高二数学试题:人教版高二数学期中考试卷
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
高二数学期中考试试卷一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知向量a=(3,-1),向量b=(2,1),则向量a与向量b的点积为:A. 4B. 3C. 2D. 13. 若方程x^2-6x+8=0的两个根为x1和x2,则x1+x2的值为:A. 4B. 6C. 8D. 104. 函数y=2^x的反函数为:A. y=log2xB. y=2^(1/x)C. y=1/(2^x)D. y=2^(-x)5. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形6. 若函数f(x)=x^3-3x+1,则f'(x)的值为:A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3x^2+17. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 若直线l的方程为y=2x+1,则该直线的斜率为:A. 1B. 2C. 3D. 49. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π10. 已知等比数列{an}的首项a1=2,公比q=3,则a3的值为:A. 6B. 18C. 54D. 162二、填空题(每题4分,共20分)11. 已知数列{an}的通项公式为an=2n-1,则a5的值为______。
12. 若函数f(x)=x^2-6x+8,则f(x)的最小值为______。
13. 已知向量a=(1,2),向量b=(3,-1),则向量a与向量b的叉积为______。
14. 函数y=x^2+2x+1的顶点坐标为______。
15. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为______。
三、解答题(每题10分,共50分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x),并求出f'(x)=0的解。
高二期中考试试卷数学一、选择题(每题4分,共40分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(-1) \)的值为:A. 6B. 4C. 2D. -22. 已知等差数列\( \{a_n\} \)的首项为2,公差为3,求第10项的值:A. 37B. 38C. 39D. 403. 圆的方程为\( (x-3)^2 + (y-4)^2 = 25 \),求圆心坐标:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)4. 若\( \sin \alpha + \cos \alpha = \sqrt{2} \),求\( \tan \alpha \)的值:A. 1B. -1C. 0D. 无法确定5. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值:A. -1B. -2C. 1D. 26. 函数\( y = \ln(x) \)的图像在点(1,0)处的切线斜率是:A. 0B. 1C. 2D. -17. 已知\( \cos \theta = \frac{1}{3} \),求\( \sin \theta \)的值(假设\( \theta \)在第一象限):A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{2}}{9} \)C. \( -\frac{2\sqrt{2}}{3} \)D. \( -\frac{2\sqrt{2}}{9} \)8. 抛物线\( y^2 = 4x \)的焦点坐标是:A. (1, 0)B. (2, 0)C. (0, 2)D. (0, -2)9. 根据题目所给的二元一次方程组\( \begin{cases} x + y = 3 \\ 2x - y = 1 \end{cases} \),求\( x \)的值:A. 1B. 2C. 3D. 无法确定10. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( xy = 6 \),求\( x + y \)的值:A. 3B. 6C. 8D. 10二、填空题(每题3分,共15分)11. 若\( a \),\( b \),\( c \)成等差数列,且\( a + b + c = 6 \),则\( b \)的值为______。
河北省博野中学高二数学第二学期期中考试卷人教版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷(选择题共60分)一、选择题本大题共12 小题,每题 5 分,共 60 分,在每题给出的四个选项中只有一个是切合题目要求的。
1.已知直线a、 b、 c 及平面,则a // b的充足不用要条件是()A.a //且b //B.a c且b cC.a、b与平面所成的角相等D.a // c且b // c2.有三个平面、、, 以下命题中正确的选项是()A.若、、两两订交,则有三条交线B.若,,则//C.若,a, b ,则a bD.若//,,则3.长方体ABCD- A1B1 C1 D1的一条对角线AC1与棱 AA1所成角为60°,与棱 AB所成角为 45°,则对角线AC1与棱 AD所成的角是()A .30°B. 60°C. 45°D. 90°4. Rt△ ABC所在平面为,两直角边分别为6、 8,平面α外一点 P 到 A, B, C 三点的距离都是 13,则点 P 到平面的距离是()A.5B. 12C.10D.15.高二年级三个班去甲、乙、丙、丁四个工厂进行社会实践活动,每个班级去哪个工厂可以自行选择,但此中甲工厂一定有班级去实践,则不一样的选择方案有()A.18 种;B. 28 种;C.37 种;D.48 种6.设(12x)6a0a1x a2 x2a6 x6,则 | a0 | | a1 || a6 |的值为()A.1B. 64C.243D.7297.边长为 1 的正三角形 ABC中, AD⊥ BC于 D,沿 AD折成直二面角B-AD-C 后,则点A到 BC 的距离为()A. 1B.2C.14D.3 2428.正三棱柱 ABC-A1B1C1中,二面角C1-AB-C 为 45o,且 AB=2 ,则此三棱柱的体积为()A.3B. 3C.3D.6 23专心爱心专心110 号编写1A .1B .1C .1D .15670336 42010.从 6 人中选 4 人分别到巴黎、伦敦、悉尼、莫斯科四个城市旅行,要求每个城市有一人游览,每人只旅行一个城市,且这 6 人中甲、乙两人不去巴黎旅行,则不一样的选择方案共有()A . 240 种B . 300 种C . 144 种D .96 种11.将一个各个面上均涂有颜色的正方体,锯成64 个相同大小的小正方体,从这些小正方体中任取一个,此中恰巧有 2 面涂有颜色的概率是()A .9B .27C .3D .1116648 3212.将半径都为 1 的 4 个钢球完整装入形状为正四周体的容器里,这个正四周体的高的最小值为()A .3 2 6 B .2+2 6C .4+2 6D .43 263333第Ⅱ卷(非选择题共90分)二、填空题本大题共 4 小题,每题4 分,共 16 分 .13.