC边上的高.只要通过平移腰CD,就可与BC边上的高构成直角三角形,从而求出CD.解:过点A作AE∥DC交BC于点E,过点A作AF⊥BC于点F,如图所示.∵AD∥BC,AE∥DC,∴四边形AECD为平行四边形.∴AE=DC,AD=EC= 2.又∵AB⊥AC,∠B=45°,BC=42,∴AB=AC=4.∴AF=BF=2 2.∴EF=BC-BF-EC= 2.在Rt△AFE中,AE=AF2+EF2=222+22=10,即DC=10.方法总结解决梯形问题作辅助线的方法要结合题目的条件和要证结论的需要灵活运用.若题中已知两对角线的条件,可考虑平移对角线,使两对角线在同一个三角形中;若已知两腰的某些条件,可考虑平移一腰;若已知两底角互余,可平移一腰或延长两腰构成直角三角形;若要求梯形的面积,常作出梯形的高.触类旁通3 如图所示,在等腰梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,∠B=60°,BC=2 cm,则上底DC的长是__________cm.1.(2012山东临沂)如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,下列结论不一定正确的是( )A.AC=BDB.OB=OCC.∠BCD=∠BDCD.∠ABD=∠ACD2.(2012湖南长沙)下列四边形中,对角线一定不相等的是( )A.正方形 B.矩形C.等腰梯形 D.直角梯形3.(2012安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形纸片的斜边长是( )A.10 B.4 5C.10或4 5 D.10或2174.(2012湖南长沙)如图,等腰梯形ABCD中,AD∥BC,AB=AD=2,∠B=60°,则BC 的长为__________.5.(2012四川内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD=____________.6.(2012四川南充)如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.求证:∠B=∠E.1.梯形的上底长为5,下底长为9,则梯形的中位线长等于( )A.6 B.7C.8 D.102.在等腰梯形ABCD中,AB∥CD,对角线AC平分∠BAD,∠B=60°,CD=2 cm,则梯形ABCD的面积为( )A.33cm2 B.6 cm2C.63cm2 D.12 cm23.如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是( )A .4B .3C .2D .14.如图,在等腰梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于O ,∠ABD =30°,AC ⊥BC ,AB =8 cm ,则△COD 的面积为( )A .433cm 2B .43cm 2C .233cm 2D .23cm 25.如图,等腰梯形ABCD 中,AD ∥BC ,AB ∥DE ,梯形ABCD 的周长为26,BE =4,则△DEC 的周长为__________.(第5题图)6.如图,在梯形ABCD 中,AB ∥DC ,∠ADC 的平分线与∠BCD 的平分线的交点E 恰在AB 上.若AD =7 cm ,BC =8 cm ,则AB 的长度是__________ cm.(第6题图)7.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,AB =3,BC =4,则梯形ABCD 的面积是__________.(第7题图)8.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,AD =4,BC =8,则AE +EF =__________.(第8题图)9.如图,在菱形ABCD 中,∠DAB =60°,过点C 作CE ⊥AC 且与AB 的延长线交于点E ,求证:四边形AECD 是等腰梯形.参考答案导学必备知识 自主测试1.D 2.B 3.C 4.1<x <7 探究考点方法触类旁通1.解:(1)AD =13BC .理由如下:∵AD ∥BC ,AB ∥DE ,AF ∥DC ,∴四边形ABED 和四边形AFCD 都是平行四边形, ∴AD =BE ,AD =FC .又∵四边形AEFD 是平行四边形, ∴AD =EF ,∴AD =BE =EF =FC ,∴AD =13BC .(2)证明:∵四边形ABED 和四边形AFCD 都是平行四边形,∴DE =AB ,AF =DC . ∵AB =DC ,∴DE =AF .又∵四边形AEFD 是平行四边形, ∴四边形AEFD 是矩形.触类旁通2.