第二十高级中学2014-2015学年高二下学期期中考试数学试题及答案(文)
- 格式:doc
- 大小:293.65 KB
- 文档页数:7
2014-2015学年辽宁省大连二十中高二(下)期末数学试卷(文科)一、选择题:(本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知i是虚数单位,则=()A. 1﹣2i B. 2﹣i C. 2+i D. 1+2i2.已知集合A={x|1<x<4},B={x|x2﹣2x﹣3≤0},则A∩B=()A.(﹣1,3) B.(1,3] C. [3,4) D. [﹣1,4)3.“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是()A.若x,y∈R且x2+y2≠0,则x,y全不为0B.若x,y∈R且x2+y2≠0,则x,y不全为0C.若x,y∈R且x,y全为0,则x2+y2=0D.若x,y∈R且xy≠0,则x2+y2≠04.若命题“p或q”为真,“非p”为真,则()A. p真q真 B. p假q真 C. p真q假 D. p假q假5.若函数f(+1)=x2﹣2x,则f(3)=()A. 0 B. 1 C. 2 D. 36.已知U={y|y=log2x,x>1},P={y|y=,x>2},则∁U P=()A. [,+∞) B.(0,) C.(0,+∞) D.(﹣∞,0)∪(,+∞)7.若θ∈[,],cos2θ=﹣则sinθ=()A. B. C. D.8.设函数f(x)=xe x,则()A. x=1为f(x)的极大值点 B. x=1为f(x)的极小值点C. x=﹣1为f(x)的极大值点 D. x=﹣1为f(x)的极小值点9.已知p:x≥k,q:(x+1)(2﹣x)<0,如果p是q的充分不必要条件,则k的取值范围是()A. [2,+∞) B.(2,+∞) C. [1,+∞) D.(﹣∞,﹣1]10.已知函数f(x)=sinx﹣cosx,x∈R,若f(x)≥1,则x的取值范围为()A. {x|kπ+≤x≤kπ+π,k∈Z} B. {x|2kπ+≤x≤2kπ+π,k∈Z}C. {x|kπ+≤x≤kπ+,k∈Z} D. {x|2kπ+≤x≤2kπ+,k∈Z}11.函数y=Asin(ωx+φ)(ω>0,|ϕ|<,x∈R)的部分图象如图所示,则函数表达式为()A. y=﹣4sin() B. y=4sin()C. y=﹣4sin() D. y=4sin()12.设函数g(x)=x2﹣2(x∈R),f(x)=,则f(x)的值域是()A. [﹣,0]∪(1,+∞) B. [0,+∞) C. [,+∞) D. [﹣,0]∪(2,+∞)二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)..13.已知复数z=(3+i)2(i为虚数单位),则|z|= .14.若函数f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,则实数a的取值范围是.15.若曲线y=ln(﹣x)上点P处的切线平行于直线2x+y+1=0,则点P的坐标是.16.已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<,cos•cosφ﹣sin•sin φ=0且函数f(x)的图象的相邻两条对称轴之间的距离等于,函数f(x)的图象向左平移m个单位所对应的函数是偶函数.则最小正实数m的值为.三、解答题(17题10,其余每题12分)17.已知函数f(x)=tan(2x+),求f(x)的定义域与最小正周期.18.已知a为实数,函数f(x)=(x2+1)(x+a).若f′(﹣1)=0,求函数y=f(x)在[﹣,1]上的最大值.19.已知f(x)=ln(e x+a)是定义域为R的奇函数,g(x)=λf(x).(1)求实数a的值;(2)若g(x)≤xlog2x在x∈[2,3]上恒成立,求λ的取值范围.20.已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.21.已知函数f(x)=(1)若a=1,求函数f(x)的零点;(2)若函数f(x)在[﹣1,+∞)上为增函数,求a的范围.22.已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤,求k的取值范围.2014-2015学年辽宁省大连二十中高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知i是虚数单位,则=()A. 1﹣2i B. 2﹣i C. 2+i D. 1+2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+i,再由进行计算即可得到答案.解答:解:故选D点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握.2.已知集合A={x|1<x<4},B={x|x2﹣2x﹣3≤0},则A∩B=()A.(﹣1,3) B.(1,3] C. [3,4) D. [﹣1,4)考点:交集及其运算.专题:集合.分析:求出B中不等式的解集,确定出B,求出两集合的交集即可.解答:解:由B中的不等式变形得:(x﹣3)(x+1)≤0,解得:﹣1≤x≤3,即B=[﹣1,3],∵A=(1,4),∴A∩B=(1,3].故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是()A.若x,y∈R且x2+y2≠0,则x,y全不为0B.若x,y∈R且x2+y2≠0,则x,y不全为0C.若x,y∈R且x,y全为0,则x2+y2=0D.若x,y∈R且xy≠0,则x2+y2≠0考点:四种命题.专题:计算题.分析:否定“若x,y∈R且x2+y2=0,则x,y全为0”的题设,得到否命题的题设,再否定“若x,y∈R且x2+y2=0,则x,y全为0”的结论,得到否命题的结论.由此能够得到命题“若x,y∈R且x2+y2=0,则x,y全为0”的否命题.解答:解:先否定“若x,y∈R且x2+y2=0,则x,y全为0”的题设,得到否命题的题设“若x,y∈R且x2+y2≠0”,再否定“若x,y∈R且x2+y2=0,则x,y全为0”的结论,得到否命题的结论“则x,y不全为0”.由此得到命题“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是:若x,y∈R且x2+y2≠0,则x,y不全为0.故选B.点评:本题考查四种命题的互换,是基础题.解题时要认真审题,仔细解答,注意全为0和否定形式是不全为0.4.若命题“p或q”为真,“非p”为真,则()A. p真q真 B. p假q真 C. p真q假 D. p假q假考点:复合命题的真假.专题:简易逻辑.分析:根据“非p”为真,得到p假,根据命题“p或q”为真,则p真或q真,从而得到答案.解答:解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.点评:本题考查了复合命题的真假的判断,是一道基础题.5.若函数f(+1)=x2﹣2x,则f(3)=()A. 0 B. 1 C. 2 D. 3考点:函数的值.专题:函数的性质及应用.分析:由函数的性质得f(3)=f()=22﹣2×2=0.解答:解:∵函数f(+1)=x2﹣2x,∴f(3)=f()=22﹣2×2=0.故选:A.点评:本题考查函数值的求法,是基础题,解题时要注意函数性质的合理运用.6.已知U={y|y=log2x,x>1},P={y|y=,x>2},则∁U P=()A. [,+∞) B.(0,) C.(0,+∞) D.(﹣∞,0)∪(,+∞)考点:对数函数的单调性与特殊点;补集及其运算.专题:计算题.分析:先求出集合U中的函数的值域和P中的函数的值域,然后由全集U,根据补集的定义可知,在全集U中不属于集合P的元素构成的集合为集合A的补集,求出集合P的补集即可.解答:解:由集合U中的函数y=log2x,x>1,解得y>0,所以全集U=(0,+∞),同样:P=(0,),得到C U P=[,+∞).故选A.点评:此题属于以函数的值域为平台,考查了补集的运算,是一道基础题.7.若θ∈[,],cos2θ=﹣则sinθ=()A. B. C. D.考点:二倍角的余弦.专题:三角函数的求值.分析:根据余弦函数的倍角公式即可得到结论.解答:解:∵cos2θ=﹣=1﹣2sin2θ,∴sin2θ=,∵θ∈[,],∴sinθ=,故选:B点评:本题主要考查三角函数求值,根据余弦函数的倍角公式是解决本题的关键.8.设函数f(x)=xe x,则()A. x=1为f(x)的极大值点 B. x=1为f(x)的极小值点C. x=﹣1为f(x)的极大值点 D. x=﹣1为f(x)的极小值点考点:利用导数研究函数的极值.专题:导数的概念及应用.分析:由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点解答:解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选:D点评:本题考查利用导数研究函数的极值,解题的关键是正确求出导数及掌握求极值的步骤,本题是基础题,9.已知p:x≥k,q:(x+1)(2﹣x)<0,如果p是q的充分不必要条件,则k的取值范围是()A. [2,+∞) B.(2,+∞) C. [1,+∞) D.(﹣∞,﹣1]考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:求出不等式的等价条件,利用充分条件和必要条件的定义即可得到结论.解答:解:由:(x+1)(2﹣x)<0<0得x>2或x<﹣1,即q:x>2或x<﹣1,∵p是q的充分不必要条件,∴k>2,故选:B.点评:本题主要考查充分条件和必要条件的判断,根据不等式的解法,求出不等式的等价条件是解决本题的关键.10.已知函数f(x)=sinx﹣cosx,x∈R,若f(x)≥1,则x的取值范围为() A. {x|kπ+≤x≤kπ+π,k∈Z} B. {x|2kπ+≤x≤2kπ+π,k∈Z}C. {x|kπ+≤x≤kπ+,k∈Z} D. {x|2kπ+≤x≤2kπ+,k∈Z}考点:三角函数的化简求值.专题:三角函数的图像与性质.分析:利用两角差的正弦函数化简函数f(x)=sinx﹣cosx为一个角的一个三角函数的形式,根据f(x)≥1,求出x的范围即可.解答:解:函数f(x)=sinx﹣cosx=2sin(x﹣),因为f(x)≥1,所以2sin(x ﹣)≥1,所以,所以f(x)≥1,则x的取值范围为:{x|2kπ+≤x≤2kπ+π,k∈Z}故选:B点评:本题是基础题,考查三角函数的化简,三角函数不等式的解法,考查计算能力,常考题型.11.函数y=Asin(ωx+φ)(ω>0,|ϕ|<,x∈R)的部分图象如图所示,则函数表达式为()A. y=﹣4sin() B. y=4sin()C. y=﹣4sin() D. y=4sin()考点:由y=Asin(ωx+φ)的部分图象确定其解析式.分析:先由图象的最高点、最低点的纵坐标确定A(注意A的正负性),再通过周期确定ω,最后通过特殊点的横坐标确定φ,则问题解决.解答:解:由图象得A=±4,=8,∴T=16,∵ω>0,∴ω==,①若A>0时,y=4sin(x+φ),当x=6时,φ=2kπ,φ=2kπ﹣,k∈Z;又|φ|<,∴φ∈∅;②若A<0时,y=﹣4sin(x+φ),当x=﹣2时,φ=2kπ,φ=2kπ+,k∈z;又|φ|<,∴φ=.综合①②该函数解析式为y=﹣4sin().故选A.点评:本题主要考查由三角函数部分图象信息求其解析式的基本方法.12.设函数g(x)=x2﹣2(x∈R),f(x)=,则f(x)的值域是()A. [﹣,0]∪(1,+∞) B. [0,+∞) C. [,+∞) D. [﹣,0]∪(2,+∞)考点:分段函数的应用.专题:计算题;函数的性质及应用.分析:当x<g(x)时,x>2 或x<﹣1,f(x)=g(x)+x+4=x2﹣2+x+4=x2+x+2=(x+0.5)2+1.75,其值域为:(2,+∞).当x≥g(x)时,﹣1≤x≤2,f(x)=g(x)﹣x=x2﹣2﹣x=(x﹣0.5)2﹣2.25,其值域为:[﹣2.25,0].由此能得到函数值域.解答:解:当x<g(x),即x<x2﹣2,(x﹣2)(x+1)>0时,x>2 或x<﹣1,f(x)=g(x)+x+4=x2﹣2+x+4=x2+x+2=(x+0.5)2+1.75,∴其最小值为f(﹣1)=2,其最大值为+∞,因此这个区间的值域为:(2,+∞).当x≥g(x)时,﹣1≤x≤2,f(x)=g(x)﹣x=x2﹣2﹣x=(x﹣0.5)2﹣2.25其最小值为f(0.5)=﹣2.25,其最大值为f(2)=0因此这区间的值域为:[﹣2.25,0].综合得:函数值域为:[﹣2.25,0]U(2,+∞),故选D.点评:本题考查f(x)的值域的求法.解题时要认真审题,注意分类讨论思想的合理运用.二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)..13.已知复数z=(3+i)2(i为虚数单位),则|z|= 10 .考点:复数求模;复数代数形式的乘除运算.专题:计算题.分析:利用复数的模的平方等于复数的模的乘积,直接计算即可.解答:解:复数z=(3+i)2(i为虚数单位),则|z|=|3+i||3+i|==10.故答案为:10.点评:本题考查复数模的求法,复数代数形式的乘除运算,考查计算能力.14.若函数f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,则实数a的取值范围是{a|或} .考点:函数单调性的性质.专题:函数的性质及应用.分析:先求出二次函数的对称轴,由题意知,区间(1,2)在对称轴的左侧或者右侧,列出不等式解出实数a的取值范围.解答:解:∵二次函数f(x)=x2﹣(2a﹣1)x+a+1 的对称轴为 x=a﹣,f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,∴区间(1,2)在对称轴的左侧或者右侧,∴a﹣≥2,或a﹣≤1,∴a≥,或 a≤,故答案为:{a|a≥,或 a≤}.点评:本题考查二次函数的性质,体现了分类讨论的数学思想.15.若曲线y=ln(﹣x)上点P处的切线平行于直线2x+y+1=0,则点P的坐标是(﹣,﹣ln2).考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用;直线与圆.分析:先设P(x,y),对函数求导,由在点P处的切线与直线2x+y+1=0平行,即斜率相等,求出x,最后求出y.解答:解:设P(x,y),则y=ln(﹣x),∵y′=,在点P处的切线与直线2x+y+1=0平行,令=﹣2,解得x=﹣,∴y=ln(﹣x)=﹣ln2,故P(﹣,﹣ln2).故答案为:(﹣,﹣ln2).点评:本题考查了导数的几何意义,即点P处的切线的斜率是该点处的导数值,以及切点在曲线上和切线上的应用.16.已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<,cos•cosφ﹣sin•sin φ=0且函数f(x)的图象的相邻两条对称轴之间的距离等于,函数f(x)的图象向左平移m个单位所对应的函数是偶函数.则最小正实数m的值为.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:利用特殊角的三角函数值化简cos cosφ﹣sin sinφ=0,根据|φ|<直接求出φ的值,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求出周期,求出ω,得到函数f(x)的解析式,函数f(x)的图象向左平移m个单位所对应的函数是偶函数.推出m=+(k∈Z),可求最小正实数m.解答:解:由cos cosφ﹣sin sinφ=0,解得cos cosφ﹣sin sinφ=0,即cos (+φ)=0,又∵|φ|<,∴φ=,可得解析式:f(x)=sin(ωx+),∵依题意,=,又T=,故解得:ω=3,∴f(x)=sin(3x+),∵函数f(x)的图象向左平移m个单位后所对应的函数为g(x)=sin[3(x+m)+],∴g(x)是偶函数当且仅当3m+=kπ+(k∈Z),即m=+(k∈Z),从而解得,最小正实数m=.故答案为:.点评:本题是中档题,考查三角函数的字母变量的求法,三角函数的图象的平移,偶函数的性质,转化思想的应用,考查计算能力,是常考题.三、解答题(17题10,其余每题12分)17.已知函数f(x)=tan(2x+),求f(x)的定义域与最小正周期.考点:正切函数的图象.专题:三角函数的图像与性质.分析:由条件利用正切函数的定义域和周期性,求得f(x)的定义域与最小正周期.