将 9 个人(含甲、乙)均匀分红三组, 甲、乙分在同一组, 则不一样分组方法的种数为 .14.正四棱锥 S - ABCD 中,∠ ASB = 30°, SA = 2,有一个小虫子从A 点出发沿棱锥的侧面爬行回到 A 点时所走的最短距离 .15.A 城市位于北纬30 ,东经 140 ,B 城市位于北纬 30 ,西经 160 ,设地球半径为 R , 则 A ,B 两地间的球面距离是.16.若以连续扔掷两次骰子分别获得的点数m 、n 作为点 P 的坐标,则点 P 落在直线 x +y =5 下方的概率是 ________.三、解答题本大题共 6 小题,共 74 分,解答应有证明或演算步骤.17.(本小题满分 12 分)D 1C 11111中,在棱长为 1 的正方体 ABCD — A B C D(1)求证:平面 BB 1D 1D ⊥平面 AD 1C ; A 1B 1(2)求直线 AD 1 与直线 BD 所成的角 .DCAB已知(3331 )5 的睁开式中的常数项 a ) n睁开式的各项系数之和等于( 4 ba5b求 (331项的二项式系数a )n 睁开式中 aa19.(本小题满分 12 分)已知 PA ⊥矩形 ABCD 所在平面, M 、 N 分别是 AB 、 PC 的中点 .( 1)求证: MN ⊥ CD ;( 2)若∠ PDA=45°,求证 MN ⊥面 PCD .PNM A DBC20. 一个袋中装有大小相同的 2 个白球和 3 个黑球。
2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。
A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。
2. 设函数f(x)=3x+2,则f(-1)的值是_________。
3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。
4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。
5. 若正方形的边长为x+2,其面积是_________。
6. 已知平行四边形的底边长为5,高为3,其面积是_________。
7. 若正方形的对角线长为10,边长是_________。
8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。
9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。
10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。
三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。
2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。
2022-2023学年高中高二上数学期中考试学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:110 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 已知集合,,则( )A.B.C.D.2. 函数的定义域为A.B.C.D.3. 某几何体的三视图如图所示,则该几何体的体积为( )A.B.A ={x ∈Z||x|<5}B ={x|≥4}2x A ∩B =(2,5)[2,5){2,3,4}{3,4,5}y =12+x −x 2−−−−−−−−−√lg(2x −2)()(1,)∪(,4]3232(1,4][−3,4][−3,)∪(,4]3232434C.D.4. 乔家大院是我省著名的旅游景点,在景点的一面墙上,雕刻着如图所示的浮雕,很好地展现了我省灿烂辉煌的“晋商文化”.某陶艺爱好者,模仿着烧制了一个如图的泥板作品,但在烧制的过程中发现,直径为的作品烧制成功后直径缩小到.若烧制作品的材质、烧制环境均不变,那么想烧制一个体积为的正四面体,烧制前的陶坯棱长应为( )A.B.C.D.5. 命题:,的否定是( )A.,B.,C.,D.,6. “”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7. 下列命题中,真命题是( )A.函数=的周期为B.,223(1)(2)12cm 9cm 18c 2–√m 36cm7cm8cm9cm∃>0x 0−−2>0x 20x 0∀x ≤0−x −2≤0x 2∃≤0x 0−−2≤0x 20x 0∀x >0−x −2≤0x 2∃>0x 0−−2≤0x 20x 0x <2lg(x −1)<0y sin |x |2π∀x ∈R >2x x 2C.“=”的充要条件是“”D.函数=是奇函数 8. 在中,角,,所对的边是,,,若,且,则等于( )A.B.C.D.9. 等比数列中,若,,则其前项的积为( )A.B.C.D.10. 瑞士数学家欧拉()年在其所著的《三角形的几何学》一书中提出:任意三角形的外心﹑重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,其欧拉线方程为,则顶点的坐标可以是( ).A.B.C.D.11. ""是"方程 表示的曲线为椭圆"的 A.充分不必要条件B.必要不充分条件C.充要条件a +b 0y ln△ABC A B C a b c c ⋅cos B =b ⋅cos C cos A =23sin B 6–√63–√2130−−√6{}a n +=a 1a 294+=18a 4a 556481192243LeonhardEuler 1765△ABC A (−4,0),B (0,4)x −y +2=0C (2,0)(0,2)(−2,0)(0,−2)n >m >0+=1x 2m y 2n()D.既不充分也不必要条件12. 在四棱锥中,已知平面平面, 是以为底边的等腰三角形,是矩形,且,则四棱锥的外接球的表面积为 ( A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. 已知异面直线,的方向向量分别为,,若异面直线,所成角的余弦值为,则的值为________.14. 设为等差数列的前项和,,则________,若,则使得不等式成立的最小整数________.15. 已知平面向量, , ,若,则________.16. 已知的顶点,在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长是________.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17. 在直角坐标系中,以原点为圆心的圆与直线相切.(1)求圆的方程;(2)若已知点,过点作圆的切线,求切线的方程.18. 已知向量.(1)求向量与的夹角;(2)若,求实数的值. 19. 在平面四边形中,,,,.P −ABCD ABCD ⊥PAD △PAD AD ABCD AB =AP =2AD =2P −ABCD O )π12415π3115π25615π6415m n =(2,−1,1)a →=(1,λ,1)b →m n 6–√6λS n {}a n n +a 6a 7=1S 12=<0a 7<0S n n==(2,λ)a →=(−3,6)b →=(4,2)c →//a →b →(−)⋅=a →c →b →△ABC B C +=1x 23y 2A BC △ABC xOy O x −y −4=03–√O P(3,2)P O θλABCD ∠BAD =∠BCD =90∘AB =5BC =8AC =7(1)∠ADC求的大小;求的长度.20. 