解:是等腰梯形.根据三角形中位线定理有,MN ∥AD ∥BC ,且MN ≠BC ,∴四边形BCNM 为梯形.在矩形ABCD 中,AO =DO ,又M ,N 分别是AO ,DO 的中点,∴OM =ON ,∴CM =BN ,∴四边形BCNM 是等腰梯形.触类旁通3.2 ∠CAB =90°-60°=30°,∵等腰梯形ABCD 中,∠BAD =∠B =60°, ∴∠CAD =∠BAD -∠BAC =30°.又∵CD ∥AB ,∴∠DCA =∠CAB =30°=∠DAC . ∴CD =AD =BC =2 cm. 品鉴经典考题1.C 对于A ,∵四边形ABCD 是等腰梯形,∴AC =BD ,故本选项正确;对于B ,∵四边形ABCD 是等腰梯形,∴AB =DC ,∠ABC =∠DCB ,在△ABC 和△DCB 中,∵⎩⎪⎨⎪⎧AB =DC ,∠ABC =∠DCB ,BC =CB ,∴△ABC ≌△DCB (SAS),∴∠ACB =∠DBC ,∴OB =OC ,故本选项正确;对于C ,∵无法判定BC =BD ,∴∠BCD 与∠BDC 不一定相等,故本选项错误;对于D,∵∠ABC=∠DCB,∠ACB=∠DBC,∴∠ABD=∠ACD,故本选项正确.故选C.2.D 根据正方形、矩形、等腰梯形的性质,它们的两条对角线一定相等,只有直角梯形的对角线一定不相等.故选D.3.C 考虑两种情况.①如图:因为CD=22+42=25,点D是斜边AB的中点,所以AB=2CD=4 5.②如图:因为CE=32+42=5,点E是斜边AB的中点,所以AB=2CE=10,故原直角三角形纸片的斜边长是10或4 5.4.4 过点A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AE=CD=2,AD=EC=2.∵∠B=60°,∴BE=AB=AE=2,∴BC=BE+CE=2+2=4.5.9 过点B作BE∥AC,交DC的延长线于点E,则AB=CE,BE=AC=BD.∵BD⊥AC,AB=2,CD=4,∴BD⊥BE,DE=6,∴梯形高为3,∴S梯形ABCD=(2+4)×3÷2=9.6.证明:∵CE=CD,∴∠CDE=∠E.∵AD∥BC,∴∠CDE=∠DCB.∴∠E=∠DCB.∵AB=DC,∴∠B=∠DCB.∴∠B=∠E.研习预测试题1.B 2.A 3.C 4.A 5.18 6.15 7.98.10 如图,过点D作DG∥AC,交BC的延长线于点G.易得四边形ACGD 为平行四边形,∴CG =AD =4,BG =BC +CG =8+4=12. ∵AC ⊥BD ,AC ∥DG ,∴BD ⊥DG .∵梯形ABCD 是等腰梯形,∴AC =BD =DG . ∴△BDG 为等腰直角三角形.又∵DF ⊥BC ,∴DF =12BG =6.∴AE +EF =DF +AD =6+4=10.9.证明:∵四边形ABCD 是菱形,∠DAB =60°,∴∠CAE =12∠DAB =30°.又∵CE ⊥AC ,∴∠E =60°=∠CBE .∴CE =BC =AD . ∵CD ∥AE ,AE =AB +BE =DC +BE ≠DC , ∴四边形AECD 是等腰梯形.。
全国各地100份中考数学试卷分类汇编第27章 梯形一、选择题A. 1个B. 2个C. 3个D. 4个【答案】B 2. (山东滨州,12,3分)如图,在一张△ABC 纸片中, ∠C=90°, ∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( )A.1B.2C.3D.4【答案】C3. (山东烟台,6,4分)如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点.已知两底差是6,两腰和是12,则△EFG 的周长是( )A.8B.9C.10D.12【答案】B4. (浙江台州,7,4分)如图,在梯形ABCCD 中,AD ∥BC ,∠ABC=90º,对角线BD 、AC 相交于点O 。
下列条件中,不能判断对角线互相垂直的是( )A . ∠1=∠4B . ∠1=∠3C . ∠2=∠3D .OB 2+OC 2=BC 2【答案】B5. (台湾台北,15)图(五)为梯形纸片ABCD ,E点在BC 上,且︒=∠=∠=∠90D C AEC ,AD =3,BC=9,CD =8。
若以AE 为折线,将C 折至BE 上,使得CD 与AB 交于F 点,则BF 长度为何?ED CB A(第12题图)A B CDEF(第6题图)A . 4.5B 。
5C 。