解答:解:由函数f(x)=tan(2x+),可得2x+≠kπ+,k∈Z,求得x≠+,可得f(x)的定义域为{x|x≠+,k∈Z}.函数f(x)的最小正周期为.点评:本题主要考查正切函数的定义域和周期性,属于基础题.18.已知a为实数,函数f(x)=(x2+1)(x+a).若f′(﹣1)=0,求函数y=f(x)在[﹣,1]上的最大值.考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用.分析:先求出a的值,得到函数f(x)的单调区间,从而求出区间上的最大值.解答:解:∵f′(﹣1)=0,∴3﹣2a+1=0,即a=2,∴f′(x)=3x2+4x+1=3(x+)(x+1).由f′(x)>0,得x<﹣1或x>﹣;由f′(x)<0,得﹣1<x<﹣.因此,函数f(x)在[﹣,1]上的单调递增区间为[﹣,﹣1],[﹣,1],单调递减区间为[﹣1,﹣].∴f(x)在x=﹣1处取得极大值为f(﹣1)=2;又∵f(1)=6,∴f(x)在[﹣,1]上的最大值为f(1)=6点评:本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.19.已知f(x)=ln(e x+a)是定义域为R的奇函数,g(x)=λf(x).(1)求实数a的值;(2)若g(x)≤xlog2x在x∈[2,3]上恒成立,求λ的取值范围.考点:对数函数图象与性质的综合应用;函数奇偶性的判断.专题:函数的性质及应用.分析:(1)令f(0)=0,解得a=0,可得函数f(x)=ln(e x)=x,经检验满足条件,故所求实数a的值为0.(2)根据f(x)=x,g(x)=λx,可得λ≤log2x在x∈[2,3]上恒成立,求出函数y=log2x 在x∈[2,3]上的最小值为log22=1,可得λ的取值范围.解答:解:(1)函数f(x)=ln(e x+a)是定义域为R的奇函数,令f(0)=0,即ln(1+a)=0,解得a=0,故函数f(x)=ln(e x)=x.…(4分)显然有f(﹣x)=﹣f(x),函数f(x)=x是奇函数,满足条件,所求实数a的值为0.…(6分)(2)f(x)=x,g(x)=λx,则λx≤xlog2x在x∈[2,3]上恒成立,即λ≤log2x在x∈[2,3]上恒成立,…(8分)∵函数y=log2x在x∈[2,3]上的最小值为log22=1,…(11分)∴λ≤1,即λ的取值范围为(﹣∞,1].…(12分)点评:本题主要考查函数的奇偶性,对数函数的图象和性质,属于中档题.20.已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.考点:三角函数的周期性及其求法;两角和与差的余弦函数;三角函数的最值.专题:三角函数的图像与性质.分析:(Ⅰ)利用两角和公式和二倍角公式对函数的解析式进行化简整理后,利用正弦函数的性质求得函数的最小正周期.(Ⅱ)利用x的范围确定2x+的范围,进而利用正弦函数的单调性求得函数的最大和最小值.解答:解:(Ⅰ)∵,=4cosx()﹣1=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+),所以函数的最小正周期为π;(Ⅱ)∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=,即x=时,f(x)取最大值2,当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1.点评:本题主要考查了三角函数的周期性及其求法,三角函数的最值.解题的关键是对函数解析式的化简整理.21.已知函数f(x)=(1)若a=1,求函数f(x)的零点;(2)若函数f(x)在[﹣1,+∞)上为增函数,求a的范围.考点:函数零点的判定定理;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)由f(x)=0,可得①,或②,分别解①和②,求得x的值,即为所求.(2)显然,函数g(x)=x﹣在[+∞)上递增,且g()=﹣;h(x)=x2+2x+a﹣1在[﹣1 ]也递增,且h()=a+,则由题意可得a+≤﹣,由此求得a的范围.解答:解:(1)若a=1,由f(x)=0,可得①,或②.解①求得x=,解②求得x=0,或 x=﹣2.综上可得,函数f(x)的零点为,0,﹣2.(2)显然,函数g(x)=x﹣在[+∞)上递增,且g()=﹣;函数h(x)=x2+2x+a﹣1在[﹣1 ]也递增,且h()=a+,故若函数f(x)在[﹣1+∞)上为增函数,则 a+≤﹣,即a≤﹣.点评:本题主要考查求函数的零点,函数的单调性的判断以及性质应用,体现了分类讨论的数学思想,属于基础题22.已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤,求k的取值范围.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:函数的性质及应用;导数的概念及应用.分析:(I)求导,令导数等于零,解方程,跟据f′(x),f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据若对于任意的x∈(0,+∞),都有f(x)≤,利用导数求函数f(x)在区间(0,+∞)的最大值,即可求出k的取值范围.解答:解:(Ⅰ)=,令f′(x)=0,得x=±k当k>0时,f′(x)f(x)随x的变化情况如下:x (﹣∞,﹣k)﹣k (﹣k,k) k (k,+∞)f′(x) + 0 ﹣ 0 +F(x)递增 4k2e﹣1递减 0 递增所以,f(x)的单调递增区间是(﹣∞,﹣k),和(k,+∞),单调递减区间是(﹣k,k);当k<0时,f′(x)f(x)随x的变化情况如下:x (﹣∞,k) k (k,﹣k)﹣k (﹣k,+∞)f′(x)﹣ 0 + 0 ﹣F(x)递减 0 递增 4k2e﹣1递减所以,f(x)的单调递减区间是(﹣∞,k),和(﹣k,+∞),单调递增区间是(k,﹣k);(Ⅱ)当k>0时,有f(k+1)=,不合题意,当k<0时,由(I)知f(x)在(0,+∞)上的最大值是f(﹣k)=,∴任意的x∈(0,+∞),f(x)≤,⇔f(﹣k)=≤,解得﹣,故对于任意的x∈(0,+∞),都有f(x)≤,k的取值范围是﹣.点评:此题是个难题.考查利用导数研究函数的单调性和在闭区间上的最值问题,对方程f'(x)=0根大小进行讨论,体现了分类讨论的思想方法,特别是(II)的设置,有关恒成立问题一般转化为求函数的最值问题,体现了转化的思想,增加了题目的难度.。
辽宁省大连市第二十高级中学2014-2015学年高二上学期期末考试数学(文)试题一.选择题本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 2、函数221y=x x+-2x 的导数是 ( ) A 、2-1x 2 B 、-1x 2 C 、x -1x 2 D 、1x 2 3、若()sin cos f x x α=-,则'()f α等于( )A .sin αB .cos αC .sin cos αα+D .2sin α4、已知{}n a 为等比数列,472a a +=,568a a =-,则110a a += ( )A 、7B 、 5C 、-5D 、-75、设32x y +=,则函数327x y z =+的最小值是 ( )A 、12B 、 27C 、6D 、306、已知抛物线22y px =过点 A (1,2),设抛物线的焦点为F ,则|FA|等于 ( )A 、6B 、7C 、5D 、 2 7、已知双曲线22221x y a b-=的一个焦点与抛物线24y x =的焦点重合,且双曲线的渐近线方程为2y x =±,则该双曲线的方程为 ( )A 、224515y x -= B 、22154x y -= C 、225514y x -= D 、22154y x -= 8、已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为 ( )A .-110B .-90C .90D .1109、直线1y x =+被椭圆2224x y +=所截的弦的中点坐标是 ( )A 、(31, -32) B 、(-32, 31) C 、(21, -31) D 、(-31, 21) 10、曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A .(1,0)B .(2,8)C .(1,0)和(1,4)--D .(2,8)和(1,4)--11、已知点P 为椭圆2214x y +=上的一点,12,F F 是椭圆的焦点,且123F PF π∠=,则12F PF ∆的面积为 ( )A、2 D12、若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是( )A 、22(1)1x y -+=B .2y x = C. 2212x y += D .221x y -= 卷Ⅱ二.填空题 本大题共4小题,每小题5分,满分20分.13、曲线x x y 43-=在点(1,3)- 处的切线方程为__________;14、若实数y x ,满足⎪⎩⎪⎨⎧≥++≤-≥+-020022y x y x y x ,则22x y z +=的最大值为_______,最小值为______ .15、已知双曲线2221(2x y a a -=>的两条渐近线的夹角为3π,则双曲线的离心率为 16、已知椭圆22221,(0)x y a b a b+=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若5PF =,则椭圆方程为三.解答题本大题共6题,共70分,解答应写出文字说明、证明过程或演算步骤17、(本小题满分10分)求抛物线214y x =过点74,4⎛⎫ ⎪⎝⎭的切线方程18、(本小题满分12分)已知f(x)=2ax x a +-,(1)若函数()f x 有最大值178,求实数a 的值;(2)若不等式()f x >22312x x a --+-对一切实数x 恒成立,求实数a 的取值范围;19、(本小题满分12分)已知数列{}n a 为等差数列,53=a ,137=a ,数列{}n b 的前n 项和为n S ,且有12-=n n b S(1)求{}n a 、{}n b 的通项公式;(2)若n n n b a c =,{}n c 的前n 项和为n T ,求n T ;20、(本小题满分12分)已知函数2f()=x x a-1(0)a >的图象在x =1处的切线为l ,求l 与两坐标轴围成的三角形面积的最小值.21、(本小题满分12分)如图,F 为抛物线px y 22=的焦点,A (4,2)为抛物线内一定点,P 为抛物线上一动点,且PA PF +的最小值为8。
2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为()A. B. C.±1 D.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a=.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义结合三角形的性质,分别证明充分性和必要性,从而得到答案.解答:解:在△ABC中,若A=,则cosA=,是充分条件,在△ABC中,若cosA=,则A=或A=,不是必要条件,故选:A.点评:本题考查了充分必要条件,考查了三角形中的三角函数值问题,是一道基础题.2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:简易逻辑.分析:容易判断命题p是真命题,q是假命题,所以根据p∨q,p∧q,¬q的真假和p,q的关系即可找出正确选项.解答:解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;∴D正确.故选D.点评:考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),依题意得.解答:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.点评:本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由直线的平行可得m的方程,解得m代回验证可得.解答:解:∵直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,∴(m+2)(2m﹣1)﹣3×1=0,解得m=﹣或1经验证当m=1时,两直线重合,应舍去,故选:D点评:本题考查直线的一般式方程和平行关系,属基础题.5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.考点:两条平行直线间的距离.专题:直线与圆.分析:通过直线的平行求出m,然后利用平行线之间的距离求解即可.解答:解:直线2x+3y+1=0与直线4x+my+7=0平行,所以m=6,直线4x+my+7=0化为直线4x+6y+7=0即2x+3y+3.5=0,它们之间的距离为:d==.故选:C.点评:本题考查两条平行线之间是距离的求法,基本知识的考查.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:若l⊥α,l⊥m,则m∥α或m⊂α,故A错误;若l⊂α,m⊂β,α∥β,则l与m平行或异面,故B错误;若l∥α,m⊥α,则由直线与平面平行的性质得l⊥m,故C正确;若α∩β=l,l⊥γ,m⊥β,则m∥γ或m⊂γ,故D错误.故选:C.点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为() A. B. C.±1 D.考点:直线与圆的位置关系.专题:直线与圆.分析:设直线l的方程为:y=kx﹣2k,由已知条件结合圆的性质和点到直线的距离公式推导出=2,由此能求出直线的斜率.解答:解:设直线l的斜率为k,则直线l的方程为:y=kx﹣2k,(x﹣2)2+(y﹣3)2=9的圆心C(2,3),半径r=3,∵过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2,∴圆心C(2,3)到直线AB的距离d==2,∵点C(2,3)到直线y=kx﹣2k的距离d==2,∴•2=3,解得k=±.故选:A.点评:本题考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.解答:解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选B.点评:本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆心(0,0)到直线l:x+y﹣4=0的距离d正好等于半径,可得直线和圆相切.解答:解:由于圆心(0,0)到直线l:x+y﹣4=0的距离为d==2=r(半径),故直线和圆相切,故选:C.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件考点:命题的真假判断与应用.专题:简易逻辑.分析: A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”,显然不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于非零向量反向共线时,满足<0;D.“x2>2”⇒或x,而x2﹣3x+2=﹣≥﹣,反之也不成立.解答:解:A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题,正确;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”是假命题,不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于向量反向共线时,其<0,因此不正确;D.“x2>2”⇒或x,此时x2﹣3x+2=﹣≥﹣,反之也不成立,因此“x2>2”是“x2﹣3x+2≥0”的既不充分也不必要条件,不正确.综上可得:只有A.故选:A.点评:本题考查了函数的性质、简易逻辑的判定、向量的数量积及其夹角公式,考查了推理能力,属于基础题.二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为(1,+∞).考点:特称命题.专题:计算题.分析:原命题为假命题,则其否命题为真命题,得出∀x∈R,都有x2+2x+m>0,再由△<0,求得m.解答:解:∵“存在x∈R,使x2+2x+m≤0”,∴其否命题为真命题,即是说“∀x∈R,都有x2+2x+m>0”,∴△=4﹣4m<0,解得m>1.∴m的取值X围为(1,+∞).