已知两直线:,,当为何值时,与,(1)相交,(2)平行,(3)重合,(4)垂直. 21. 已知命题:函数且 在定义域上单调递增;命题:不等式对任意实数恒成立.若为真命题,求实数的取值范围;若为真命题,求实数的取值范围.22. 已知数列的前项和为,且,,成等差数列.求数列的通项公式;数列满足,求数列的前项和.(1)∠ADC (2)CD L 1(m +3)x +5y =5−3m:2x +(m +6)y =8L 2m L 1L 2p y =(x +1)(a >0,log a a ≠1)q (a −2)+2(a −2)x +1>0x 2x (1)q a (2)“p ∧(¬q)”a {}a n n S n 2a n S n (1){}a n (2){}b n =b n ++⋯+log 2a 1log 2a 2log 2a n {}1b n n Tn参考答案与试题解析2022-2023学年高中高二上数学期中考试一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】C【考点】交集及其运算【解析】据题意,分析可得,,,进而求其交集可得答案.【解答】解:集合,,则.故选.2.【答案】A【考点】函数的定义域及其求法【解析】根据条件可得解不等式可得结果.【解答】解:由已知可根据条件可得解不等式可得.故选.A ={−4,−3,−2,−1,0,1,2,3,4}B ={x|x ≥2}A ={x ∈Z||x|<5}={−4,−3,−2,−1,0,1,2,3,4}B ={x|≥4}={x|x ≥2}2x A ∩B ={2,3,4}C 12+x −≥0x 22x −2>02x −2≠112+x −≥0,x 22x −2>0,2x −2≠1,{x |1<x ≤4且x ≠}32A3.【答案】A【考点】由三视图求体积【解析】由三视图可知,该几何体为正四棱锥,再求体积即可.【解答】解:由已知中几何体的三视图,可得该几何体为正四棱锥,且底面正方形边长为,高为,所以该几何体的体积为.故选.4.【答案】C【考点】柱体、锥体、台体的体积计算【解析】设烧制后正四面体的边长为,由题意得到,,求出,再利用烧制前后边长的变化,即可得到答案.【解答】解:设烧制后正四面体的边长为,由题意得到,,解得.∵在烧制的过程中发现,直径为 的作品烧制成功后直径缩小到.那么烧制前正四面体陶坯棱长为.故选.5.【答案】C【考点】21V =×2×2×1=1343A acm ==18V 正四面体2–√12a 32–√a acm ==18V 正四面体2–√12a 32–√a =612cm 9cm 6×=8cm 129C命题的否定【解析】命题 , 为特称量词命题,其否定为全称量词命题,写出其否定即可.【解答】解:命题,为特称量词命题,所以其否定为全称量词命题,其否定为,.故选.6.【答案】B【考点】必要条件、充分条件与充要条件的判断【解析】由,可得,再利用集合之间的包含关系求充分必要条件即可.【解答】解:由,可得,解得,因为,所以“”是“”的必要不充分条件.故选.7.【答案】D【考点】命题的真假判断与应用【解析】分析函数的周期性,可判断;举出反例=,可判断;根据充要条件的定义,可判断;分析函数的奇偶性,可判断.【解答】函数=不是周期函数,故是假命题;当=时=,故是假命题;“=”的必要不充分条件是“”,故是假命题;∃>0x 0−−2>0x 20x 0∃>0x 0−−2>0x 20x 0∀x >0−x −2≤0x 2C lg(x −1)<00<x −1<1lg(x −1)<00<x −1<11<x <2{x|x <2} {x|1<x <2}x <2lg(x −1)<0B A x 2B C D y sin |x |A x 22x x 2B a +b 0C函数==的定义域关于原点对称,且满足=,故函数是奇函数,即是真命题.8.【答案】D【考点】正弦定理两角和与差的正弦公式诱导公式半角公式【解析】已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式整理后得到,用表示出,代入原式计算即可得到结果.【解答】解:在中,,利用正弦定理化简得:,即,∴,即,则.故选.9.【答案】D【考点】等比数列的性质【解析】此题暂无解析【解答】解:由题意,得,解得,又,y f(x)ln (−2,2)f(−x)−f(x)f(x)D B =C A B △ABC c cos B =b cos C sin C cos B =sin B cos C sin C cos B −sin B cos C =sin(C −B)=0C −B =0C =B sin B =sin =cos =π−A 2A 21+cos A 2−−−−−−−−√=30−−√6D ==8+a 4a 5+a 1a 2q 3q =2+=+2=a 1a 2a 1a 1943所以,所以.故选.10.【答案】A,D【考点】三角形五心【解析】此题暂无解析【解答】解:设的垂直平分线为,的外心为欧拉线方程为与直线的交点为∴,①由重心为,代入欧拉线方程,得,②由①②可得或.故选.11.【答案】A【考点】椭圆的定义必要条件、充分条件与充要条件的判断【解析】此题暂无解析【解答】解:若方程表示的曲线为椭圆,则 ,,且,故" "是“方程"表示的曲线为椭圆”的充分不必要条件.=a 134==×=243a 1a 2a 3a 4a 5a 51q 10()345210D C (x,y),AB y =−x △ABC x −y +2=0y =−x M (−1,1),MC|=,∴+=1010−−√(x +1)2(y −1)2A (−4,0),B (0,4),△ABC (,)x −43y +43x −y +2=0x −y −z =0x =2,y =0x =0,y =−2AD +=1x 2m y 2n m >0n >0m ≠n n >m >0+=1x 2m y 2nA故选.12.【答案】A【考点】球内接多面体球的表面积和体积【解析】此题暂无解析【解答】解:如图,将四棱锥补为一个三棱柱,∵是以为底边的等腰三角形,,∴的外接圆的半径为,∴球的半径的平方,∴球的表面积为.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】【考点】数量积表示两个向量的夹角A P −ABCD PAD −QBC △PAD AD AP =2AD =2△PAD 415−−√O =+1=R 216153115O S =4π=R 2124π15A 76【解析】此题暂无解析【解答】略14.【答案】,【考点】等差数列的前n 项和等差数列的性质【解析】根据题意,由等差数列的前项和公式和性质可得==,代入数据可得第一空答案,同理可得,即可得第二空答案.【解答】解:因为,所以;因为,所以,所以为递减数列,又,,所以.故答案为:;.15.【答案】【考点】平面向量的坐标运算平面向量数量积的运算【解析】根据,求得 ,进而求得的坐标,然后利用数量积求解.【解答】解:因为向量, ,且,613n S 12<0S 13+=1a 6a 7=6(+)=6S 12a 6a 7<0a 7>0a 6{}a n =6>0S 12=13<0S 13a 7=13n min 613−30//a →b →λ−a →c →=(2,λ)a →=(−3,6)b →//a →b →所以,所以.