5.5D .6【答案】B6. (2011山东潍坊,11,3分)已知直角梯形ABCD 中, A D ∥BC ,∠BCD=90°, BC = CD=2AD , E 、F 分别是BC 、CD 边的中点,连接BF 、DE 交于点P ,连接CP 并延长交AB 于点Q ,连接AF ,则下列结论不正..确.的是() A . CP 平分∠BCDB. 四边形 ABED 为平行四边形C. CQ 将直角梯形 ABCD 分为面积相等的两部分D. △ABF 为等腰三角形【答案】C7. (山东临沂,12,3分)如图,梯形ABCD 中,AD ∥BC ,AB =CD ,AD =2,BC =6,∠B =60°,则梯形ABCD 的周长是( )A .12B .14C .16D .18 【答案】CA.2B. 243cmAC. 2233cm D. 223cm【答案】A9. (湖北武汉市,7,3分)如图,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是A.40°.B.45°.C.50°.D.60°.【答案】C10.(湖北宜昌,12,3分)如图,在梯形ABCD中,AB∥CD,AD=BC,点E,F,G,H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( ).A. ∠HGF = ∠GHEB. ∠GHE = ∠HEFC. ∠HEF = ∠EFGD. ∠HGF = ∠HEF(第12题图)【答案】D12.二、填空题1.(福建福州,13,4分)如图4,直角梯形ABCD中,AD∥BC,90C∠=,则A B C∠+∠+∠=度.【答案】2702. ( 浙江湖州,14,4)如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是.【答案】33. (湖南邵阳,16,3分)如图(六)所示,在等腰梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,∠B=60°,BC=2cm,则上底DC的长是_______cm。
中考数学试题专题梯形真题试题汇编一、选择题1.(2010安徽芜湖)如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF 等于()A .9B .10C .11D .12【答案】B2.(2010山东日照)已知等腰梯形的底角为45o ,高为2,上底为2,则其面积为(A )2 (B )6 (C )8 (D )12【答案】C3.(2010山东烟台)如图,小区的一角有一块形状为等梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是A 、等腰梯形B 、矩形C 、菱形D 、正方形【答案】C4.(2010山东威海)如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为A .24B .4C .33D .52 【答案】A 5.(2010台湾)如图(十五)梯形ABCD 的两底长为AD =6,BC =10,中线为EF , C A B DO且∠B=90︒,若P 为AB 上的一点,且PE 将梯形ABCD 分成面积相同的两区域,则△EFP 与梯形ABCD 的面积比为何?(A) 1:6 (B) 1:10 (C) 1:12 (D) 1:16 。
【答案】D6.(2010 浙江省温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是(▲) .A .5B .6C .7D .8【答案】B7.(2010 浙江台州市)梯形ABCD 中,AD ∥BC ,AB=CD=AD=2,∠B=60°,则下底BC 的长是(▲)A .3B .4C . 23D .2+23【答案】B8.(2010浙江金华) 如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形ABCD的面积为( ▲ ) A .33cm2 B .6 cm2C .36cm2D .12 cm2 【答案】A9.(2010湖北省咸宁)如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成, 则线段AC 的长为A .3B .6 C. D.【答案】D10.(2010湖北恩施自治州)如图5,EF 是△ABC 的中位线,将△AEF 沿中线AD 方向平移 D C BAE F P图(十五) ACBD (第10题图)到△A 1E 1F 1的位置,使E 1F 1与BC 边重合,已知△AEF 的面积为7,则图中阴影部分的面积为:A. 7B. 14C. 21D. 28【答案】B11.(2010四川内江)(2010四川内江,12,3分)如图,梯形ABCD 中,AD ∥BC , 点E 在BC 上,AE =BE ,点F 是CD 的中点,且AF ⊥AB ,若AD =2.7,AF =4,AB =6,则CE 的长为A .2 2B .23-1C .2.5D .2.3【答案】D12.