故答案为:(1,+∞)点评:本题考查了存在命题的否定,不等式恒成立问题.考查转化、计算能力.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是﹣2<m<0 .考点:复合命题的真假.专题:简易逻辑.分析:根据复合命题的真假性判断出命题p、q都是真命题,再逐一求出m的X围,最后求它们的交集.解答:解:因为“p∧q”为真命题,所以命题p、q都是真命题,若命题q是真命题,则∀x∈R,x2+mx+1>0横成立,所以△=m2﹣4<0,解得﹣2<m<2,又命题p:m<0,也是真命题,所以实数m的取值X围是:﹣2<m<0,故答案为:﹣2<m<0.点评:本题考查了复合命题的真假性,以及二次函数的性质,属于基础题.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a= 0或﹣1 .考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得a(a﹣1)+2a=0,由此能求出a.解答:解:∵两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,∴a(a﹣1)+2a=0,解得a=0或a=﹣1.故答案为:0或﹣1.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线垂直的性质的合理运用.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为3x﹣y﹣9=0 .考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:求出圆心坐标,利用点斜式,可得方程.解答:解:两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的圆心坐标分别为(2,﹣3),(3,0),∴连心线方程为y﹣0=(x﹣3),即3x﹣y﹣9=0.故答案为:3x﹣y﹣9=0.点评:本题考查圆与圆的位置关系及其判定,考查直线方程,比较基础.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是﹣=1(x≥2).考点:直线与圆的位置关系.专题:直线与圆.分析:找出两圆圆心坐标与半径,设设动圆圆心M(x,y),半径为r,根据动圆M与圆C1外切且与圆C2内切,即可确定出M轨迹方程.解答:解:由圆C1:(x+3)2+y2=9,圆心C1(﹣3,0),半径r1=3,圆C2:(x﹣3)2+y2=1,圆心C2(3,0),r2=1,设动圆圆心M(x,y),半径为r,根据题意得:,整理得:|MC1|﹣|MC2|=4,则动点M轨迹为双曲线,a=2,b=,c=3,其方程为﹣=1(x≥2).故答案为:﹣=1(x≥2)点评:此题考查了直线与圆的位置关系,以及动点轨迹方程,熟练掌握双曲线定义是解本题的关键.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是①②.考点:命题的真假判断与应用.专题:简易逻辑.分析:①按照特称命题的否定要求改写,然后判断真假;②先写出原命题,然后再按照否条件、否结论进行改写;③双向推理,然后进行判断,此例可以举反例;④结合奇函数的性质进行推导,从左推右,然后反推化简.解答:解:①原命题的否定是:∀x∈R,x2﹣x+1>0;因为,故①为真命题;②原命题的否命题是:若x2+x﹣6<0,则x≤2.由x2+x﹣6<0,得(x+3)(x﹣2)<0,所以﹣3<x<2,故②为真命题;③当A=150°时,.所以故在△ABC中,“A>30°”是“sinA>”的不充分条件.故③是假命题;④若函数f(x)为奇函数,则f(0)=tanφ=0,或y轴为图象的渐近线,所以φ=kπ(k∈Z);或tanφ不存在,则φ=,(k∈Z)所以前者是后者的不充分条件.故④为假命题.故答案为:①,②点评:本题以简易逻辑为载体,考查了命题的否定及否命题的写法以及真假判断,充分必要性的判断方法,属于基础题,难度不大.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:先分别化简两个不等式,再利用q是p的必要不充分条件,转化为,然后某某数a的取值X围.解答:解:由x2+2ax﹣3a2<0得(x+3a)(x﹣a)<0,又a>0,所以﹣3a<x<a,(2分)x2+2x﹣8<0,∴﹣4<x<2,p为真时,实数x的取值X围是:﹣3a<x<a;q为真时,实数x的取值X围是:﹣4<x<2(6分)因为q是p的必要不充分条件,所以有(10分)所以实数a的取值X围是≤a≤2.(14分)点评:本题考查一元二次不等式的解法,必要条件、充分条件与充要条件的判断,考查计算能力,转化思想,是中档题.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为+=1(a>b>0),运用离心率公式和a,b,c的关系,解得a,b,即可得到椭圆方程;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),解方程即可得到椭圆方程;(3)讨论椭圆的焦点的位置,由题意可得a﹣c=4,a+c=10,解方程可得a,c,再由a,b,c 的关系解得b,即可得到椭圆方程.解答:解:(1)设椭圆方程为+=1(a>b>0),由题意可得,2a=12,e=,即有a=6,=,即有c=4,b===2,即有椭圆方程为+=1;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),可得36m+0=1,且0+64n=1,解得m=,n=,即有椭圆方程为+=1;(3)当焦点在x轴上时,可设椭圆方程为+=1(a>b>0),由题意可得a﹣c=4,a+c=10,解得a=7,c=3,b==2,即有椭圆方程为+=1;同理,当焦点在y轴上时,可得椭圆方程为+=1.即有椭圆方程为+=1或+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的方程的求法,注意运用椭圆的方程的正确设法,以及椭圆性质的运用,属于基础题.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.考点:直线与平面所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)建立空间直角坐标,利用向量法证明线面垂直.(2)利用向量法求线面角的大小.解答:解:∵四边形ACDE是正方形,所以EA⊥AC,AM⊥EC,∵平面ACDE⊥平ABC,∴EA⊥平面ABC,∴可以以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE为y轴和z轴,建立如图所示的空间直角坐标系A﹣xyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),∵M是正方形ACDE的对角线的交点,∴M(0,1,1) (3)=(0,1,1),=(0,2,0)﹣(0,0,2)=(0,2,﹣2),=(2,2,0)﹣(0,2,0)=(2,0,0),∴,,∴AM⊥EC,AM⊥CB,∴AM⊥平面EBC.…(5分)(2)∵AM⊥平面EBC,∴为平面EBC的一个法向量,∵=(0,1,1),=(2,2,0),∴cos.∴=60°.∴直线AB与平面EBC所成的角为30°.…(12分)点评:本题主要考查向量法证明线面垂直以及利用向量法求线面角的大小,运算量较大.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.考点:轨迹方程;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为,根据题意可得a=2且c=,从而b==1,得到椭圆的标准方程;(2)设点P(x0,y0),线段PA的中点为M(x,y),根据中点坐标公式将x0、y0表示成关于x、y的式子,将P(x0,y0)关于x、y的坐标形式代入已知椭圆的方程,化简整理即可得到线段PA的中点M的轨迹方程.解答:解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.点评:本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)根据题意设所求方程为3x+4y+a=0,根据直线与圆相切时,圆心到直线的距离d=r求出a的值,即可确定出所求直线方程;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,如图所示,求出|AB|与|MN|的长,即可确定出△PAB面积的最大值.解答:解:(1)设所求直线方程为3x+4y+a=0,由题意得:圆心(0,0)到直线的距离d=r,即=2,解得:a=±10,则所求直线方程为3x+4y±10=0;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,此时直线方程为3x+4y﹣10=0,∵点C到直线AB的距离||=,CM=2,∴|MN|=+2=,∵A(﹣4,0),B(0,3),即OA=4,OB=3,∴|AB|=5,则△PAB面积最大值为×5×=11.点评:此题考查了直线与圆的方程的应用,涉及的知识有:点到直线的距离公式,两直线平行时斜率的关系,以及直线与圆相切的性质,熟练掌握公式及性质是解本题的关键.。
2023-2024学年四川省成都市高二下册期中考试数学(理)试题一、单选题(本大题共12小题,共60.0分.在每小题列出的选项中,选出符合题目的一项)1.已知集合{}{}220,0,1A xx x B =-≤=∣,则A B ⋂=()A.[]0,1B.{}0,1 C.[]0,2D.{}0,1,22.复数3i1iz +=+在复平面内表示的点的坐标为()A.()2,1- B.()1,1- C.()1,2 D.()2,23.函数()3,0ln ,0x e x f x x x +⎧≤=⎨>⎩,则()1f f ⎡⎤-=⎣⎦()A.-1B.0C.ln2D.24.在极坐标系中,圆2cos ρθ=-的圆心的极坐标是()A.1,2π⎛⎫ ⎪⎝⎭B.1,2π⎛⎫- ⎪⎝⎭ C.()1,0 D.()1,π5.下列函数中,在定义域内既是奇函数又是增函数的是()A.()323f x x x=+ B.()5tan f x x=C.()8f x x=-D.()f x x =+6.执行如图所示的程序框图,输出的结果是()A.13B.14C.15D.177.树立劳动观念对人的健康成长至关重要,某实践小组共有4名男生,2名女生,现从中选出4人参加校园植树活动,其中至少有一名女生的选法共有()A.8种B.14种C.12种D.9种8.收集一只棉铃虫的产卵数y 与温度x 的几组数据后发现两个变量有相关关系,按不同的曲线来拟合y 与x 之间的回归方程,并算出了对应的决定系数2如下表:则这组数据模型的回归方程的最好选择应是()A.ˆ19.8463.7yx =- B.0.273.84ˆx ye -=C.2ˆ0.367202yx =- D.ˆy =9.若443243210(1)x a x a x a x a x a -=++++,则4321a a a a -+-=()A.-1B.1C.15D.1610.函数2ln x x y x=的图象大致是()A. B.C.D.11.函数()3224f x x x x =--+,当[]3,3x ∈-时,有()214f x m m -恒成立,则实数m 的取值范围是()A.()3,11- B.()3,11 C.[]2,7D.[]3,1112.已知函数()22(1)sin 1x xf x x ++=+,其导函数记为()f x ',则()()()()2022202220222022f f f f ++--'-'=()A.-3B.3C.2D.-2二、填空题(本大题共4小题,共20.0分)13.复数()i 12i z =+的共轭复数为__________.14.10(1)x -的展开式的第6项系数是__________.15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是__________.16.已知,a b 为实数,不等式ln ax b x +≥恒成立,则ba的最小值为__________.三、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.(本小题10.0分)在平面直角坐标系xOy 中,曲线22:1C x y +=所对应的图形经过伸缩变换2x x y =⎧⎪⎨=⎪'⎩'得到图形C '.(1)写出曲线C '的平面直角坐标方程;(2)点P 在曲线C '上,求点P到直线60l y +-=的距离的最小值及此时点P 的坐标.18.(本小题12.0分)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1.(1)求,a b 的值;(2)当[]1,1x ∈-时,求()f x 的最大值.19.(本小题12.0分)随着2022年北京冬季奥运会的如火如茶地进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:每天需求量162163164165166频数24653以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X 表示每天吉祥物“冰墩墩”的需求量.(1)求X 的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.20.(本小题12.0分)光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能.近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:年份2011年2012年2013年2014年2015年2016年2017年2018年年份代码x12345678新增光伏装机量y 兆瓦0.40.8 1.6 3.1 5.17.19.712.2某位同学分别用两种模型:①2ˆybx a =+,②ˆy dx c =+进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于ˆi i y y-)经过计算得()()()()()888211172.8,42,686.8iiii i i i i x x y y x x t ty y ===--=-=--=∑∑∑,()8213570ii tt =-=∑,其中8211,8i ii i t x t t ===∑.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.(2)根据(1)的判断结果及表中数据建立y 关于x 的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)附:回归直线的斜率和截距的最小二乘估计公式分别为.()()()121ˆˆˆ,niii ni i x x y y bay bx x x ==---==--∑∑21.(本小题12.0分)已知函数()11x f x eax a -=-+-.(1)讨论函数()f x 的单调性;(2)①若()0f x ≥恒成立,求实数a 的取值集合;②证明.()ln 20xe x -+>22.(本小题10.0分)在极坐标系中,点P 的极坐标是()1,π,曲线C 的极坐标方程为22cos 80ρρθ--=,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率为-1的直线l 经过点P .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 相交于两点,A B ,求PA PB PBPA+的值.答案和解析1.【正确答案】B解:集合{}{}{}22002,0,1A xx x x x B =-≤=≤≤=∣∣,则{}0,1A B ⋂=.2.【正确答案】A解.()()()()223i 1i 3i 33i i i 42i 2i 1i 1i 1i 1i 2z +-+-+--=====-++--则复数3i1iz +=+在复平面内表示的点的坐标为()2,1-.3.【正确答案】D解:根据题意,函数()3,0,ln ,0,x e x f x x x +⎧≤=⎨>⎩,则()210f e -=>,则()21ln 2ln 2f f e e ⎡⎤-===⎣⎦,4.【正确答案】D解:圆2cos ρθ=-即22cos ρρθ=-,即2220x y x ++=,即22(1)1x y ++=,表示以()1,0-为圆心,半径等于1的圆.而点()1,0-的极坐标为()1,π,5.