故答案为:.16.【答案】【考点】椭圆的定义【解析】设另一个焦点为,根据椭圆的定义可知,最后把这四段线段相加求得的周长.【解答】解:椭圆中,.设另一个焦点为,则根据椭圆的定义可知,.∴三角形的周长为:.故答案为:.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17.【答案】解:(1)设圆的方程为,由题可知,半径即为圆心到切线的距离,故,∴圆的方程是.(2)∵,∴点在圆外.显然,斜率不存在时,直线与圆相离.故可设所求切线方程为,即.又圆心为,半径,而圆心到切线的距离,即,∴或,故所求切线方程为或.【考点】直线与圆相交的性质圆的切线方程−=(−2,−6)a →c →(−)⋅=−30a →c →b →−3043–√F |AB |+|BF |=2a|AC |+|FC |=2a △ABC +=1x 23y 2a =3–√F |AB |+|BF |=2a =23–√|AC |+|FC |=2a =23–√|AB |+|BF |+|AC |+|FC |=43–√43–√+=x 2y 2r 2r ==244–√+=4x 2y 2|OP |==>29+4−−−−√13−−√P y −2=k(x −3)kx −y +2−3k =0O(0,0)r =2d ==2|2−3k |+1k 2−−−−−√|3k −2|=2+1k 2−−−−−√k =125k =012x −5y −26=0y −2=0(1)根据半径即为圆心到切线的距离求得半径的值,可得所求的圆的方程.(2)由题意可得点在圆外,用点斜式设出切线的方程,再根据圆心到切线的距离等于半径,求得斜率的值,可得所求切线方程.【解答】解:(1)设圆的方程为,由题可知,半径即为圆心到切线的距离,故,∴圆的方程是.(2)∵,∴点在圆外.显然,斜率不存在时,直线与圆相离.故可设所求切线方程为,即.又圆心为,半径,而圆心到切线的距离,即,∴或,故所求切线方程为或.18.【答案】∵向量,∵这两个向量的夹角为,,则===,∴=.若,则(+)-•-,∴=.【考点】数量积判断两个平面向量的垂直关系数量积表示两个向量的夹角【解析】此题暂无解析【解答】此题暂无解答19.【答案】..r P k +=x 2y 2r 2r ==244–√+=4x 2y 2|OP |==>29+4−−−−√13−−√P y −2=k(x −3)kx −y +2−3k =0O(0,0)r =2d ==2|2−3k |+1k 2−−−−−√|3k −2|=2+1k 2−−−−−√k =125k =012x −5y −26=0y −2=0θθ∈[0cos θθ⋅(λ+(λ−7)λ余弦定理正弦定理【解析】此题暂无解析【解答】此题暂无解答20.【答案】解:(1)当时,直线方程为,方程为,显然两直线相交;当时,由解得,,所以,时直线与相交.(2)由(1)知当时,直线与相交;当时,由得(舍去),或,所以时直线与平行.(3)由得,所以时直线与重合.(4)由 得,所以时直线与垂直.【考点】两条直线平行的判定两条直线垂直的判定【解析】(1)两直线与相交;(2)两直线与平行;(3)两直线与重合;(4)两直线与垂直.【解答】解:(1)当时,直线方程为,方程为,显然两直线相交;当时,由解得,,所以,时直线与相交.m =−6L 1−3x +5y =23L 2x =4m ≠−6≠m +325m +6m ≠−1m ≠−8m ≠−1m ≠−8L 1L 2m =−6L 1L 2m ≠−6=≠m +325m +65−3m 8m =−1m =−8m =−8L 1L 2==m +325m +65−3m 8m =−1m =−1L 1L 22(m +3)+5(m +6)=0m =−367m =−367L 1L 2ax +by +c =0mx +ny +d =0⇔≠(m ≠0,n ≠0)a m b n ax +by +c =0mx +ny +d =0⇔=≠(m ≠0,n ≠0,d ≠0)a m b n c d ax +by +c =0mx +ny +d =0⇔==(m ≠0,n ≠0,d ≠0)a m b n c d ax +by +c =0mx +ny +d =0⇔am +bn =0m =−6L 1−3x +5y =23L 2x =4m ≠−6≠m +325m +6m ≠−1m ≠−8m ≠−1m ≠−8L 1L 2当时,由得(舍去),或,所以时直线与平行.(3)由得,所以时直线与重合.(4)由 得,所以时直线与垂直.21.【答案】解:因为命题为真命题,所以或得,即实数的取值范团是.因为 " "为真命题,故真假.因为命题:函数 在定义域上单调递增,所以 ,因为命题为假,由可知, 或 ,所以 即,所以实数的取值范围为 .【考点】复合命题及其真假判断【解析】此题暂无解析【解答】解:因为命题为真命题,所以或得,即实数的取值范团是.因为 " "为真命题,故真假.因为命题:函数 在定义域上单调递增,所以 ,因为命题为假,由可知, 或 ,所以 即,所以实数的取值范围为 .22.【答案】解:,,成等差数列,可得,m ≠−6=≠m +325m +65−3m 8m =−1m =−8m =−8L 1L 2==m +325m +65−3m 8m =−1m =−1L 1L 22(m +3)+5(m +6)=0m =−367m =−367L 1L 2(1)q a =2{a −2>0,Δ=4(a −2−4(a −2)×1<0,)22≤a <3[2,3)(2)p ∧(¬q)p q p y =(x +1)log a a >1q (1)a <2a ≥3{a <2或a ≥3,a >1,a ∈(1,2)∪[3,+∞)a (1,2)∪[3,+∞)(1)q a =2{a −2>0,Δ=4(a −2−4(a −2)×1<0,)22≤a <3[2,3)(2)p ∧(¬q)p q p y =(x +1)log a a >1q (1)a <2a ≥3{a <2或a ≥3,a >1,a ∈(1,2)∪[3,+∞)a (1,2)∪[3,+∞)(1)2a n S n 2=a n 2+S n化为,可得数列为首项为,公比为的等比数列,即有,.,,,即数列的前项和.【考点】等差中项数列的求和等比数列的通项公式【解析】(1)由题意可得=,运用数列的递推式:当=时,=,时,=,结合等比数列的定义和通项公式,即可得到所求通项;(2)求得==,,,由数列的裂项相消求和,化简整理,可得所求和.【解答】解:,,成等差数列,可得,当时,,解得,时,,化为,可得数列为首项为,公比为的等比数列,即有,.,,,即数列的前项和.n n n−1n n−1=a n 2a n−1{}a n 22=a n 2n n ∈N ∗(2)=log 2a n =log 22n n =b n ++⋯+log 2a 1log 2a 2log 2a n =1+2+⋯+n =n(n +1)12==2(−)1b n 2n(n +1)1n 1n +1{}1b n n =T n 2(1−+−+⋯+−)1212131n 1n +1=2(1−)=1n +12n n +12a n 2+S n n 1a 1S 1n ≥2a n −S n S n−1log 2a n log 22n n =n(n +1)b n 12==2(−)1b n 2n(n +1)1n 1n +1(1)2a n S n 2=a n 2+S n n =1=a 1=S 12−2a 1=a 12n ≥2=a n −=S n S n−12−2−2+2a n a n−1=a n 2a n−1{}a n 22=a n 2n n ∈N ∗(2)=log 2a n =log 22n n =b n ++⋯+log 2a 1log 2a 2log 2a n =1+2+⋯+n =n(n +1)12==2(−)1b n 2n(n +1)1n 1n +1{}1b n n =T n 2(1−+−+⋯+−)1212131n 1n +1=2(1−)=1n +12n n +1。