(2010 湖南湘潭)在△ABC 中,D 、E 分别是AB 、AC 的中点,若DE=2cm ,则BC 的长是A .2cmB .3cmC .4cmD .5cm【答案】C13.(2010湖北十堰)如图,已知梯形ABCD 的中位线为EF ,且△AEF 的面积为6cm2,则梯形ABCD 的面积为( )A .12 cm2B .18 cm2C .24 cm2D .30 cm2【答案】C14.(2010 湖北咸宁)如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成, 则线段AC 的长为A .3B .6 C. D.AD BC EF (第7题) A B C DE F【答案】D15.(2010四川达州) 如图4,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C 的小路(M 、N 分别是AB 、CD 中点).极少数同学为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们仅少走了图4A. 7米B. 6米C. 5米D. 4米【答案】B16.(2010湖南娄底)下列说法中错误的是( )A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直平分D. 等腰梯形的对角线相等【答案】B1二、填空题1.(2010甘肃兰州) 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .【答案】52.(2010浙江宁波)如图,在等腰梯形ABCD 中,AD ∥BC ,AB=AD=CD. 若∠ABC=60°,BC=12,则梯形ABCD 的周长为 ▲.图4DCBA【答案】303.(2010湖南长沙)等腰梯形的上底是4cm,下底是10cm,一个底角是60 ,则等腰梯形的腰长是cm.【答案】64.(2010江苏无锡)如图,梯形ABCD中,AD∥BC,EF是梯形的中位线,对角线AC 交EF于G,若BC=10cm,EF=8cm,则GF的长等于▲cm.【答案】35.(2010 黄冈)如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为_____cm2.【答案】186.(2010湖北武汉)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DC交BD于点N,下列结论:①BH=DH;②CH=)1EH;③EBHENHS EHS EC∆∆=.其中正确的是()A、①②③B、只有②③C、只有②D、只有③G FEDC BA(第17题)【答案】 B7.(2010湖南怀化)如图5,在直角梯形ABCD 中,AB ∥CD ,AD ⊥CD ,AB=1cm , AD=6cm ,CD=9cm ,则BC= cm .【答案】108.(2010江苏扬州)如图,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =6,点P 是AB 上一个动点,当PC +PD 的和最小时,PB 的长为__________. 【答案】39.(2010湖北随州)如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_____cm 2.【答案】1810.(2010云南昆明)如图,在△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点, 若△ABC 的周长为10 cm ,则△DEF 的周长是 cm .【答案】511.(2010陕西西安)如图,在梯形ABCD 中,DC ∥AB ,∠A +∠B=90°。
中考数学专题复习第二十二讲梯形【基础知识回顾】一、 梯形的定义、分类、和面积:1、定义:一组对边平行,而另一组对边的四边形,叫做梯形。
其中,平行的两边叫做两底间的距离叫做梯形的2、分类:梯形3、梯形的面积:梯形= (上底+下底) X 高【赵老师提醒:要判定一个四边形是梯形,除了要注明它有一组对边外,还需注明另一组对边不平行或的这组对边不相等】二、等腰梯形的性质和判定:1、性质:⑴等腰梯形的两腰相等,相等⑵等腰梯形的对角线⑶等腰梯形是对称图形一般梯形特殊梯形等腰梯形:两腰 的梯形叫做等腰梯形直角梯形:一腰与底 的梯形叫做直角梯形2、判定:⑴用定义:先证明四边形是梯形,再证明其两腰相等⑵同一底上两个角的梯形是等腰梯形⑶对角线的梯形是等腰梯形【赵老师提醒:1、梯形的性质和判定中同一底上的两个角相等“不被成”两底角相等2、等腰梯形所有的判定方法都必须先证它是梯形3、解决梯形问题的基本思路是通过做辅助线将梯形转化为形式常见的辅助线作法有要注意根据题目的特点灵活选用辅助线】【重点考点例析】考点一:梯形的基本概念和性质例1 (2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD= 9.