【正确答案】A解:函数()323f x x x =+是奇函数,且在定义域内是增函数,A 正确;函数()5tan f x x =在定义域内不具有单调性,B 错误;函数()8f x x=-在定义域内不具有单调性,C 错误;函数()f x x =+[)0,∞+,不具有奇偶性,D 错误;综上,应选A .6.【正确答案】C解:模拟程序的运行,可得1a =执行循环体,3a =不满足条件10a >,执行循环体,7a =不满足条件10a >,执行循环体,15a =满足条件10a >,退出循环,输出a 的值为15.故选.C 7.【正确答案】B【分析】采用采用间接法,任意选有4615C =种,都是男生有1种,进而可得结果.【详解】任意选有4615C =种,都是男生有1种,则至少有一名女生有14种.故本题选B .8.【正确答案】B由决定系数2R 来刻画回归效果,2R 的值越大越接近1,说明模型的拟合效果最好.故选.B 9.【正确答案】C【分析】利用赋值法结合条件即得.【详解】因为443243210(1)x a x a x a x a x a -=++++,令0x =得,01a =,令1x =-得,443210(2)16a a a a a -+-+=-=,所以,432116115a a a a -+-=-=.故选:C.10.【正确答案】D解:当0x >时,ln ,1ln y x x y x ==+',即10x e <<时,函数y 单调递减,当1x e>,函数y 单调递增,又因为函数y 为偶函数,故排除ABC ,故选.D 11.【正确答案】D解:因为()3224f x x x x =--+,所以()2344f x x x =--+',令()0f x '=得23x =或2x =-,可知函数()f x 在[)3,2--上单调递减,在22,3⎛⎫- ⎪⎝⎭上单调递增,在2,33⎛⎤ ⎥⎝⎦上单调递减,而()()()24033,28,,333327f f f f ⎛⎫-=--=-==-⎪⎝⎭,所以函数()f x 在[]3,3-上的最小值为-33,因为当[]3,3x ∈-时,()214f x m m ≥-恒成立,只需2min 14()m m f x -≤,即21433m m -≤-,即214330m m -+≤,解得311m ≤≤.故选D .12.【正确答案】C【分析】利用求导法则求出()f x ',即可知道()()f x f x '='-,再利用()()2f x f x +-=,即可求解.【详解】由已知得()()2222(1)sin (1)sin 11x x x xf x x x -+----==++,则()()2222(1)sin (1)sin 211x x x xf x f x x x ++--+-=+=++,()()()()222221cos 12(1)sin 1x x x x x x f x x'⎡⎤⎡⎤+++-++⎣⎦⎣⎦=+()()()2222cos 12sin 1x x x xx ++-=+则()()()()2222cos 12sin 1x x x xf x x++--=+',即()()f x f x '='-,则()()()()2022202220222022f f f f ++-''--()()()()20222022202220222f f f f =+-+'-'-=,故选:C.13.【正确答案】2i --解:复数()i 12i 2i z =+=-+,其共轭复数为2i --.14.【正确答案】-252【分析】应用二项式定理写出第6项系数.【详解】由101011010C (1)(1)C rrr r r rr T xx --+=-=-,所以,第6项为5r =,则5555610(1)252T C x x =-=-,故第6项系数是-252.故-25215.【正确答案】乙解:假设甲会,那么甲、乙说的都是真话,与题意不符,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的真话,符合题意;假设丙会,那么乙、丙说的都是真话,与题意不符,所以丙不会.综上可得:会中国象棋的是乙,16.【正确答案】-1【分析】先由ln ax b x +≥恒成立得出ln 1b a ≥--,进而ln 1b a a a--≥,构造函数()ln 1(0)a g a a a--=>求解.【详解】设()ln (0)f x x ax b x =-->,则不等式ln ax b x +≥恒成立等价于max ()0f x ≤成立,显然当0a ≤时不符合题意.当0a >时,()11(0)ax f x a x x x-=-=>',∴当10x a <<时,()0f x >,当1x a >时,()0f x '<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+⎪⎝⎭上单调递减,max 1()ln 1f x f a b a ⎛⎫∴==--- ⎪⎝⎭.由max ()0f x ≤得ln 1ln 1,b a b a a a --≥--∴≥.令()ln 1(0)a g a a a --=>,则()2ln ag a a=',当01a <<时,()()0,g a g a '<在()0,1上单调递减,当1a >时,()()0,g a g a '>在()1,∞+上单调递增,()min ()11g a g ∴==-,1ba ∴≥-,则min1b a ⎛⎫=- ⎪⎝⎭,此时1,1a b ==-.故-1.17.【正确答案】解:(1)由2x x y =⎧⎪⎨=⎪'⎩'得到2x x y ⎧=⎪⎪⎨'⎪=⎪⎩,代入到221x y +=中,得22()()143x y +=.即22143x y +=为曲线C '的直角坐标方程;(2)设()2cos P θθ,则点P到直线60l y +-=的距离为d ==其中255tan 2sin 55ϕϕϕ⎛=== ⎝⎭,当()sin 1θϕ+=时,即()22k k Z πθϕπ+=+∈,于是()sin sin 2cos 25k k Z πθπϕϕ⎛⎫=+-==∈ ⎪⎝⎭,同理25cos sin 5θϕ==,此时6152d =,即距离最小值为6152,此时点4515,55P ⎛ ⎝⎭.18.【正确答案】解:(1)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1,()234f x x ax b =+'+ ,且函数()f x 在1x =-处有极值1,()()13401120f a b f a b a ⎧-=-+=⎪∴⎨-=-+-+='⎪⎩,解得1;1a b =⎧⎨=⎩又当1a b ==时,()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',()f x ∴在(),1∞--和1,3∞⎛⎫-+ ⎪⎝⎭上单调递增,在11,3⎛⎫-- ⎪⎝⎭单调递减,故()f x 在1x =-处取得极大值,满足题意;综上,1a b ==;(2)当1,1a b ==时,()3221f x x x x =+++,则()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',当x 变化时,()f x '与()f x 的变化情况如下表:x -111,3⎛⎫-- ⎪⎝⎭13-1,13⎛⎫- ⎪⎝⎭1()f x '-0+()f x 1单调递减极小值2327单调递增5所以[]1,1x ∈-时,()f x 的最大值为5.19.【正确答案】解:(1)X 可取162,163,164,165,166,()()()214163162,163,16420102052010P X P X P X =========,()()513165,16620420P X P X =====,所以分布列为:X162163164165166P 1101531014320(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=,当163X =时,16350108140Y =⨯-=,当164X =时,164508200Y =⨯=,当165X =时,16450208220Y =⨯+=,当166X =时,164502208240Y =⨯+⨯=,所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元).20.【正确答案】解:(1)选择模型①,理由如下:根据残差图可以看出,模型①残差对应点分布在以横轴为对称轴,宽度小于1的水平带状区域内,模型①的各项残差的绝对值要远远小于模型②的各项残差的绝对值,所以模型①的拟合效果相对较好.(2)由(1)知,y 关于x 的回归方程为2ˆˆˆy bx a =+,令2t x =,则ˆˆˆy bt a =+.由所给数据可得8111(1491625364964)25.588i i t t ===⨯+++++++=∑,8111(0.40.8 1.6 3.1 5.17.19.712.2)588i i y y ===⨯+++++++=∑,则()()()81821686.8ˆ0.193570i i i i i t t y y b t t ==--==≈-∑∑,ˆˆ50.1925.50.16ay bt =-≈-⨯≈.所以y 关于x 的回归方程为2ˆ0.190.16yx =+.预测该地区2020年新增光伏装机量为2ˆ0.19100.1619.16y=⨯+=(兆瓦).21.【正确答案】解:(1)因为()11x f x e ax a -=-+-,所以()1x f x e a -=-',①当0a ≤时,()0f x '>,函数()f x 在区间R 上单调递增;②当0a >时,令()0,ln 1f x x a >>+',令()0,ln 1f x x a <<+',所以()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增.(2)①由(1)可得当0a ≤,函数()f x 在区间R 上单调递增,又()0110f e a a =-+-=,所以1x <,则()0f x <,与条件矛盾,当0a >时,()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增,所以()()ln 1f x f a ≥+,由已知()ln 10f a +≥,所以aln 10a a --≥,设()ln 1g x x x x =--,则()1ln 1ln g x x x =--=-',所以当()0,1x ∈时,()0g x '>,函数()ln 1g x x x x =--单调递增,()1,x ∞∈+时,()0g x '<,函数()ln 1g x x x x =--单调递减,又()11ln110g =--=,所以不等式ln 10a a a --≥的解集为{}1.②证明:设()()1ln 2h x x x =+-+,则()11122x h x x x +=-=++',当()2,1x ∈--时,()0h x '<,函数()()1ln 2h x x x =+-+单调递减,()1,x ∞∈-+时,()0g x '>,函数()()1ln 2h x x x =+-+单调递增,又()10ln10h -=-=,所以()1ln 20x x +-+≥,当且仅当1x =-时取等号,由(1)1x e x ≥+,当且仅当0x =时取等号,所以()ln 20xe x -+>.22.【正确答案】解:(1)点P 的直角坐标是()1,0-,直线l 的倾斜角是34π,∴直线l 的参数方程为21222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩,(t 为参数),由直角坐标与极坐标互化公式得曲线C 的直角坐标方程为22(1)9x y -+=.(2)将1222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩代入22(1)9x y -+=,得250t +-=,设,A B 对应参数分别为12,t t,则12125t t t t +==-,根据直线参数方程t 的几何意义得:()()2222221212121212||2251855PA PB t t t t PAPBt t PB PA PA PB t t t t ++--⨯-++=====⋅⋅⋅-.。
2014-2015学年山西省临汾市浮山中学高二(下)期中数学试卷(理科)一.选择题1.(5分)(2012秋•房山区期末)设a,b∈R,a+bi=(1﹣i)(2+i)(为虚数单位),则a+b 的值为()A.0 B.2 C. 3 D. 4考点:复数相等的充要条件.专题:计算题.分析:根据两个复数代数形式的乘法法则以及两个复数相等的充要条件,求得a和b的值,即可求得a+b.解答:解:∵a+bi=(1﹣i)(2+i)=3﹣i,∴a=3,b=﹣1,∴a+b=2,故选B.点评:本题主要考查两个复数代数形式的乘法法则,虚数单位i的幂运算性质,两个复数相等的充要条件,属于基础题.2.(5分)(2015春•浮山县校级期中)若复数z满足z(1+i)=2i,则复数z等于()A.1+i B.1﹣i C.2+D.2考点:复数相等的充要条件.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:∵复数z满足z(1+i)=2i,∴==i+1.故选:A.点评:本题考查了复数的运算法则,属于基础题.3.(5分)(2013春•海曙区校级期末)(A题)直线(t为参数)的倾斜角等于()A.B.C.D.考点:直线的参数方程.专题:直线与圆.分析:把参数方程化为普通方程,求出直线的斜率,据倾斜角和斜率的关系求出倾斜角的大小.解答:解:直线的参数方程为(t是参数),消去参数t得x+y﹣2﹣=0,∴斜率为k=﹣1,设直线的倾斜角为α,tanα=﹣1,又0≤α<π,∴α=,故选A.点评:本题考查把参数方程化为普通方程的方法,直线的斜率和倾斜角的关系,斜率和倾斜角的求法.考查计算能力.4.(5分)(2011秋•石景山区期末)在极坐标系中,圆ρ=﹣2cosθ的圆心的极坐标是()A.(1,)B.(1,﹣)C.(1,0)D.(1,π)考点:极坐标刻画点的位置.专题:计算题.分析:把圆的极坐标方程化为直角坐标方程,求出圆心的直角坐标,再把它化为极坐标.解答:解:圆ρ=﹣2cosθ即ρ2=﹣2ρcosθ,即x2+y2+2x=0,即(x+1)2+y2=1,表示以(﹣1,0)为圆心,半径等于1的圆.而点(﹣1,0)的极坐标为(1,π),故选D.点评:本题主要考查极坐标方程与直角坐标方程的互化,求点的极坐标,属于基础题.5.(5分)(2013春•黄冈期末)演绎推理“因为对数函数y=log a x(a>0,a≠1)是增函数,而函数y=log x是对数函数,所以y=log x是增函数”所得结论错误的原因是()A.大前提错误B.小前提错误C.推理形式错误D.大前提和小前提都错误考点:演绎推理的意义.专题:推理和证明.分析:对于对数函数来说,底数的范围不同,则函数的增减性不同,当a>1时,函数是一个增函数,当0<a<1时,对数函数是一个减函数,对数函数y=log a x(a>0且a≠1)是增函数这个大前提是错误的.解答:解:∵当a>1时,函数y=log a x(a>0且a≠1)是一个增函数,当0<a<1时,此函数是一个减函数∴y=log a x(a>0且a≠1)是增函数这个大前提是错误的,从而导致结论错.故选A点评:本题考查演绎推理的基本方法,考查对数函数的单调性,是一个基础题,解题的关键是理解函数的单调性,分析出大前提是错误的.6.(5分)(2015春•浮山县校级期中)用反证法证明“若a+b+c<3,则a,b,c中至少有一个小于1”时,“假设”应为()A.假设a,b,c至少有一个大于1 B.假设a,b,c都大于1C.假设a,b,c至少有两个大于1 D.假设a,b,c都不小于1考点:反证法与放缩法.专题:证明题;推理和证明.分析:考虑命题的反面,即可得出结论.解答:解:由于命题:“若a,b,c中至少有一个小于1”的反面是:“a,b,c都不小于1”,故用反证法证明“若a+b+c<3,则a,b,c中至少有一个小于1”时,“假设”应为“a,b,c都不小于1”,故选:D.点评:此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.7.(5分)(2015•赫章县校级模拟)用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是()A.(k+1)2+2k2 B.(k+1)2+k2C.(k+1)2 D.考点:数学归纳法.专题:计算题.分析:根据等式左边的特点,各数是先递增再递减,分别写出n=k与n=k+1时的结论,即可得到答案.解答:解:根据等式左边的特点,各数是先递增再递减,由于n=k,左边=12+22+…+(k﹣1)2+k2+(k﹣1)2+…+22+12n=k+1时,左边=12+22+…+(k﹣1)2+k2+(k+1)2+k2+(k﹣1)2+…+22+12比较两式,从而等式左边应添加的式子是(k+1)2+k2故选B.点评:本题的考点是数学归纳法,主要考查由n=k的假设到证明n=k+1时,等式左边应添加的式子,关键是理清等式左边的特点.8.