C 1D 1B 1A 1CDABPMC1D1CA1ABDB1高二下期中考试数学试题(有答案)-(新课标人教版)一、选择题(本题共10小题,每小题4分,共40分)1. 抛物线28y x 的焦点坐标是( ▲ )A (—2,0)B (0,—2)C (2,0) D(0,2)2、已知点(3,1,4)A ,则点A 关于原点对称的点的坐标为( ▲ )A .)4,1,3(B .)4,1,3(C .)4,1,3(D .(3,1,4)3、椭圆22221124xymm的焦距是( ▲)A .4B .2 2C .8D .与m 有关4、下列有关命题的说法正确的是(▲ )A .命题“若1,12xx 则”的否命题为:“若1,12xx则”;B .“1x”是“0652x x ”的必要不充分条件;C .命题“若y x,则y x sin sin ”的逆否命题为假命题;D .命题“若022yx,则y x 、不全为零”的否命题为真命题.5、设双曲线22221(0,0)x y abab的左、右焦点分别是1F 、2F ,过点2F 的直线交双曲线右支于不同的两点M 、N .若△1MNF为正三角形,则该双曲线的离心率为( ▲ )A .6B .3C .2D .336、不等式|25|7x成立的一个必要而不充分条件是( ▲ )A .0xB .6xC .61x x或D .1x 7、正方体1111A B C D A B C D 中,E 是棱11A B 的中点,则1A B 与1D E 所成角的余弦值( ▲ )A .510B .1010C .55D .1058、如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC=2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( ▲ )A.63B.265 C.155D.105(第8题)(第9题)9、如图,正方体1111A B C DA B C D 的棱长为2,点P是平面A B C D上的动点,点M 在棱A B上,且13A M,且动点P到直线11A D 的距离与点P到点M的距离的平方差为4,则动点P的轨迹是( ▲ )A .圆B .抛物线C .双曲线D .直线10、过M(-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为( ▲ )A .-12B .-2 C.12D .2二、填空题(本题共7小题,每小题4分,共28分)11、命题“存在实数x ,使1x”的否定是 .12、已知点P 到点(3,0)F 的距离比它到直线2x的距离大1,则点P 满足的方程为.13、M 是椭圆221259x y 上的点,1F 、2F 是椭圆的两个焦点,1260F M F ,则12F M F 的面积等于.14、已知椭圆C :2213xy,斜率为1的直线l 与椭圆C 交于,A B 两点,且322A B,则直线l 的方程为.15、在正三棱柱ABC-A 1B 1C 1中,若AB=2,A A 1=1,则点A 到平面A 1BC 的距离为.16、已知向量(0,1,1)a ,(4,1,0)b,||29a b 且0,则=.17、抛物线22x y上两点),(11y x A 、),(22y x B 关于直线m xy 对称,且2121x x ,则m 等于三、解答题(本题共5小题,共52分)18、(本题满分8分)已知双曲线与椭圆1244922yx共焦点,且以x y34为渐近线,求双曲线方程.19、(本题满分10分)设命题:p “对任意的2,2x x xa R ”,命题:q “存在x R ,使2220xax a”。
高二期中考试(数学)(考试总分:100 分)一、 单选题 (本题共计10小题,总分40分)1.(4分)1.已知集合{}34,5A =,,{}4,5,6B =,则AB =A .{}3B .{}4,5C .{}34,5,D .{}34,5,6,2.(4分)2.圆22240x y x y +-+=的圆心坐标是A .(1,2)B .(1-,2)C .(1,2-)D .(1-,2-)3.(4分)3.已知向量(,1)a x =-,(4,2)b =,且a b ,则x 的值是A .2B .12 C .12- D . 2- 4.(4分)4.若运行右图的程序,则输出的结果是A .15B .4C .11D .75.(4分)5.函数()(1)x f x a =-在R 上是减函数,则a 的取值范围是A .a >1B .0<a <1C .1<a <2D .·a >26.(4分)6.某学校高一、高二、高三年级的学生人数分别为300,200.400,为了了解学生的课业负担情况,该校采用分层抽样的方法,从这三个年级中抽取18名学生进行座谈,则高一、高二、高三年级抽取人数分别是A .6.4.8B .6,6,6C .5,6,7 D·4,6,87.(4分)7.如图4所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为( ) A 、54 B 、53 C 、21 D 、528.(4分)8.不等式(1)(2)x x --≥0的解集是A .{}12x x ≤≤B .{}12x x <<C .{}12x x x ≤≥或D .{}12x x x <>或9.(4分)9.如果一个几何体的正视图是矩形,则这个几何体不可能是A .正方体B .正三棱柱C .圆柱D .圆锥10.(4分)10.已知实数x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则目标函数2z x y =+的最大值为A .0B .4C .3D .5二、 填空题 (本题共计5小题,总分20分) 11.(4分)11.已知cos (0,)2παα=∈,则sin(2)______πα+=· 12.(4分)12.直线l 过点(0,2)且与直线1x =垂直,则l 的方程为____________。
人教版高二上学期期中考试数学试题(一) (本卷满分150分,考试时间120分钟)测试范围:选择性必修第一册:第一章、第二章、第三章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知两个非零向量)(111z y x a ,,=,)(222z y x b ,,=,则这两个向量在一条直线上的充要条件是( )。
A 、||||b b a a ::= B 、212121z z y y x x == C 、0212121=++z z y y x x D 、存在非零实数k ,使b k a =2.已知焦点在x 轴上的双曲线的焦距为32,焦点到渐近线的距离为2,则双曲线的方程为( )。
A 、1222=-y xB 、1222=-y xC 、1222=-x y D 、1222=-x y3.若直线m my x +=+2与圆012222=+--+y x y x 相交,则实数m 的取值范围为( )。