思路分析:过点B作BE∥AC交DC的延长线于点E,过点B 作BF⊥DC于点F,判断出△BDE是等腰直角三角形,求出BF,继而利用梯形的面积公式即可求解.解答:解:过点B作BE∥AC交DC的延长线于点E,过点B 作BF⊥DC于点F,则AC=BE,DE=DC+CE=DC+AB=6,又∵BD=AC 且BD⊥AC,∴△BDE是等腰直角三角形,∴BF=DE=3,故可得梯形ABCD的面积为(AB+CD)×BF=9.故答案为:9.点评:此题考查了梯形的知识,平移一条对角线是经常用到的一种辅助线的作法,同学们要注意掌握,解答本题也要熟练等腰直角三角形的性质,难度一般.对应训练1.(2012•无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED 的周长等于()A.17B.18C.19D.201.考点:;.分析:由CD的垂直平分线交BC于E,根据线段垂直平分线的性质,即可得DE=CE,即可得四边形ABED的周长为AB+BC+AD,继而求得答案.解答:解:∵CD的垂直平分线交BC于E,∴DE=CE,∵AD=3,AB=5,BC=9,∴四边形ABED的周长为:AB+BE+DE+AD=AB+BE+EC+AD=AB+BC+AD=5+9+3=17.故选A.点评:此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想与转化思想的应用是解此题的关键.考点二:等腰梯形的性质例2 (2012•呼和浩特)已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是()A.25B.50C.25 D.思路分析:过点D作DE∥AC交BC的延长线于点E,作DF⊥BC 于F,证平行四边形ADEC,推出AC=DE=BD,∠BDE=90°,根据等腰三角形性质推出BF=DF=EF= BE,求出DF,根据梯形的面积公式求出即可.解答:解:过点D作DE∥AC交BC的延长线于点E,∵AD∥BC (已知),即AD∥CE,∴四边形ACED是平行四边形,∴AD=CE=3,AC=DE,在等腰梯形ABCD中,AC=DB,∴DB=DE (等量代换),∵AC⊥BD,AC∥DE,∴DB⊥DE,∴△BDE是等腰直角三角形,作DF⊥BC于F,则DF=BE=5,S梯形ABCD=(AD+BC)•DF=(3+7)×5=25,故选A.点评:本题主要考查对等腰三角形性质,平行四边形的性质和判定,等腰梯形的性质,等腰直角三角形等知识点的理解和掌握,能求出高DF的长是解此题的关键.对应训练2.(2012•厦门)如图,在等腰梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,若OB=3,则OC= 3.2.3考点:.分析:先根据梯形是等腰梯形可知,AB=CD,∠BCD=∠ABC,再由全等三角形的判定定理得出△ABC≌△DCB,由全等三角形的对应角相等即可得出∠DBC=∠ACB,由等角对等边即可得出OB=OC=3.解答:解:∵梯形ABCD是等腰梯形,∴AB=CD,∠BCD=∠ABC,在△ABC与△DCB中,∵,∴△ABC≌△DCB,∴∠DBC=∠ACB,∴OB=OC=3.故答案为:3.点评:本题考查的是等腰梯形的性质及全等三角形的判定与性质,熟知在三角形中,等角对等边是解答此题的关键.考点三:等腰梯形的判定例3 (2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.考点:;;.分析:(1)由AD∥BC,由平行线的性质,可证得∠DEC=∠EDA,∠BEA=∠EAD,又由EA=ED,由等腰三角形的性质,可得∠EAD=∠EDA,则可得∠DEC=∠AEB,继而证得△DEC≌△AEB,即可得梯形ABCD是等腰梯形;(2)由AD∥BC,BE=EC=AD,可得四边形ABED和四边形AECD均为平行四边形,又由AB⊥AC,AE=BE=EC,易证得四边形AECD是菱形;过A作AG⊥BE 于点G,易得△ABE是等边三角形,即可求得答案AG的长,继而求得菱形AECD的面积.解答:(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=,∴S菱形AECD=EC•AG=2×=2。
