高等数学 导数的概念
- 格式:ppt
- 大小:2.37 MB
- 文档页数:165
高等数学导数知识点总结导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy 与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f(x)也是一个函数,称作f(x)的导函数。
寻找已知的函数在某点的导数或其导函数的过程称为求导。
实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。
微积分基本定理说明了求原函数与积分是等价的。
求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x 在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f(x0),也记作y│x=x0或dy/dx│x=x0锐角三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边“一划、二批、三试、四分”的预习方法一划:就是圈划知识要点,基本概念。
二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。
高等数学导数
导数是高等数学中的一个重要概念,意思是表示函数的变化速率的概念,它是高等数学中的一个基本概念。
导数的定义是:当函数y=f(x)的自变量x经过一个微
小的变化时,函数y的变化量与自变量x变化量之比,记作f′(x)或y′,称为函数f(x)在x处的导数,记作d/dx[f (x)], 或f′(x)。
导数的性质可概括为:(1)函数的导数表示函数变化率
的变化,即函数变化速率;(2)函数的导数指示函数在某一
点处的变化状况,如曲线在某点的切线的斜率;(3)函数的
导数可以用来求函数的极值。
导数在微积分中具有重要的意义,它与微积分的基本概念——定积分密切相关,它使微积分中的许多定理更加清晰明了。
如果不考虑导数,微积分中的定理将是模糊的,将难以推导。
因此,导数是高等数学中非常重要的概念。
导数的应用也十分广泛,在物理、化学、经济学等多学科中都有其重要的作用。
它可以用来计算某一物体在受到力的作用时的速度变化,从而求得物体的运动轨迹;它也可以用来计算某一物体在受到力的作用时的加速度变化,从而求得物体的动量;它还可以用来计算某一物体在受到力的作用时的位置变
化,从而求得物体的位置;它在经济学中也可以用来分析某一经济指标的变化趋势。
总之,导数是高等数学中的一个重要概念,它的应用也十分广泛,具有重要的意义。
大一高等数学导数知识点一、导数的定义及性质1.定义:设函数f(x)在点x0的一些邻域内有定义,若极限lim(h→0)[f(x0+h)-f(x0)]/h存在,称该极限为函数f(x)在点x0处的导数,记作f'(x0)或df(x0)/dx。
2.函数在一点处的导数表示函数在该点的变化速率,若导数大,则说明函数变化快;若导数小,则说明函数变化慢。
3.导数的几何意义:函数f(x)在点x0处的导数等于其曲线在该点的切线斜率。
4.导数的性质:(1)可加性:(f+g)'(x)=f'(x)+g'(x)(2)可乘性:(f·g)'(x)=f'(x)·g(x)+f(x)·g'(x)(3)常值函数的导数为0:(C)'=0(4)乘方函数的导数:(x^n)' = nx^(n-1)(5)指数函数的导数:(a^x)' = a^x·ln(a)(6)对数函数的导数:(ln(x))' = 1/x(7)三角函数的导数:(i)(sin(x))' = cos(x)(ii)(cos(x))' = -sin(x)(iii)(tan(x))' = sec^2(x)(iv)(cot(x))' = -csc^2(x)(8)反三角函数的导数:(i)(arcsin(x))' = 1/√(1-x^2)(ii)(arccos(x))' = -1/√(1-x^2)(iii)(arctan(x))' = 1/(1+x^2)二、导数的计算法则1.基本计算法则:(1)常数的导数为0(2)幂函数求导:(x^n)' = nx^(n-1)(3)指数函数求导:(a^x)' = a^x·ln(a)(4)对数函数求导:(ln(x))' = 1/x(5)三角函数和反三角函数的导数2.复合函数求导法则:设y=f(g(x)),则y'=f'(g(x))·g'(x)3.乘积法则:(f·g)'=f'·g+f·g'4.商积法则:(f/g)'=(f'·g-f·g')/g^25. 链式法则:若y=f(u),u=g(x),则dy/dx = dy/du·du/dx = f'(u)·g'(x)三、导数的应用1.切线方程:设函数f(x)在点x0处可导,其切线方程为y=f(x0)+f'(x0)(x-x0)2.泰勒展开:对于具有n阶导数的函数f(x),其泰勒展开式为:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)(x-x0)^2/2!+…+f^n(x0)(x-x0)^n/n!+Rn(x)其中Rn(x)为拉格朗日余项,满足,Rn(x),<=M,x-x0,^(n+1),其中M为常数。