A 、)(∞+-∞, B 、)0(,-∞ C 、)0(∞+, D 、)0()0(∞+-∞,, 4.点)24(-,P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )。
A 、1)1()2(22=++-y x B 、4)1()2(22=++-y x C 、1)1()2(22=-++y x D 、4)2()4(22=-++y x5.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。
A 、59 B 、1029 C 、518 D 、5296.已知椭圆C :12222=+b y a x (0>>b a )的左焦点1F ,过点1F 作倾斜角为 30的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( )。
A 、21 B 、22 C 、43 D 、237.已知点1F 是抛物线C :py x 22=的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F 、2F 为焦点的双曲线上,则双曲线的离心率为( )。
莆田华侨中学2022-2023学年下学期期中考试高二数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列导数运算正确的是()A.B.()121x x-'=11ln 222x x '⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦C. D. ()cos sin x x '=()1ln 1x x x'+=+【答案】D 【解析】【分析】利用求导公式和法则逐个分析判断即可【详解】因为,,,, ()121x x -'=-11ln 222x x'⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()cos sin x x '=-()1ln 1x x x '+=+所以选项A ,B ,C 均不正确,选项D 正确, 故选:D.2. 如图,在四面体中,是的中点,设,,,则( )OABC G BC OA a = OB b = OC c == AGA.B.C.D.1122a b c -- 1122a b c -++12a b c -++12a b c -- 【答案】B 【解析】【分析】根据三角形法则先求得向量、,进而求得. AB ACAG 【详解】解:,AC OC OA c a =-=-, AB OB OA b a =-=- .()()111122222AG AC AB a b c a b c ∴=+=-++=-++ 故选:B .3. 函数的单调递增区间是( )()2ln f x x x =-A. 和B.C. D.(),0∞-()0,2()2,+∞(),2-∞()0,2【答案】B 【解析】【分析】求出导函数,由确定增区间.()f x '()0f x '>【详解】,的定义域为, 22()1x f x x x'-=-=()f x (0,)+∞由,得, ()0f x '>2x >∴的单调递增区间为. ()f x ()2,+∞故选:B .4. 如图,用、、三类不同的元件连接成一个系统.当正常工作且、至少有一个正常工作K 1A 2A K 1A 2A 时,系统正常工作.已知、、正常工作的概率依次为、、,则系统不能正常工作的K 1A 2A 0.90.70.7概率为( )A. B. C. D.0.8640.1560.1810.819【答案】C 【解析】【分析】利用独立事件的概率乘法公式计算出该系统正常工作的概率,再利用对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,该系统正常工作的概率为,()20.9110.70.819⎡⎤⨯--=⎣⎦因此,该系统不能正常工作的概率为.10.8190.181-=故选:C.5. 向量,,,,1,,,0,,若,,共面,则等于( ) (1a = x 2)(0b = 2)(1c = 0)a b cx A. B. 1C. 2D. 01-【答案】B 【解析】【分析】根据向量共面关系,建立等式即可得解.a mb nc =+ 【详解】向量,,,,1,,,0,,,,共面,(1a = x 2)(0b = 2)(1c = 0)a b c ,,,,,,,,∴a mb nc =+0m ≠0n ≠(1∴x 2)(n =m 2)m ,解得,. ∴122nx m m =⎧⎪=⎨⎪=⎩1x m ==1x ∴=故选:B .6. “”是“函数在区间(1,2)上单调递减”的( )5a >()3f x x ax =-A. 充分不必要条件 B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】C 【解析】【分析】根据函数的单调性与导数的关系和必要不充分条件的判断即可求解. 【详解】若在区间(1,2)上单调递减,()3f x x ax =-所以在区间(1,2)上恒成立, 2()30f x x a '=-≤所以在区间(1,2)上恒成立, 23x a ≤所以,()2max3xa ≤所以,23212a ≥⨯=所以“”是“”的必要不充分条件,5a >12a ≥所以“”是函数在区间(1,2)上单调递减”的必要不充分条件,5a >()3f x x ax =-故选:C .7. 如图,圆柱的轴截面为矩形,点,分别在上、下底面圆上,,ABCD M N 2NB AN = 2CMMD =,,,则异面直线与所成角的余弦值为( )2AB =3BC =AM CNA.B.C.D.【答案】D 【解析】【分析】利用圆柱的性质、异面直线所成的角即可求解.【详解】方法一 如图(1),在上取点,使,连接,,,,. AB E 2AE EB=NE AN NB BE EA 易知四边形为矩形,则,且. ANBE NB AE ∥NB AE =连接,.因为,且,MN CM MN BC ∥MN BC =所以四边形为平行四边形,所以,且. MNBC CM NB ∥CM NB =连接,则,且,CE AE CM ∥AECM =所以四边形为平行四边形,则, AECM AM CE ∥所以或其补角是异面直线与所成的角. NCE ∠AM CN 在中,,,所以.Rt BNC △3CB=BN =CN ==在中,,,所以,Rt BCE 3CB =1BE =CE==2NE AB==所以.cos NCE ∠==故选:D .方法二 如图(2),在上取点,使,连接,,,. AB E 2AE EB=AN NB BE EA 易知四边形为矩形,,.ANBE 1AN =NB =MN 由已知条件,得为圆柱的一条母线.MN 以为坐标原点,分别以直线,,为轴、轴、轴建立如图(2)的空间直角坐标系N NB NA NM x y z ,Nxyz则,,,,()0,0,0N ()0,1,0A ()0,0,3M)C所以,,则, ()0,1,3AM =-)NC =cos ,AM NC ==所以异面直线与. AM CN 故选:D .8. 已知定义在上的函数的导函数为,且对于任意的,都有0,2π⎛⎫ ⎪⎝⎭()f x ()f x '0,2x π⎛⎫∈ ⎪⎝⎭,则下列结论正确的是( )()()sin cosf x x f x x '<A.B. 43ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()13f f π⎛⎫> ⎪⎝⎭C.D.64f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】【分析】构造函数,利用导数判断函数的单调性,再利用函数的单调性处理即可. 