中考数学复习《梯形》练习题(含答案)一、选择题1.下列命题中,正确的是( )(A )对顶角相等 (B )梯形的对角线相等 (C )同位角相等 (D )平行四边形对角线相等2.如图,梯形ABCD 的对角线AC 、BD 相交于点O ,△ADO 的面积记作S 1, △BCO 的面积记作S 2,△ABO 的面积记作S 3,△CDO 的面积记作S 4,则下列关系正确是( )A. S 1= S 2B. S 1 × S 2= S 3 × S 4C. S 1 + S 2 = S 4 + S 3D. S 2= 2S 33.如图,在梯形ABCD 中,AB ∥CD ,∠A =60°, ∠B =30°, 若AD =CD =6,则AB 的长等于( ). A .9B .12C .633D .184.如图1,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿折线B →C →D →A 运动,点P 运动的速度为2个单位长度/秒,若设点P 运动的时间为x 秒,△ABP 的面积为y ,如果y 关于x 的函数图像如图2所示,则M 点的纵坐标为(▲ ) A .16 B .48C .24D .64 答案 B5. 在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD ,连接DE 交对角线AC 于H ,连接BH .下列结论:①△ACD ≌△ACE ;②△CDE 为等边三角形;③EHBE =2;④S △EBC S △EHC =AH CH .其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④ 6.如图,,过上到点的距离分别为的点作的垂线与S 2S 3S 4S 1O DCB ADCPBA图1 ABDE H第5题相交,得到并标出一组黑色梯形,它们的面积分别为.观察图中的规律,求出第10个黑色梯形的面积( )A.32B.54C.76D.86二、填空题1.如图,在梯形ABCD 中,AD ∥BC ,点E 、F 、G 、H 是两腰上的点,AE =EF =FB ,CG =GH =HD , 且四边形EFGH 的面积为6cm 2,则梯形ABCD 的面积为 ▲ cm 2.2.如图,直角梯形ABCD 中, BA CD ,,2AB BC AB ⊥= ,将腰DA 以A 为旋转中心逆时针旋转90°至AE ,连接,,BE DE ABE ∆的面积为3,则CD 的长为 ﹡ .3.如图,在直角梯形ABCD 中,A B ⊥BC ,AD ∥BC ,EF 为中位线,若AB =2b ,EF =a ,则阴影部分的面积 .4.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4, AB =33,则下底BC 的长为 __________.D BCE F A G H (第1题图)60°30°D A5.已知等腰梯形ABCD 的中位线EF 的长为5,腰AD 的长为4,则这个等腰梯形的周长为 ;6.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为 .7.如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n+1的面积记为S n ,则S n = ▲8.如图有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D =120 ,则该零件另一腰AB 的长是 m.答案: 选择题 1、A 2、B 3、D 4、B 5、A 6、C填空题1、答案:182、答案:53、答案:ab4、答案:105、答案18(第6题图)CABDOA B CD第8题图67、答案:31 21 nn++8、答案:5。
中考数学试题分类汇编梯形中考数学试题分类汇编-梯形1.(2022年的台湾省)如图(15)所示,梯形ABCD的两个底部长度是ad=6,BC=10,中间线是EF,和?b=90如果P是AB上的一个点,而PE将梯形ABCD分成两个面积相同的区域,那么P的面积比是多少△ EFP到梯形ABCD?(a) 1:6(b)1:10(c)1:12(d)1:16【关键词】梯形的面积【答案】dafpbdec图(十五)2.(安徽省芜湖市,2022年)如图所示,等腰梯形ABCD,公元前‖年,对角线AC⊥ BD在O点,AE⊥ BC,DF⊥ 公元前,垂足分别为e、f,ad=4,bc=8,则ae+ef等于()a、 9b.10c.11d.12【关键词】等腰梯形【答案】b3.(浙江省金华市,2022年)如图所示,等腰梯形ABCD,ab‖CD,对角线AC⊥ 公元前,∠ B=60o,BC=2cm,然后是梯形ABCD的面积为(▲)a、 33cm2c.63cm2b.6cm2d.12cm2A.(第10题图)Bdc4.(浙江台州,2022)梯形ABCD,公元前,ab=CD=ad=2,∠ B=60°,则底部BC的长度为(▲)a.3b.4c.2d.2+2[关键词]等腰梯形,[答]B(2021年日照市)已知等腰梯形的底角为45o,高为2,上底为2,则其面积为(a) 2(b)6(c)8(d)125.(2021年湖北黄冈市)如图,在等腰梯形abcd中,ac⊥bd,ac=6cm,则等腰梯形abcd的面积为_____cm.一6、(2021年宁波)如图,在等腰梯形abcd中,ad∥bc,ab?ad?cd,若?abc?60?,bc?12,那么梯形ABCD的周长是_____。