(5分)(2014春•咸宁期末)水以匀速注入如图容器中,试找出与容器对应的水的高度h 与时间t的函数关系图象()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:由水以恒速注入,所以根据个图形的形状变化,即可确定水高度h的变化速度,即可确定答案.解答:解:体积由下到上越来越小,∴水高度h是升高的速度越来越快,∴所对应的水高度h和时间t的函数关系图象是A;故选:A点评:本题考查了利用函数图象来描述实际问题的知识.此题难度不大,解题的关键是理解题意,掌握数形结合思想的应用.9.(5分)(2014•莘县校级模拟)函数的最大值为()A.e﹣1 B.e C.e2 D.考点:函数在某点取得极值的条件.专题:计算题.分析:先找出导数值等于0的点,再确定在此点的左侧及右侧导数值的符号,确定此点是函数的极大值点还是极小值点,从而求出极值.解答:解:令,当x>e时,y′<0;当x<e时,y′>0,,在定义域内只有一个极值,所以,故答案选A.点评:本题考查求函数极值的方法及函数在某个点取得极值的条件.10.(5分)(2015春•浮山县校级期中)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(2﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(1)和极小值f(﹣1)B.函数f(x)有极大值f(1)和极小值f(2)C.函数f(x)有极大值f(2)和极小值f(1)D.函数f(x)有极大值f(﹣1)和极小值f(2)考点:利用导数研究函数的极值.专题:导数的概念及应用.分析:先判断出各个区间上的导数的符号,再判断出函数的单调区间,从而求出极值.解答:解:①x<﹣1时,2﹣x>0,y<0,∴f′(x)<0,②﹣1<x<1时,2﹣x>0,y>0,∴f′(x)>0,③1<x<2时,2﹣x>0,y<0,∴f′(x)<0,④x>2时,2﹣x<0,y>0,∴f′(x)<0,∴f(x)在(﹣∞,﹣1),(1,2)上递减,在(﹣1,1),(2,+∞)递增,∴f(﹣1)是极小值,f(1)是极大值;故选:A.点评:本题考察了函数的单调性,求函数的极值问题,是一道基础题.11.(5分)(2015春•浮山县校级期中)若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x+3的最小距离为()A.1 B.C.D.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用;直线与圆.分析:设出切点坐标,利用导数在切点处的函数值,就是切线的斜率,求出切点,然后再求点P到直线y=x+3的最小距离.解答:解:过点P作y=x+3的平行直线,且与曲线y=x2﹣lnx相切,设P(x0,x02﹣lnx0)则有:k=y′|x=x0=2x0﹣.∴2x0﹣=1,∴x0=1或x0=﹣(舍去).∴P(1,1),∴d==.故选:C.点评:本题考查点到直线的距离,导数的应用,考查计算能力,属于中档题.12.(5分)(2015春•浮山县校级期中)四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1、2、3、4号位置上(如图),第1次前后排动物互换位置,第2次左右列互换座位,…这样交替进行下去,那么第2014次互换座位后,小兔的位置对应的是()A.编号1 (开始)B.编号2 (第1次)C.编号3 (第2次)D.编号4(第3次)考点:归纳推理.专题:推理和证明.分析:由题意和图设每次变换后的小兔座位编号为a n,原来的座位编号为a0=2,由图依次求出数列的前6项,找出数列的周期,根据周期性求出a2014.解答:解:由图得,小兔原来的座位编号为a0=2,设每次变换后的小兔座位编号为a n,则a1=4,a2=3,a3=1,依此类推得a4=2,a5=4,a6=3,…,∴此数列的项周期性出现,且周期是4,即a n+4=a n,∴a2014=a4×503+2=a2=3,故选:C.点评:本题是数列与实际问题结合的题,比较新颖,考查了归纳推理和数列周期性的应用.二.填空题13.(5分)(2015春•浮山县校级期中)若函数f(x)=x3+x2+mx+1在R上无极值点,则实数m的取值范围是[,+∞).考点:利用导数研究函数的极值.专题:导数的综合应用.分析:求出函数的导函数,由函数f(x)=x3+x2+mx+1在R上无极值点,说明函数f(x)在R上是单调函数,有△≤0,求出m的取值范围.解答:解:f′(x)=3x2+2x+m,∵函数f(x)=x3+x2+mx+1在R上无极值点,∴f(x)在R上单调,∴△=4﹣12m≤0,解得m≥,故答案为:[,+∞).点评:本题考查的是利用导数判断函数的单调性,求参数问题,运用等价转化思想,属于基础题.14.(5分)(2014秋•许昌月考)dx=π.考点:定积分.专题:导数的综合应用.分析:利用微积分基本定理的几何意义即可得出.解答:解:令y=,画出图象:由微积分基本定理的几何意义可得:=π.故答案为π.点评:熟练掌握微积分基本定理的几何意义是解题的关键.15.(5分)(2013春•红塔区校级期末)在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O﹣LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是.考点:类比推理.专题:计算题;推理和证明.分析:从平面图形到空间图形,同时模型不变.解答:解:建立从平面图形到空间图形的类比,于是作出猜想:.故答案为:.点评:本题主要考查学生的知识量和知识迁移、类比的基本能力.解题的关键是掌握好类比推理的定义.16.(5分)(2012•洛阳模拟)曲线处的切线方程为x+y﹣2=0.考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:由y=,知,由此能求出曲线处的切线方程.解答:解:∵y=,∴,∴曲线处的切线方程的斜率k=y′|x=0=﹣1,∴曲线处的切线方程为y﹣2=﹣x,即x+y﹣2=0.故答案为:x+y﹣2=0.点评:本题考查曲线方程在某点处的切线方程的求法,解题时要认真审题,仔细解答,注意导数的几何意义的灵活运用.三.解答题17.(10分)(2015春•浮山县校级期中)求证:(1)a2+b2+c2≥ab+ac+bc;(2)+>2+.考点:不等式的证明.专题:证明题;分析法;综合法.分析:(1)利用基本不等式,即可证得a2+b2+c2≥ab+bc+ac;(2)寻找使不等式成立的充分条件即可.解答:证明:(1)∵a2+b2≥2ab,a2+c2≥2ac,b2+c2≥2bc,∴a2+b2+c2≥ab+bc+ac;(2)要证明+>2+,只要证明(+)2>(2+)2,只要证明2>2,显然成立,∴+>2+.点评:本题考查均值不等式的应用,考查不等式的证明方法,用分析法证明不等式,关键是寻找使不等式成立的充分条件.18.(12分)(2014春•咸阳期末)设函数f(x)=x3﹣x2﹣2x﹣.(1)求函数f(x)的单调递增、递减区间;(2)当x∈[﹣1,1]时,f(x)<m恒成立,求实数m的取值范围.考点:利用导数研究函数的单调性;函数恒成立问题.专题:综合题;导数的概念及应用.分析:(1)求导数,利用导数的正负,可得函数的单调区间;(2)恒成立问题可转化成f(x)max<m即可.解答:解:(1)f′(x)=3x2﹣x﹣2=0,得x=1,﹣.在(﹣∞,﹣)和[1,+∞)上f′(x)>0,f(x)为增函数;在(﹣,1)上f′(x)<0,f(x)为减函数.所以所求f(x)的单调增区间为(﹣∞,﹣]和[1,+∞),单调减区间为[﹣,1].(2)由(1)知,当x∈[﹣1,﹣]时,f′(x)>0,[﹣,1]时,f′(x)<0∴f(x)≤f(﹣)=.∵当x∈[﹣1,1]时,f(x)<m恒成立,∴m>.点评:本题以函数为载体,考查函数的单调性,同时考查了恒成立问题的处理,注意利用好导数工具.19.(12分)(2015•邢台四模)选修4﹣4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合.直线l的参数方程为:(t为参数),曲线C的极坐标方程为:ρ=4cosθ.(Ⅰ)写出C的直角坐标方程,并指出C是什么曲线;(Ⅱ)设直线l与曲线C相交于P、Q两点,求|PQ|值.考点:直线的参数方程;直线与圆相交的性质;简单曲线的极坐标方程.专题:计算题;直线与圆.分析:(Ⅰ)由ρ=4cosθ可得ρ2=4ρcosθ,故曲线C的直角坐标方程为(x﹣2)2+y2=4,它是以(2,0)为圆心,半径为2的圆.(Ⅱ)把参数方程代入x2+y2=4x整理得,利用根与系数的关系求得,根据求得结果.解答:解:(Ⅰ)∵ρ=4cosθ,∴ρ2=4ρcosθ,(2分)由ρ2=x2+y2,ρcosθ=x得:x2+y2=4x,所以曲线C的直角坐标方程为(x﹣2)2+y2=4,…(4分)它是以(2,0)为圆心,半径为2的圆.…(5分)(Ⅱ)把代入x2+y2=4x整理得,…(7分)设其两根分别为t 1、t2,则,…(8分)∴.…(10分)点评:本题主要考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,参数的几何意义,属于基础题.20.(12分)(2012春•西城区期末)在数列{a n}中,a1=1,a n+1=,n=1,2,3,….(Ⅰ)计算a2,a3,a4的值;(Ⅱ)猜想数列{a n}的通项公式,并用数学归纳法加以证明.考点:数学归纳法;数列递推式.专题:计算题;证明题.分析:(Ⅰ)由a1=1,a n+1=,即可求得a2,a3,a4的值;(Ⅱ)由(Ⅰ)可猜想a n=;分二步证明即可:①当n=1时,去证明等式成立;②假设n=k时,等式成立,去推证n=k+1时,等式也成立即可.解答:解:(Ⅰ)∵a1=1,a n+1=,∴a2==;a3===,a4==;(Ⅱ)由(Ⅰ)可猜想:a n=.证明:①当n=1时,a1=1,等式成立;②假设n=k时,a k=,则当n=k+1时,a k+1====,即n=k+1时,等式也成立.综上所述,对任意自然数n∈N*,a n=.点评:本题考查数列递推式,着重考查数学归纳法的应用,猜得a n=是关键,考查运算与推理证明的能力,属于中档题.21.(12分)(2013秋•濠江区校级期末)某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数m与商品单价的降低值x (单位:元,0≤x<9)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.(1)将一星期的商品销售利润y表示成x的函数;(2)如何定价才能使一个星期的商品销售利润最大?考点:利用导数求闭区间上函数的最值;函数模型的选择与应用.专题:应用题;导数的概念及应用.分析:(1)依题意,设m=kx2,由已知有5=k•12,可求得k值,根据单件利润×销售量可得函数式;(2)利用导数即可求得函数的最大值,注意函数定义域;解答:解:(1)依题意,设m=kx2,由已知有5=k•12,从而k=5,∴m=5x2,∴y=(14﹣x﹣5)(75+5x2)=﹣5x3+45x2﹣75x+675(0≤x<9);(2)∵y′=﹣15x2+90x﹣75=﹣15(x﹣1)(x﹣5),由y′>0,得1<x<5,由y′<0,得0≤x<1或5<x<9,可知函数y在[0,1)上递减,在(1,5)递增,在(5,9)上递减,从而函数y取得最大值的可能位置为x=0或是x=5,∵y(0)=675,y(5)=800,∴当x=5时,y max=800,答:商品每件定价为9元时,可使一个星期的商品销售利润最大.点评:本题考查利用导数求函数的最值、实际问题中函数模型的构建问题,考查学生利用数学知识分析解决实际问题的能力.22.(12分)(2015春•浮山县校级期中)已知函数f(x)=(x2+bx+b)(b∈R)①当b=﹣1时,求f(x)的极值.②若f(x)在区间(0,)上单调递增,求b的取值范围.③试判断f(x)在定义域上的单调性.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:①将b=﹣1代入函数f(x)的表达式,求出函数的导数,得到函数的单调区间,从而求出函数的极值;②先求出函数f(x)的导数,问题转化为从而3b≤﹣5x+2,恒成立,从而求出b的范围;③先求出函数的导数,通过讨论b的范围,从而求出函数的单调性.解答:解:①当b=﹣1时,定义域为.当x∈(﹣∞,0)时f′(x)<0,当,f′(x)>0时,所以,当x=0时取得极小值f(0)=﹣1,无极大值.②,当时<0,故5x+3b﹣2≤0,从而3b≤﹣5x+2,恒成立,设g(x)=﹣5x+2,,即3b≤g(),解得b≤;③,定义域为,当b=时,在上单调递减;当b≤时,f(x)在(﹣∞,0)内单调递减,在内单调递增;当时,f(x)在(﹣∞,0)内单调递减,在内单调递增,在内单调递减;当时,f(x)在内单调递减,在内单调递增;在内单调递减.点评:本题考。
XXX2014-2015学年下学期高二年级期末考试语文试卷后有答案XXX2014-2015学年下学期高二年级期末考试语文试卷后有答案本试卷满分为150分,考试时间150分钟。
第I卷50分一、基础与阅读(17分)材料一古人云“冒之以衣服,旌之以章旗,所以重其威也”,通过服饰表明贵贱在夏商时期当已形成。
我们通过《孝经》对服饰的论述片段,便能了解到古代“不僭上逼下”的着装要求。
穿错颜色,不但会受到惩罚,甚至还会招来杀身之祸。
清朝XXX 赐死年羹尧时,列举的罪状有几条就跟着装用色有关——用鹅黄色的荷包。
用黄布包裹衣服。
中国历代的服饰色彩与五行思想有着密切的关系。
从历代的服饰色彩演变中不难发现,古代服饰色彩始终以正色为尊,注重衣色之纯,五种正色白、青、黑、赤、黄源于五行金、木、水、火、土。
而历代所崇尚的颜色各异,《檀弓》有云“夏后氏尚黑,XXX尚白,XXX”,《史记·殷本纪》也记述XXX“易服色。
尚白”。
《礼记·王藻》云:“衣杂色,裳间色,非列采不入公门。
”个中的“列采”就是杂色服饰,也就是说,没有穿着杂色衣服是不能进入公门的。
作为封建社会初步的秦朝尚水德,于是黑色便成为打扮的首要颜色,“郊祀之服皆以袀玄”。
皇帝也经常是“玄衣绛裳”,即黑色上衣和深红色下衣,同样是以黑色为主调。
普通百姓单调的服色与礼制限制有关,“散民不敢服杂彩”(《春秋繁露·服制》)的描述正反映了这一现实。
《汉书·五行志》也曾记录,XXX微服私行,为了不引起人们的注意.遂穿着“白衣”。
封建社会中期当前,关于打扮颜色和等级的划定越发明确具体。
XXX虽然划定“贵贱异等,杂用五色”,但没有特别划定皇帝常服的服色。
而到了唐初,以黄袍衫等为皇帝常服,厥后逐渐用赤黄,“遂禁XXX不得以XXX为衣服杂饰”。
今后当前,黄色就成为了皇帝御用的颜色,成为皇帝王权的象征。
据《清史稿》记录:“龙袍,色用明黄。
领、袖俱石青,片金缘。