【详解】设则,因为对于任意的,都有()(),sin f x g x x=()()()2sin cos sin f x x f x x g x x'-'=0,2x π⎛⎫∈ ⎪⎝⎭,所以,所以在上单调递减,所以()()sin cos f x x f x x '<()0g x '<()g x 0,2π⎛⎫⎪⎝⎭,即,所以,所以643g g g πππ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭643sin sin sin643f f f ππππππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>64312f f f πππ⎛⎫⎛⎫⎛⎫ ⎪⎝⎭>>又故无法比,64f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,43f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()sin 1sin1,33f fππ⎛⎫> ⎪⎝⎭较与,故B ,C ,D 错误. 3f π⎛⎫⎪⎝⎭()1f 故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 连续抛掷一枚质地均匀的骰子两次,记录每次的点数,设事件 “第一次出现2点”,“第二次A =B =的点数小于5点”,“两次点数之和为奇数”,“两次点数之和为9”,则下列说法正确的有( ) C =D =A. 与不互斥且相互独立 B. 与互斥且不相互独立 A B A D C. 与互斥且不相互独立 D. 与不互斥且相互独立B D AC 【答案】ABD 【解析】【分析】根据事件的互斥与独立的定义对选项一一验证即可.【详解】对于A :连续抛掷一枚质地均匀的骰子两次,第一次与第二次的结果互不影响,即与相互A B 独立;第一次出现2点,第二次的点数小于5点可以同时发生,与不互斥;故A 正确;A B 对于B :连续抛掷一枚质地均匀的骰子两次,第一次的结果会影响两次点数之和,即与不相互独A D 立;第一次出现2点,则两次点数之和最大为8,即与不能同时发生,即与互斥,故B 正确; A D A D 对于C :连续抛掷一枚质地均匀的骰子两次,第二次的结果会影响两次点数之和,即与不相互独立; B D 若第一次的点数为5,第二次的点数4点,则两次点数之和为9,即与可以同时发生,即与不互B D B D 斥,故C 错误;对于D :连续抛掷一枚质地均匀的骰子两次,第一次的结果不会影响两次点数之和的奇偶,即与相A C 互独立;若第一次的点数为2,第二次的点数3点,则两次点数之和为5是奇数,即与可以同时发生,即A C A 与不互斥,故D 正确. C 故选:ABD.10. 以下命题正确的是( ).A. 直线l 的方向向量,直线m 的方向向量,则 ()112a ,,=-()1,2,1b = l m ⊥B. 直线l 的方向向量,平面的法向量,则或()0,1,1a =- α()1,1,1n =--l α∥l ⊂αC. 两个不同平面,的法向量分别为,,则αβ()12,1,0n =- ()24,2,0n =-αβ⊥D. 平面经过三点,,,向量是平面的法向量,则α()1,0,1A -()0,1,0B ()1,2,0C -()1,,n u t =α,1u =0=t 【答案】BD 【解析】【分析】对于A ,利用直线的方向向量是否垂直即可求解;对于B ,利用直线的方向向量与平面的法向量是否垂直即可求解;对于C ,利用平面的法向量是否平行即可求解;对于D ,根据法向量得到方程组,求出和的关系即可求解.u t 【详解】对于A ,因为直线的方向向量,直线的方向向量,l ()1,1,2a =- m ()1,2,1b =所以,所以与不垂直,故直线与直线不垂直,故A 错误;()11122110a b ⋅=⨯+-⨯+⨯=≠ a bl m 对于B ,因为直线的方向向量,平面的法向量,l ()0,1,1a =- α()1,1,1n =--所以,所以,故或,故B 正确;()()()0111110a n =⨯+⨯-+-+-=⋅ a n ⊥//l αl ⊂α对于C ,因为两个不同平面的法向量分别为,,αβ()()122,1,0,4,2,0n n =-=-所以,即,所以,故C 错误;212n n =- 12//n n//αβ对于D ,因为,所以, ()()()1,0,1,0,1,0,1,2,0A B C --()()1,1,1,1,1,0AB BC =-=-又向量是平面的法向量,则,即,解得,故D 正确. ()1,,=r n u t α00n AB n BC ⎧⋅=⎪⎨⋅=⎪⎩1010u t u -++=⎧⎨-+=⎩1,0u t ==故选:BD.11. 如图所示几何体,是由正方形沿直线旋转得到,是圆弧的中点,是圆弧ABCD AB 90︒G CEH 上的动点,则( ) DFA. 存在点,使得 H //EH BDB. 存在点,使得 H EH BG ⊥C. 存在点,使得平面H //EH BDG D. 存在点,使得直线与平面的夹角为 H EH BDG 45︒【答案】BC 【解析】【分析】先将图形补全为一个正方体,对四个选项一一验证: ADMF BCNE -对于A 、B :利用正方体的性质直接判断;对于C 、D :以A 为原点,为x 、y 、z 轴正方向建立空间直角坐标系,利用向量法求解. ,,AD AF AB【详解】由题意可将图形补全为一个正方体,如图示: ADMF BCNE -对于A :因为面,而是圆弧上的动点,所以不成立.故A 错误; //BD EFMN H DF//EH BD 对于B :因为正方体中, 面,ADMF BCNE -EF ⊥BCNE 所以.EF BG ⊥所以当重合时,有.故B 正确;,F H EH BG ⊥对于C :以A 为原点,为x 、y 、z 轴正方向建立空间直角坐标系.设,,,AD AF AB2BC =则()0,0,0,A ()2,0,0,D ()0,2,2,E ()0,2,0,F ()0,0,2,B ()2,0,2,C )2,G,()()22,,0,4,0,0H m n m n m n +=>>所以.())2,0,2,,BD BG =-=(),2,2EH m n =--设为平面的一个法向量,则, (),,e x y z =BDG 202000BD e x z BG e z ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩不妨设,则.1x =()1,1,1e =-假设平面,则,所以.//EH BDG 220e EH m n ⋅=-+-=m n =因为,所以是圆弧的中点,符合题意.故C 正确; 224,0,0m n m n +=>>m n ==H DF对于D :由B 的分析可知:当重合时,直线与平面的夹角最大.,F H EH BDG 此时.()0,0,2EH =-所以与平面所成的角的正弦值为EH BDG cos ,e EH e EH e EH⋅==<⨯ 所以与平面所成的角的最大值小于45°.故D 错误. EH BDG 故选: BC12. 