回答:307、(2021年宁波市)如图,在等腰梯形abcd中,ad∥bc,ab?ad?cd,若?abc?60?,bc?12,那么梯形ABCD的周长是_____。
[关键词]等腰梯形[答]30bc四川省眉山市,∠ ad=30°,(BC=2028°,(ABC=2028°),ad60°cadad=4,ab=33,则下底bc的长为__________.【关键词】梯形、特殊直角三角形【答案】1030°B9。
中考数学 梯形专题【基础知识概述】一、梯形:1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形. 2.特殊梯形: (1)等腰梯形:两腰相等的梯形. (2)直角梯形:一腰垂直于底的梯形. 3.等腰梯形的性质(1) 等腰梯形的两腰相等.(2) 等腰梯形在同一底上的两个角相等. (3) 等腰梯形的对角线相等. 3.等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形.(2)在同一底上的两个角相等的梯形是等腰梯形. (3)对角线相等的梯形是等腰梯形.二、梯形中常用的辅助线的添法:三、多边形:1.多边形的定义:在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的封闭图形叫多边形.2.多边形内角和定理:n 边形的内角和等于(n-2)·180°. 3.多边形外角和定理:多边形的外角和等于360°. 4.多边形的对角线(1)从n 边形的一个顶点,可以引(n-3)条对角线,将多边形分成(n-2)个三角形. (2)n 边形共有2)3( n n 条对角线.四、中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合.那么这个图形叫作中心对称图形,这个点就是它的对称中心.中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
例1.(1)某多边形的内角和与外角和共1080°,则多边形的边数是___________.(2)________边形的内角和是外角和的2倍; _______边形的内角和与外角和相等. (3)n 边形的每一个内角都相等,它的一个外角与一个内角的比是1∶3,n 边形的对角线有_____条.(1)作两高 (2)平移腰 (3)平移对角线 (4)延长两腰 中点 (6)构造全等三角中点 中点 (5)作中位线ABCD等腰梯形的常见辅助线的作法【法一:平移对角线,然后两条对角线和底构成一个等腰三角形】例2:已知等腰梯形ABCD 中,AD ∥BC ,AC ⊥BD ,AD=3㎝,BC=7㎝,求BD 的长.和梯形的面积变式:如图,等腰梯形中, ,,且 ,是高,是中位线,求证:.【法二:平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形】例3:如图,在梯形ABCD 中,.求证:.变式:如图,四边形ABCD 中,AB ‖CD ,B D ∠=∠2,若AD=a,AB=b,则CD 的长是 .A D BCBCD A【法三:遇到梯形一腰中点的问题可以作出梯形的中位线,中位线与上、下底都平行,且三线段有数量关系. 或利用“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构造全等三角形解决问题】例4:如图,E 是梯形ABCD 的腰AD 的中点,且AB+CD=BC ,试说明 1. BE 平分∠ABC. CE 平分∠BCD 2. CE ⊥BE 3. ABCD BCE S S 21变式:1.已知:如图,在梯形 中,是 的中点,且 .求证:.2.如图,在梯形ABCD 中,AD ∥BC ,E 是CD 的中点,若△AEB 的面积为S ,则梯形ABCD 的面积为( ) A.S 25B.2SC.S 47D.S 49【法四:从梯形上底的两端向下底引垂线作高,可以得到一个矩形和两个直角三角形.然后利用构造的直角三角形和矩形解决问题】例5:如图,ABCD 是梯形,AB ∥DC,AB=5,BC=23,∠BCD=45°,∠CDA=60°,DC 的长度AD BC EA BCD1S 2SS 3BCDA 【法五:即延长两腰相交于一点,可使梯形转化为三角形】例6 如图,在梯形ABCD 中,AD//BC ,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。