某某省眉山市2014-2015学年高二下学期期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.在复平面内,复数对应的点的坐标为()A.(3,﹣1)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣3,﹣1)2.用反证法证明“若x<y,则x3<y3”时,假设内容是()A.x3=y3B.x3>y3C.x3=y3或x3>y3D.x3=y3或x3<y3 3.设随机变量ξ~N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=()A.+p B.1﹣p C.1﹣2p D.﹣p4.(1+)6的展开式中有理项系数之和为()A.64 B.32 C.24 D.165.有3位同学参加测试,假设每位同学能通过测试的概率都是,且各人能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为()A.B.C.D.6.若离散型随机变量ξ的分布列为:则随机变量ξ的期望为()ξ 0 1 2 3P 0.15 0.4 0.35 XA.1.4 B.0.15 C.1.5 D.0.147.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减B.函数y=f(x)的图象是中心对称图形C.∃x0∈R,f(x0)=0D.若x0是f(x)的极值点,则f′(x0)=08.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数有()A.6 B.8 C.12 D.169.正方体ABCD﹣A1B1C1D1的棱长为1,M是棱AB的中点,点P是平面ABCD上的动点,P到直线A1D1的距离为d,且d2﹣|PM|2=1,则动点P的轨迹是()A.圆B.抛物线C.椭圆D.双曲线10.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人11.设双曲线﹣=1(0<a<b)的半焦距为c,(a,0),(0,b)为直线l上两点,已知原点到直线l的距离为c,则双曲线的离心率为()A.B.或2 C.2或D.212.已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是()A.(0,)B.(1,2)C.(,1)D.(2,3)二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在题中横线上13.复数z=的共轭复数为.14.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).15.已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1、x2都有>2恒成立,则a的取值X围是.16.方程x|x|﹣y|y|=﹣1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:①f(x)在R上单调递减;②函数F(x)=f(x)﹣x﹣存在3个零点;③函数y=f(x)的值域是R;④函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程x|x|﹣y|y|=1确定的曲线.其中所有正确的命题序号是.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知书架中甲层有英语书2本和数学书3本,乙层有英语书1本和数学书4本.现从甲、乙两层中各取两本书.(1)求取出的4本书都是数学书的概率.(2)求取出的4本书中恰好有1本是英语书的概率.18.已知函数f(x)=ln(x+1)+.(1)当函数f(x)在点(0,f(0))处的切线与直线4y﹣x+1=0垂直时,某某数m的值;(2)若x≥0时,f(x)≥1恒成立,某某数m的取值X围.19.已知平面内一动点P(x,y)(x≥0)到点F(1,0)的距离与点P到y轴的距离的差等于1,(1)求动点P的轨迹C的方程;(2)过点F的直线l与轨迹C相交于不同于坐标原点O的两点A,B,求△OAB面积的最小值.20.某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X的分布列与数学期望E(X).21.已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线x2=4y的焦点.(I)求椭圆C的方程;(Ⅱ)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.(i)若直线AB的斜率为,求四边形APBQ面积的最大值;(ii)当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,请说明理由.22.已知函数f(x)=lnx,g(x)=,F(x)=f(x)+g(x).(1)当a<0时,求函数F(x)的单调区间;(2)若函数F(x)在区间[1,e]上的最小值是,求a的值;(3)设A(x1,y1),B(x2,y2)是函数f(x)图象上任意不同的两点,线段AB的中点为C (x0,y0),直线AB的斜率为k,证明:k>f′(x0)某某省眉山市2014-2015学年高二下学期期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.在复平面内,复数对应的点的坐标为()A.(3,﹣1)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣3,﹣1)考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的基本运算和复数的几何意义进行化简即可.解答:解:===1﹣3i,对应的坐标为(1,﹣3),故选:B点评:本题主要考查复数的几何意义,利用复数的基本运算进行化简是解决本题的关键.2.用反证法证明“若x<y,则x3<y3”时,假设内容是()A.x3=y3B.x3>y3C.x3=y3或x3>y3D.x3=y3或x3<y3考点:反证法与放缩法.专题:证明题;推理和证明.分析:由于用反证法证明命题时,应先假设命题的否定成立,而“x3<y3”的否定为:“x3≥y3”,由此得出结论.解答:解:∵用反证法证明命题时,应先假设命题的否定成立,而“x3<y3”的否定为:“x3≥y3”,故选:C.点评:本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.3.设随机变量ξ~N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=()A.+p B.1﹣p C.1﹣2p D.﹣p考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:根据随机变量ξ~N(0,1),正态曲线关于x=0对称,得到对称区间对应的概率相等,根据大于1的概率得到小于﹣1的概率,根据对称轴一侧的区间的概率是,得到结果.解答:解:∵随机变量ξ~N(0,1),∴正态曲线关于x=0对称,∵P(ξ>1)=p,∴P(ξ<﹣1)=p,∴P(﹣1<ξ<0)=﹣p,故选D.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态曲线的对称性的应用,考查关于对称轴对称的区间上的概率相等,本题是一个基础题,题目中所处的字母p可以变式为实数.4.(1+)6的展开式中有理项系数之和为()A.64 B.32 C.24 D.16考点:二项式定理.专题:二项式定理.分析:在二项展开式的通项公式中,令x的幂指数为有理数,求出r的值,再利用二项式系数的性质,即可求得展开式中有理项系数之和.解答:解:(1+)6的展开式的通项公式为 T r+1=•,令为整数,可得r=0,2,4,6,故展开式中有理项系数之和为+++=25=32,故选:B.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.5.有3位同学参加测试,假设每位同学能通过测试的概率都是,且各人能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为()A.B.C.D.考点:相互独立事件的概率乘法公式;互斥事件的概率加法公式.专题:概率与统计.分析:先求出所有的同学都没有通过的概率,再用1减去此概率,即得所求.解答:解:所有的同学都没有通过的概率为=,故至少有一位同学能通过测试的概率为 1﹣=故选:D.点评:本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于中档题.6.若离散型随机变量ξ的分布列为:则随机变量ξ的期望为()ξ 0 1 2 3P 0.15 0.4 0.35 XA.1.4 B.0.15 C.1. 5 D.0.14考点:离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:利用随机变量的期望公式、随机变量的分布列的概率和为1,即可得出结论.解答:解:由题意,x=1﹣0.15﹣0.4﹣0.35=0.1数学期望Eξ=0×0.15+1×0.4+2×0.35+3×0.1=1.4,故选:A.点评:本题考查随机变量的期望公式及分布列的概率和为1,是一道基础题.7.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减B.函数y=f(x)的图象是中心对称图形C.∃x0∈R,f(x0)=0D.若x0是f(x)的极值点,则f′(x0)=0考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:导数的综合应用.分析:对于A,采用取特殊函数的方法,若取a=﹣1,b=﹣1,c=0,则f(x)=x3﹣x2﹣x,利用导数研究其极值和单调性进行判断;对于B:因为函数f (x )=x3+ax2+bx+c,都可能经过中心对称图形的y=x3的图象平移得到,故其函数y=f(x)的图象是中心对称图形;对于C:对于三次函数f (x )=x3+ax2+bx+c,由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故在区间(﹣∞,+∞)肯定存在零点;D:若x0是f(x)的极值点,根据导数的意义,则f′(x0)=0,正确.解答:解:对于三次函数f (x )=x3+ax2+bx+c,A:若取a=﹣1,b=﹣1,c=0,则f(x)=x3﹣x2﹣x,对于f(x)=x3﹣x2﹣x,∵f′(x)=3x2﹣2x﹣1∴由f′(x)=3x2﹣2x﹣1>0得x∈(﹣∞,﹣)∪(1,+∞)由f′(x)=3x2﹣2x﹣1<0得x∈(﹣,1)∴函数f(x)的单调增区间为:(﹣∞,﹣),(1,+∞),减区间为:(﹣,1),故1是f(x)的极小值点,但f(x )在区间(﹣∞,1)不是单调递减,故错;B:∵f(﹣﹣x)+f(x)=(﹣﹣x)3+a(﹣﹣x)2+b(﹣﹣x)+c+x3+ax2+bx+c =﹣+2c,f(﹣)=(﹣)3+a(﹣)2+b(﹣)+c=﹣+c,∵f(﹣﹣x)+f(x)=2f(﹣),∴点P(﹣,f(﹣))为对称中心,故B正确.C:由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故∃x0∈R,f(x0)=0,正确;D:若x0是f(x)的极值点,根据导数的意义,则f′(x0)=0,正确.故答案为:A点评:本题考查了导数在求函数极值中的应用,利用导数求函数的单调区间,及导数的运算.8.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数有()A.6 B.8 C.12 D.16考点:排列、组合及简单计数问题.专题:计算题.分析:若第一门安排在开头或结尾,则第二门有3种安排方法.若第一门安排在中间的3天中,则第二门有2种安排方法,根据分步计数原理分别求出安排方案种数,相加即得所求.解答:解:若第一门安排在开头或结尾,则第二门有3种安排方法,这时,共有×3=6种方法.若第一门安排在中间的3天中,则第二门有2种安排方法,这时,共有3×2=6种方法.综上可得,所有的不同的考试安排方案种数有 6+6=12种,故选C.点评:本题考查排列、组合及简单计数问题,体现了分类讨论的数学思想,属于中档题.9.正方体ABCD﹣A1B1C1D1的棱长为1,M是棱AB的中点,点P是平面ABCD上的动点,P到直线A1D1的距离为d,且d2﹣|PM|2=1,则动点P的轨迹是()A.圆B.抛物线C.椭圆D.双曲线考点:轨迹方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:作PQ⊥AD,作QR⊥D1A1,PR即为点P到直线A1D1的距离,由勾股定理得PR2﹣PQ2=RQ2=1,又已知PR2﹣PM2=1,PM=PQ,即P到点M的距离等于P到AD的距离.解答:解:如图所示:正方体ABCD﹣A1B1C1D1中,作PQ⊥AD,Q为垂足,则PQ⊥面ADD1A1,过点Q作QR⊥D1A1,则D1A1⊥面PQR,PR即为点P到直线A1D1的距离,由题意可得PR2﹣PQ2=RQ2=1.又已知PR2﹣PM2=1,∴PM=PQ,即P到点M的距离等于P到AD的距离,根据抛物线的定义可得,点P的轨迹是抛物线,故选:B.点评:本题考查抛物线的定义,求点的轨迹方程的方法,体现了数形结合的数学思想,得到PM=PQ是解题的关键.10.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人考点:排列、组合的实际应用.专题:计算题.分析:设出男学生有x人,根据一共有8人得到女学生有8﹣x人,根据从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,得到关于x的等式C x2C8﹣x1A33=90,解出x即可.解答:解:设男学生有x人,则女学生有8﹣x人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案∴C x2C8﹣x1A33=90,∴x(x﹣1)(8﹣x)=30=2×3×5,∴x=3故选B.点评:本题考查排列组合数的实际应用,是一个综合题,解题时思考方法同一般的排列组合一样,根据题意列出等式,得到结果.11.设双曲线﹣=1(0<a<b)的半焦距为c,(a,0),(0,b)为直线l上两点,已知原点到直线l的距离为c,则双曲线的离心率为()A.B.或2 C.2或D.2考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先求出直线l的方程,利用原点到直线l的距离为c,及c2=a2+b2,求出离心率的平方e2,进而求出离心率.解答:解:∵直线l过(a,0),(0,b)两点,∴直线l的方程为:,即 bx+ay ﹣ab=0,∵原点到直线l的距离为c,∴=c.又c2=a2+b2,∴3e4﹣16e2+16=0,∴e2=4,或e2=.∵a>b>0,∴c2=a2+b2<2a2,∴e=,故离心率为e=,故选:A.点评:本题主要考查双曲线的标准方程,以及简单性质的应用,属于中档题.12.已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是()A.(0,)B.(1,2)C.(,1)D.(2,3)考点:导数的运算.专题:导数的综合应用.分析:设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t 的值,可得f(x)的解析式,由二分法分析可得h(x)的零点所在的区间为(1,2),结合函数的零点与方程的根的关系,即可得答案.解答:解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣log2x为定值,设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,f′(x)=,将f(x)=log2x+2,f′(x)=代入f(x)﹣f′(x)=2,可得log2x+2﹣=2,即log2x﹣=0,令h(x)=log2x﹣,分析易得h(1)=<0,h(2)=1﹣>0,则h(x)=log2x﹣的零点在(1,2)之间,则方程log2x﹣=0,即f(x)﹣f′(x)=2的根在(1,2)上,故选:B.点评:本题考查二分法求函数的零点与函数零点与方程根的关系的应用,关键点和难点是求出f(x)的解析式.二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在题中横线上13.复数z=的共轭复数为﹣i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的基本运算法则进行化简即可.解答:解:z==+i,则z=的共轭复数为=﹣i,故答案为:﹣i点评:本题主要考查复数的共轭复数的计算,比较基础.14.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可.解答:解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择故有且仅有两人选择的项目完全相同的概率是=故答案为:点评:本题主要考查了古典概型及其概率计算公式,解题的关键求出有且仅有两人选择的项目完全相同的个数,属于基础题.15.已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1、x2都有>2恒成立,则a的取值X围是[1,+∞).考点:函数恒成立问题.专题:函数的性质及应用.分析:依题意知,f′(x)=+x≥2(x>0)恒成立⇔a≥2x﹣x2恒成立,令g(x)=2x﹣x2=﹣(x﹣1)2+1,利用二次函数的对称性、单调性与最值,可求得g(x)max,于是可得a的取值X围.解答:解:∵f(x)=alnx+x2(a>0),对任意两个不等的正实数x1、x2都有>2恒成立,∴f′(x)=+x≥2(x>0)恒成立,∴a≥2x﹣x2恒成立,令g(x)=2x﹣x2=﹣(x﹣1)2+1,则a≥g(x)max,∵g(x)=2x﹣x2为开口方向向下,对称轴为x=1的抛物线,∴当x=1时,g(x)=2x﹣x2取得最大值g(1)=1,∴a≥1.即a的取值X围是[1,+∞).故答案为:[1,+∞).点评:本题考查函数恒成立问题,考查导数的几何意义与二次函数的对称性、单调性与最值,考查转化思想.16.方程x|x|﹣y|y|=﹣1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:①f(x)在R上单调递减;②函数F(x)=f(x)﹣x﹣存在3个零点;③函数y=f(x)的值域是R;④函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程x|x|﹣y|y|=1确定的曲线.其中所有正确的命题序号是②③④.考点:函数的图象.专题:函数的性质及应用.分析:分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给的命题的真假性.解答:解:(1)x≥0,y≥0,x2﹣y2=﹣1即y2﹣x2=1,此为a=b=1,实轴为y轴的双曲线在第1象限的部分,增函数;(2)x≥0,y<0,x2+y2=﹣1不存在;(3)x<0,y≥0,﹣x2﹣y2=﹣1,x2+y2=1,此为圆心在原点,半径为1的圆在第2象限的部分,增函数;(4)x<0,y<0,﹣x2+y2=﹣1,x2﹣y2=1,此为a=b=1,实轴为x轴的双曲线在第3象限的部分,增函数;根据上述情况作出相应的图象,如图所示,故:①f(x)在R上单调递减,错误;②函数f(x)的图象与函数y=x+在第二象限相切,在第一,三象限延长后各有一个交点,即函数f(x)的图象与函数y=x+共有三个交点,即函数F(x)=f(x)﹣x﹣存在3个零点,正确;③函数y=f(x)的值域是R,正确;④函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程﹣x|﹣x|+y|﹣y|=﹣1,即方程x|x|﹣y|y|=1确定的曲线,正确.即正确的命题序号是:②③④,故答案为:②③④点评:本题主要考查了含有绝对值的函数的图象,以及有关圆锥曲线的问题,利用了数形结合的思想,属于中档题三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知书架中甲层有英语书2本和数学书3本,乙层有英语书1本和数学书4本.现从甲、乙两层中各取两本书.(1)求取出的4本书都是数学书的概率.(2)求取出的4本书中恰好有1本是英语书的概率.考点:相互独立事件的概率乘法公式;古典概型及其概率计算公式;排列、组合及简单计数问题.专题:计算题.分析:(1)设“从甲层取出的2本书均为数学书”的事件为A,“从乙层取出的2本书均为数学书”的事件为B,则所求的事件的概率等于P(A)P(B)=×,运算求得结果.(2)利用互斥事件的概率加法公式,所求的事件的概率等于×+×,运算求得结果.解答:解:(1)设“从甲层取出的2本书均为数学书”的事件为A,“从乙层取出的2本书均为数学书”的事件为B,由于A、B相互独立,记“取出的4本书都是数学书的概率”P1,则P1=P(AB)=P(A)P(B)=×=.(2)设“从甲层取出的2本书均为数学书,从乙层取出的2本书中,1本是英语,1本是数学”的事件为C,“从甲层取出的2本书中,1本是英语,1本是数学,从乙层取出的2本书中均为数学”的事件为D,由于C,D互斥,记“取出的4本书中恰好有1本是英语书的概率”为P2P2=P(C+D)=P(C)+P(D)=×+×=.点评:本题主要考查相互独立事件的概率乘法公式,互斥事件的概率加法公式,排列与组合及两个基本原理的应用,属于中档题.18.已知函数f(x)=ln(x+1)+.(1)当函数f(x)在点(0,f(0))处的切线与直线4y﹣x+1=0垂直时,某某数m的值;(2)若x≥0时,f(x)≥1恒成立,某某数m的取值X围.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:(1)求出导数,求得切线的斜率,由两直线垂直的条件:斜率之积为﹣1,即可得到所求m的值;(2)不等式ln(x+1)+≥1在x≥0时恒成立,即m≥x+1﹣(x+1)ln(x+1)在x≥0时恒成立.令g(x)=x+1﹣(x+1)ln(x+1)(x≥0),求出导数,求得单调区间,即可得到最大值,令m不小于最大值即可.解答:解:(1)∵f′(x)=﹣,∴函数f(x)在点(0,f(0))处的切线的斜率k=f′(0)=1﹣m,∵函数f(x)在点(0,f(0))处的切线与直线4y﹣x+1=0垂直,∴1﹣m=﹣4,∴m=5;(2)依题意不等式ln(x+1)+≥1在x≥0时恒成立,即m≥x+1﹣(x+1)ln(x+1)在x≥0时恒成立.令g(x)=x+1﹣(x+1)ln(x+1)(x≥0),则g′(x)=1﹣[ln(x+1)+1]=﹣ln(x+1),∴x≥0时,g′(x)≤0,∴函数g(x)在[0,+∞)时为减函数,∴g(x)≤g(0)=1,∴m≥1即实数m的取值X围是[1,+∞).点评:本题考查导数的运用:求切线方程和单调区间,主要考查导数的几何意义和不等式恒成立问题,注意运用分离参数和函数的单调性是解题的关键.19.已知平面内一动点P(x,y)(x≥0)到点F(1,0)的距离与点P到y轴的距离的差等于1,(1)求动点P的轨迹C的方程;(2)过点F的直线l与轨迹C相交于不同于坐标原点O的两点A,B,求△OAB面积的最小值.考点:轨迹方程;直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)根据平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1,可得当x≥0时,点P到F的距离等于点P到直线x=﹣1的距离,所以动点P的轨迹为抛物线;(2)过点F的直线l的方程为x=my+1,代入y2=4x,可得y2﹣4my﹣4=0,利用韦达定理,结合△OAB面积=|y1﹣y2|,即可求△OAB面积的最小值.解答:解:(1)∵平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1,∴当x≥0时,点P到F的距离等于点P到直线x=﹣1的距离,∴动点P的轨迹为抛物线,方程为y2=4x(x≥0);∴动点P的轨迹C的方程为y2=4x(x≥0);(2)设A点坐标为(x1,y1),B点坐标为(x2,y2),过点F的直线l的方程为x=my+1,代入y2=4x,可得y2﹣4my﹣4=0,∴y1+y2=4m,y1y2=﹣4,∴△OAB面积=|y1﹣y2|=,∴m=0时,△OAB面积的最小值为2.点评:本题考查轨迹方程,考查直线与抛物线的位置关系,解题的关键是确定抛物线的方程,利用韦达定理解题.20.某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X的分布列与数学期望E(X).考点:离散型随机变量的期望与方差;条件概率与独立事件.专题:应用题;概率与统计.分析:(1)利用条件概率公式,即可求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)确定X的可能取值,利用概率公式即可得到总分X的分布列,代入期望公式即可.解答:解:(1)记“该考生在第一次抽到理科题”为事件A,“该考生第二次和第三次均抽到文科题”为事件B,则P(A)=,P(AB)=.…∴该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率为P(B|A)=.…(2)X的可能取值为:0,10,20,30,则P(X=0)==,P(X=10)=+=,P(X=20)==,P(X=30)=1﹣﹣﹣=.…∴X的分布列为X 0 10 20 30p…∴X的数学期望为EX=0×+10×+20×+30×=.…点评:此题考查了独立事件,条件概率的概率公式,随机变量的分布列及其期望,重点考查了学生对于题意的正确理解及准确的计算能力.21.已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线x2=4y的焦点.(I)求椭圆C的方程;(Ⅱ)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.(i)若直线AB的斜率为,求四边形APBQ面积的最大值;(ii)当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,请说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线中的最值与X围问题.分析:(I)设椭圆C的方程为+=1(a>b>0),由条件利用椭圆的性质求得 b和a的值,可得椭圆C的方程.(Ⅱ)(i)设AB的方程为y=x+t,代入椭圆C的方程化简,由△>0,求得t的X围,再利用利用韦达定理可得 x1+x2以及x1+x2的值.再求得P、Q的坐标,根据四边形APBQ的面积S=S△APQ+S△BPQ=•PQ•|x1﹣x2|,计算求得结果.(ii)当∠APQ=∠BPQ时,PA、PB的斜率之和等于零,PA的方程为y﹣1=k(x﹣2),把它代入椭圆C的方程化简求得x2+2=.再把直线PB的方程椭圆C的方程化简求得x2+2 的值,可得 x1+x2以及x1﹣x2的值,从而求得AB的斜率K的值.解答:解:设椭圆C的方程为+=1(a>b>0),由题意可得它的一个顶点恰好是抛物线x2=4y的焦点(0,),∴b=.再根据离心率===,求得a=2,∴椭圆C的方程为+=1.(Ⅱ)(i)设A( x1,y1),B( x2,y2),AB的方程为y=x+t,代入椭圆C的方程化简可得 x2+2tx+2t2﹣4=0,由△=4t2﹣4(2t2﹣4)>0,求得﹣2<t<2.利用韦达定理可得 x1+x2=﹣2t,x1+x2=2t2﹣4.在+=1中,令x=2求得P(2,1),Q(2,﹣1),∴四边形APBQ的面积S=S△APQ+S△BPQ=•PQ•|x1﹣x2|=×2×|x1﹣x2|=|x1﹣x2|===,故当t=0时,四边形APBQ的面积S取得最小值为4.(ii)当∠APQ=∠BPQ时,PA、PB的斜率之和等于零,设PA的斜率为k,则 PB的斜率为﹣k,PA的方程为y﹣1=k(x﹣2),把它代入椭圆C的方程化简可得(1+4k2)x2+8k(1﹣2k)x+4(1﹣2k)2﹣8=0,∴x2+2=.同理可得直线PB的方程为y﹣1=﹣k(x﹣2),x2+2=,∴x1+x2=,x1﹣x2=,∴AB的斜率K======.点评:本题主要考查求圆锥曲线的标准方程,圆锥曲线的定义、性质的应用,直线和圆锥曲线相交的性质,直线的斜率公式、韦达定理的应用,属于难题.22.已知函数f(x)=lnx,g(x)=,F(x)=f(x)+g(x).(1)当a<0时,求函数F(x)的单调区间;(2)若函数F(x)在区间[1,e]上的最小值是,求a的值;(3)设A(x1,y1),B(x2,y2)是函数f(x)图象上任意不同的两点,线段AB的中点为C (x0,y0),直线AB的斜率为k,证明:k>f′(x0)考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:综合题;导数的综合应用.分析:(1)求出F(x)=lnx+的导数,导数大于0,即可求函数的增区间;(2)对a进行分类讨论,分别求出各种情况下的函数在[1,e]上的最小值令其为,解方程求得a的值;(3)对于当a=0时,先把f(x)=lnx具体出来,然后求导函数,得到f′(x0),在利用斜率公式求出过这两点的斜率公式,利用构造函数并利用构造函数的单调性比较大小.解答:(1)解:F(x)=lnx+,则F′(x)=,∵a<0,x>0,∴F′(x)>0,∴函数F(x)的单调增区间是(0,+∞);(2)解:在[1,e]上,分如下情况讨论:1.当a<1时,f'(x)>0,函数f(x)单调递增,其最小值为f(1)=a<1,这与函数在[1,e]上的最小值是相矛盾;2.当a=1时,函数f(x)在(1,e]单调递增,其最小值为f(1)=1,同样与最小值是相矛盾;3.当1<a<e时,函数f(x)在[1,a)上有f'(x)<0,单调递减,在(a,e]上有f'(x)>0,单调递增,∴函数f(x)的最小值为f(a)=lna+1=,得a=.4.当a=e时,函数f(x)在[1,e)上有f'(x)<0,单调递减,其最小值为f(e)=225,还与最小值是相矛盾;5.当a>e时,显然函数f(x)在[1,e]上单调递减,其最小值为f(e)=1+>2,仍与最小值是相矛盾.综上所述,a的值为.(3)证明:当a=0时,f(x)=lnx∴f′(x)=∴f'(x0)=又k==不妨设x2>x1,要比较k与f'(x0)的大小,即比较与的大小,又∵x2>x1,∴即比较ln与=的大小.令h(x)=lnx﹣(x≥1),则h′(x)=≥0∴h(x)在[1,+∞)上是增函数.又>1,∴h()>h(1)=0,∴ln>,即k>f'(x0).点评:此题考查了利用导函数求函数的单调的增区间,还考查了构造函数并利用构造的函数的单调性把问题转化为恒成立的问题,重点考查了学生的转化的思想及构造的函数与思想.。
彭泽二中2014~2015学年度下学期期中考试高二语文试卷本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
满分150分,考试时间150分钟第Ⅰ卷阅读题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1-3题孤独感是生活中并不陌生的感觉,也是文学作品里经常表达的意象。
一系列的研究已经发现,它对人造成的死亡风险并不亚于吸烟。
在2006年,美国芝加哥大学的露易丝·霍利及其合作者就发现,美国孤独的老人的血压比不孤独者高出30点。
“孤独的人与不孤独的人不同,他们倾向于把有压力的情势理解为威胁而非挑战,被动地以请求器械或感情支持的方式来应对,而不是主动适应并力图解决问题。
”霍利的合作者、芝加哥大学认知和社会神经系统科学中心主任约翰·卡乔波说。
对压力的不同的应对方式造成了血流阻力的不同。
这可能造成随着年龄的增长,其血压也逐渐升高。
高血压增加了心脏病、中风的发病风险,并且会对肾功能造成损伤。
而另一项2007年的研究则发现,对于更大年龄的人,孤独感还能增加患老年痴呆症的风险。
一组研究人员对八百多名平均年龄在80.7岁的老人的监测表明,孤独者患老年痴呆症的风险可以达到不孤独者的两倍。
对于年轻人来说,尽管孤独感不会立刻让他们疾病缠身,但也会对他们的健康造成影响。
同样是在霍利和卡乔波的研究中,他们发现,孤独者虽然睡眠的时间看起来与不孤独者一样长,但是他们会经历更多的“微觉醒”,这使得他们的睡眠质量变得糟糕。
随着年龄的增长,人们的睡眠状况本就会越来越差,这可能让孤独者的睡眠雪上加霜。
卡乔波从上世纪90年代便开始在大学里散发问卷,调查人们的孤独感状况,然后进行生理学和心理学的分析。
他发现,一个人是否孤独,并不能根据他(她)的联系人的多少做出判断。
UCLA孤独感量表的发明者罗素说,卡乔波提出的这个特点是之前大部分研究所忽视掉的。
卡乔波在他的研究过程中还发现,在人们的社交网络中,孤独是可以传染的,就像感冒一样。
2014-2015学年第2学期考试试题(A)卷课程名称算法与数据结构任课教师签名出题教师签名审题教师签名考试方式(闭)卷适用专业信息与计算机考试时间(120)分钟一、单项选择题(每小题4分,共20分)1、算法的时间复杂度与()有关。
(A) 问题规模(B) 计算机硬件性能(C) 编译程序质量(D) 程序设计语言2、线性表的链式存储结构与顺序存储结构相比的优点是()。
(A) 所有的操作算法实现简单(B) 便于随机存取(C) 便于插入和删除操作的实现(D) 便于利用零散的存储器空间3、设10个元素进栈序列是1,2,…,10,其输出序列是a1,a2,…,a10,如果a1=3,则a2的值为()。
(A) 一定是2 (B) 一定是1(C) 不可能是4 (D) 不可能是14、设高度为h的二叉树上只有度为0和度为2的结点(假设仅含根结点的二叉树的高度为1),则此二叉树所包含的结点数至多有()。
(A) 2h-1 (B) 2h - 1(C) 2h+1 (D) 2h + 15、设有13个值,用它们组成一棵哈夫曼树,则该哈夫曼树共有()个结点。
(A) 13 (B) 12(C) 26 (D) 25二、填空题(每小题2分,共10分)1、把一个递归过程转换成一个等价的非递归过程,通常使用()。
2、数据的逻辑结构是从逻辑上描述数据,它与数据的()无关,是独立于计算机的。
3、在单链表中,结点与结点之间的逻辑关系不是通过存储单元的顺序来表示的,而是通过()来实现的。
4、实现动态分配和动态回收一个结点空间的两个标准过程是()和()。
三、名词解释(每小题5分,共10分)1、线性表2、哈希函数四、简答题(每小题5分,共10分)1、简述顺序表和链表的优缺点。
2、举例说明直接选择排序方法是一种不稳定的排序方法。
五、应用题(每小题6分,共30分)1、关键字序列{12,7,18,13,17,29,34,6,8}是否为堆?若不是,请将其调整为最小堆,并统计建堆过程中的交换次数。
广东省揭阳市第一中学2014-2015学年高二下学期第二次阶段考试(文)一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.设集合B A B x Z x A ⋂---=-≤≤-∈= },3,2,1,0,1,2,3{},16|{中元素的个数是( )A .3B .4C .5D .6 2.函数)1lg(-=x y 的定义域为( )A .{}0|<x xB .{}1|>x xC .{}10|<<x xD .{ 0|<x x 或}1>x3.已知i 为虚数单位,复数1z a i =+,22z i =-,且12|z ||z |=,则实数a 的值为( ) A .2 B .-2 C .2或-2 D .±2或04.三棱柱的直观图和三视图如图所示,则这个三棱柱的表面积等于( )A .12+B .6+C .8+D .45.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分l00分)的茎叶图如图l ,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.则x y +的值为( )A .7B .8C .9D .106.若向量)1,3(=,b =(m ,m+1),且a ∥b ,则实数m 的值为( )A .32-B .14-C .12D .327.如图,是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是( )A .在区间(-2,1)上)(x f 是增函数.B .在区间(1,3)上)(x f 是减函数.C .在区间(4,5)上)(x f 是增函数.D .当4=x 时,)(x f 取极大值. 8.下列结论,不正确...的是( ) A .若命题p :R x ∈∀,1≥x ,则命题p ⌝:R x ∈∀,1<x . B .若p 是假命题,q 是真命题,则命题p ⌝与命题q p ∨均为真命题. C .方程122=+ny mx (m ,n 是常数)表示双曲线的充要条件是0<⋅n m .D .若角α的终边在直线x y =上,且00360360<≤-α,则这样的角α有4个.9.已知双曲线221y x m-=的虚轴长是实轴长的2倍,则实数m 的值是( ) A . 4 B .14 C .14- D .-4 10.已知△ABC 中,︒=∠30A ,AB ,BC 分别是23+,23-的等差中项与等比中项,则△ABC 的面积等于( )A .23 B .43 C .23或43 D .23或3 二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).11.设函数(]812,,1,()log ,(1,).xx f x x x -⎧∈-∞⎪=⎨∈+∞⎪⎩则满足41)(=x f 的x 值为________.12.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+=_____.13. 已知抛物线y 2=4x 的焦点为F,准线与x 轴的交点为M ,N 为抛物线上的一点,且满足MN NF 23=,则∠NMF______________. 14.已知圆C 的圆心是直线⎩⎪⎨⎪⎧x =ty =1+t (t 为参数) 与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为___________________.三、解答题 (本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知函数()2sin cos cos 2f x x x x =+(x ∈R ). (1)求()f x 的最小正周期和最大值. (2)若θ为锐角,且8f πθ⎛⎫+= ⎪⎝⎭,求tan 2θ的值.16.(本小题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?(2)在上述抽取的6人中选2人,求恰有一名女生的概率.(3)为了研究喜欢打蓝球是否与性别有关,计算出28.333K ≈,你有多大的把握认为是否喜欢打蓝球与性别有关? 附:(临界值表供参考)17.(本小题满分14分)如图,平行四边形ABCD 中,1=CD ,60=∠BCD ,且CD BD ⊥,正方形ADEF 和平面ABCD 成直二面角,H G ,是BE DF ,的中点.(1)求证:CDE BD 平面⊥. (2)求证://GH 平面CDE . (3)求三棱锥CEF D -的体积.18.(本小题满分14分)已知等差数列{}n a 的各项均为正数,31=a ,前n 项和为S n ,数列}{n b 是等比数列,122331,64,960.b b S b S ===且 (1)求数列{}{}n n a b 与的通项公式. (2)求证:4311121<+⋅⋅⋅++n S S S 对一切*N n ∈都成立.19.(本小题满分14分)已知抛物线22(0)y px p =>的焦 点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M. (1)求抛物线方程.(2)以M 为圆心,MB 为半径作圆M ,当(,0)K m 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.20.(本小题满分14分)已知函数2()3,()ln ,0,()()().a f x x g x x x a F x f x g x x=+-=+>=+其中(1)若12x =是函数()y F x =的极值点,求实数a 的值. (2)若函数()((0,3])y F x x =∈的图象上任意一点处切线的斜率52k ≤恒成立,求实数a 的取值范围.(3)若函数()[1,2]y f x =在上有两个零点,求实数a 的取值范围.21.(本小题满分14分)设⋅⋅⋅=⋅=71828.2,)(e e e x f x 是自然对数的底. (1)求曲线)(x f 在点),0(e M 处的切线方程;(2)设),()()(R k kx x f x g ∈-=试探究函数)(x g 的单调性; (3)若kx x f >)(总成立,求k 的取值范围.参考答案ABCAB ACAAC 11、3 12、3 13、30º 14、(x +1)2+y 2=2 15.解: (1)()2sin cos cos 2f x x x x =+sin 2cos 2x x =+ ……2分22x x ⎫=⎪⎪⎭…… 3分24x π⎛⎫=+ ⎪⎝⎭. …… 4分∴()f x 的最小正周期为22ππ=, . …… 6分(2) ∵8f πθ⎛⎫+= ⎪⎝⎭, 22πθ⎛⎫+= ⎪⎝⎭. …… 7分 ∴1cos 23θ=. …… 8分 ∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 2θ==. …… 10分∴sin 2tan 2cos 2θθθ==…… 12分16.解:(1)在喜欢打蓝球的学生中抽6人,则抽取比例为61305= ∴男生应该抽取12045⨯=人………………………………….4分 (2)在上述抽取的6名学生中, 女生的有2人,男生4人。
辽宁省大连市第二十高级中学2014-2015学年高二下学期期中考试(文)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.曲线2x y =在(1,1)处的切线方程是A. 230x y ++=B. 032=--y xC. 210x y ++=D. 012=--y x2.定义运算a b ad bc c d =- ,则符合条件1142i iz z -=+ 的复数z 为A.3i -B.13i +C.3i +D.13i -3.设xx y sin 12-=,则='y A .x x x x x 22sin cos )1(sin 2--- B .xx x x x 22sin cos )1(sin 2-+-C .x x x x sin )1(sin 22-+-D .xx x x sin )1(sin 22---4.设函数()x f x xe =,则A. 1x =为()f x 的极大值点B.1x =为()f x 的极小值点C. 1x =-为()f x 的极大值点D. 1x =-为()f x 的极小值点 5.对于R 上可导的任意函数f (x ),若满足(x -1))(x f '≥ 0,则必有A. f (0)+ f (2)< 2 f (1)B. f (0)+ f (2)≤ 2 f (1)C. f (0)+ f (2)≥ 2 f (1)D. f (0)+ f (2)> 2 f (1) 6.函数y = xcos x -sin x 在下面哪个区间内是增函数A.(2π,23π) B.(π,π2) C.(23π,25π) D. (π2,π3) 7.函数)cos (sin 21)(x x e x f x +=在区间]2,0[π的值域为 A .]21,21[2πe B .)21,21(2πe C .],1[2πe D .),1(2πe8. 函数()y f x =的图象如图所示,则导函数()y f x '=的图象可能是9.若对可导函数()f x ,恒有()()0f x xf x '+>,则()f xA.恒大于0B.恒小于0C.恒等于0D.和0的大小关系不确定 10. 若2a >,则方程321103x ax -+=在(0,2)上恰有 A. 0个根 B. 1个根 C. 2个根 D. 3个根 11.f(x)=x 3-ax -1,若f(x)在(-1,1)上单调递减,则a 的取值范围为A .a≥3B .a>3C .a≤3D .a<312.已知定义在R 上的奇函数()f x ,若()f x 的导函数()f x '满足2()1,f x x '<+则不等式31()3f x x x <+的解集为 A. 1[,)3+∞ B. 1[0,)3C.()0,+∞D.[),3-∞第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上) 13.设456121Z i i i i =++++,456122Z i i i i =⋅⋅⋅⋅,则,1Z ,2Z 关系为________.14.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.15.已知x R ∈,奇函数32()f x x ax bx c =--+在 [1,)+∞上单调,则字母,,a b c 应满足的条件是________.16.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是________. 三、解答题(本大题满分70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知1Z i =+,(1)设234Z Z ω=+-,求||ω;(2)若2211Z aZ bi Z Z ++=+-+,求实数a,b 的值.18.(本小题满分12分)若函数24()a 2ln 3f x x x x =+-在1x =处取得极值. (1)求a 的值;(2)求函数()f x 的单调区间及极值.19.(本小题满分12分)某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计(满分150分),其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:(1)根据以上两个直方图完成下面的22⨯列联表:(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?22()K ()()()()n ad bc a b c d a c b d -=++++20.(本小题满分12分)已知函数3211()ln ,()32f x xg x x x mx n ==+++,直线l 与函数(),()f x g x 的图像都相切于点(1,0),(1)求直线l 的方程及()g x 的解析式; (2)求函数()()()h x f x g x '=-的极大值 .21.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表:3 4 5 6 78 9 667889969 3 1 9 01已知721280i i x ==∑,72145309i i y ==∑,713487i i i x y ==∑, 1221ni ii ni i x y x nxb ==∧-=-∑∑(1)求x y ,; (2)画出散点图;(3)判断纯利y 与每天销售件数x 之间是否线性相关,如果线性相关,求出回归方程.(保留两位有效数字)22.(本小题满分12分) 已知(),P x y 为函数1ln y x =+图象上一点,O 为坐标原点,记直线OP 的斜率()k f x =.(I )若函数()f x 在区间1,3m m ⎛⎫+ ⎪⎝⎭()0m >上存在极值,求实数m 的取值范围;(II )当 1x ≥时,不等式()1tf x x ≥+恒成立,求实数t 的取值范围 .高二数学试卷答案(文)一、1-6 、DAADCB ADABAC二、13 、 1Z =2Z 14 、 (0,)+∞ 15 、0,3a c b ==≤ 16 、[6,2]--17、 (1)||ω=(2)1,0a b =-= 18. 解:(1)f′(x)=2ax +2-43x ,由f′(1)=2a +23=0,得a =-13.(2) 221424264()2ln (0),()2.33333x x f x x x x x f x x x x-+-'=-+->=-+-= 由f′(x)=0,得x =1或x =2.①当f′(x)>0时1<x <2;②当f′(x)<0时0<x <1或x >2. 当x 变化时f′(x),f(x)的变化情况如下表:因此,f(x)的单调递增区间是(1,2),单调递减区间是(0,1),(2,+∞). 函数的极小值为f(1)=53, 极大值为f(2)=83-43ln 2.19、解:(1)-----------------(4分)(2)由(1)中表格的数据知, K2=()250132071020302723⨯⨯-⨯⨯⨯⨯≈4.844. ---------(8分) ∵K2≈4.844≥3.841,∴有95%的把握认为学生的数学成绩与性别之间有关系.-----(12分)20.解:直线l 是函数(x)f 在点(1,0)处的切线,故其斜率(1)1,k f '==∴直线l 的方程为1y x =-,又直线l 与()g x 的图像相切,且切于点(1,0),3211()32g x x x mx n ∴=+++,在点(1,0)处的导数值为1,1(1)01g (1)16m g n =-⎧=⎧⎪∴⇒⎨⎨'==⎩⎪⎩32111()326g x x x x ∴=+-+。
(2)由(1)得2()()()ln 1(x 0),h x f x g x x x x '=-=--+>112(2x 1)(x 1)()21,x x h x x x x x ---+'∴=--==-令()0h x '=得12x = 或1x =-(舍),当102x <<时,()0h x '>,即()h x 在1(0,)2上单调递增;当12x >时,()0h x '<即(x)h 在1(,)2+∞上单调递减,因此,当12x =时,()h x 当取得极大值,max 1111()()ln ln 2.2244h x h ∴==+=-……………6分 21. 解:(1)345678967x ++++++==,6669738189909179.867y ++++++=≈;……………4分(2)略; ……………3分(3)由散点图知,y 与x 有线性相关关系,……………1分设回归直线方程:y bx a =+,5593487761337 4.7528073628b -⨯⨯===-⨯,78.866 4.7551.36a =-⨯=.∴回归直线方程 4.7551.36y x =+. ……………4分22解:(Ⅰ)由题意()1ln xk f x x+==,0x >所以()21ln ln x x f x x x '+⎛⎫'==- ⎪⎝⎭… 当01x <<时,()0f x '>;当1x >时,()0f x '<.所以()f x 在()0,1上单调递增,在()1,+∞上单调递减. 故()f x 在1x =处取得极大值.因为函数()f x 在区间1,3m m ⎛⎫+ ⎪⎝⎭(其中0m >)上存在极值,所以01113m m <<⎧⎪⎨+>⎪⎩得213m <<. 即实数m 的取值范围是213⎛⎫⎪⎝⎭,. …………………………4分 (Ⅱ)由()1t f x x ≥+得()()11ln x x t x ++≤令()()()11ln x x g x x ++=则()2ln x xg x x -'=. 令()ln h x x x =- 则()111=xh x x x-'=- 因为1,x ≥所以()0h x '≥,故()h x 在[)1+∞,上单调递增. 所以()()110h x h ≥=>,从而()0g x '>()g x 在[)1+∞,上单调递增, ()()12g x g ≥=所以实数t 的取值范围是(],2-∞. ……………………12分。