若两曲线与存在公切线,则正实数a 的取值可以是( ) 21y x =-ln 1y a x =-A. 1 B. e C. e 2 D. 3e【答案】AB 【解析】【分析】设两个切点分别为,,可得两函数的切线方程,从而可得()11,A x y ()22,B x y ,令,利用导数求出,可得的取值范围,从()2224ln 1a x x =-⋅-22()44ln (0)g x x x x x =->max ()g x a 而得答案.【详解】解:设两曲线与的两个切点分别为,, 21y x =-ln 1y a x =-()11,A x y ()22,B x y 由可得;由可得, 21y x =-2y x '=ln 1y a x =-a y x'=则过两切点的切线方程分别为,, 2111(1)2()y x x x x --=-()()222ln 1ay a x x x x --=-化简得,. 21121y x x x =--22ln 1ay x a x a x =+--因为两条切线为同一条,所以,122212ln a x x a x a x ⎧=⎪⎨⎪-=-⎩解得.()2224ln 1a x x =-⋅-令,,22()44ln (0)g x x x x x =->()4(12ln )g x x x =-'令,得,()0g x '=x =当时,;当;0x <<()0g x '>x >()0g x '<所以在上单调递增,在上单调递减, ()gx )+∞则, max ()2e g x g ==所以. (0,2]a ∈e 故选:AB.三、填空题:本题共4小题,每小题5分,共20分.13. 函数在处有极值,则常数a =______. ()ln f x x ax =-1x =【答案】1 【解析】【分析】根据极值定义可得,求导并将代入计算即可求得 ()10f '=1x =1a =【详解】由可得, ()ln f x x ax =-()1f x a x'=-又在处有极值,所以可得, ()f x 1x =()10f '=即,所以.经检验满足题意, ()1011f a ='-=1a =故答案为:114. 一个数学兴趣小组共有2名男生3名女生,从中随机选出2名参加交流会,在已知选出的2名中有1名是男生的条件下,另1名是女生的概率为______. 【答案】67【解析】【分析】首先求出男女生各1名的概率,再应用对立事件概率求法求至少有1名男生的概率,最后应用条件概率公式求概率.【详解】若A 表示“2名中至少有1名男生”,B 表示“2名中有1名女生”, 所以2名中有1名是男生的条件下,另1名是女生的概率为, ()(|)()P AB P B A P A =而,,故. 112325C C 3()C 5P AB ==2325C 7()1C 10P A =-=6(|)7P B A =故答案为:6715. 在如图所示的三棱锥中,平面,,,,为-P ABC PA ⊥ABC 90ACB ∠=︒8CA =6PA =D AB 中点,为内的动点(含边界),且.当在上时,________;点的轨迹E PAC △PC DE ⊥E AC AE =E 的长度为________.【答案】 ①. ②.4125【解析】【分析】由题意建立空间直角坐标系可得当在上时,满足,求得的长;当为E AC PC DE ⊥AE E 内的动点(含边界)时,再取中点,,再过作,可证平面,得到PAC △AC F F FG PC ⊥PC ⊥DFG 的轨迹,求解三角形可得点的轨迹的长度.E E 【详解】因为平面,平面,所以,又,所PA ⊥ABC ,AC BC ⊂ABC ,PA AC PA BC ⊥⊥90ACB ∠=︒以,ACBC ⊥又平面,所以平面,过,如图建立空间直角坐标,,PA AC A PA AC ⋂=⊂PAC BC ⊥PAC //Ax BC 系,则,设,所以,则()()()0,0,0,0,8,0,0,0,6A C P BC a =(),8,0B a ,4,02a D ⎛⎫⎪⎝⎭①当在上时,设,因为,所以E AC ()0,,0E c PC DE ⊥,故,则()0,8,6,4,00832002a PC DE c c ⎛⎫⋅=-⋅--=+-+= ⎪⎝⎭ 4c =()0,4,0E 所以;4AE=②为内的动点(含边界)时,如图,取中点,过作,垂足为E PAC △ACF F FG PC ⊥G由①可得,又,平面,所以平面,因为PC DF ⊥FG PC ⊥,,DF FG F DF FG ⋂=⊂DFG PC ⊥DFG 平面,所以FG ⊂PAC PC FG ⊥即在线段上运动时,, E FG PC DE ⊥点的轨迹为线段.∴E FG 则. 12sin 425PA FG FC PCA PC =⋅∠=⨯==故答案为:;. 412516. 已知函数,若恰有两个零点,则的取值范围为__________.2ln ,0()1,0x kx x f x kx x x ->⎧=⎨-+≤⎩()f x k 【答案】 ()1,00,e ⎛⎫-∞ ⎪⎝⎭【解析】【分析】利用分离参数法得,,,,从而转化为直线与函数图象交ln x k x =0x >21x k x-=0x <y k =点个数问题,利用数形结合的思想即可得到答案. 【详解】当时,令,则, 0x >()ln 0f x x kx =-=ln xk x=令,,, ()ln x h x x=0x >()221ln 1ln x xx x h x x x ⋅--'==令,即,解得,此时单调递增, ()0h x '>1ln 0x ->0e x <<()h x 令,即,解得,此时单调递减, ()0h x '<1ln 0x -<e x >()h x 故在时,取得最大值,且当趋近于0时,趋近于负无穷, ()h x e x =()1e eh =x ()h x 当趋近于正无穷时,趋近于0,且大于0,x ()h x 当时,,当时,,故此时不是零点,所以,0x ≤()21f x kx x =-+0x =()01f =0x ≠令,,()201f x kx x =-+=22211111124x k x x x x -⎛⎫==-=--- ⎪⎝⎭令,, ()211x x xϕ=-0x <根据符合函数单调性可知,此时函数单调递减,当趋近于负无穷时,趋近于0,且小于0, x ()x ϕ当趋近于0时,趋近于负无穷, x ()x ϕ在同一坐标系中作出与如下图所示,()h x ()x ϕ题目转化为与函数与在图像上有两交点,y k =()h x ()x ϕ故由图得.()1,00,e k ⎛⎫∈-∞⋃ ⎪⎝⎭故答案为:.()1,00,e ⎛⎫-∞ ⎪⎝⎭四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17. 已知,,.()1,3,4A ()1,5,4B -()1,2,1C -(1)求;,AB BC(2)求在上的投影向量.AC BC【答案】(1)2π3(2) ()0,2,2--【解析】【分析】(1)由向量夹角余弦公式,分别计算向量数量积和向量的模,再根据夹角范围,确定夹角的值. (2)根据投影向量定义分别计算两个向量的数量积和模,再求出向量的同方向单位向量,计算即可得到BC投影向量. 【小问1详解】解:因为,,()2,2,0AB =- ()0,3,3BC =--所以,,,6AB BC⋅=-AB =BC = 所以. 1cos ,2AB BC AB BC AB BC ⋅===-⋅因为,0,πAB BC ≤≤所以.2π,3AB BC = 【小问2详解】因为,, ()2,1,3AC =--- ()0,3,3BC =--所以.cos ,AC BC ==因为, 0,BC BC ⎛= ⎝所以在上的投影向量为AC BC.()cos ,0=0,2,2BC AC AC BC BC ⎛= ⎝⋅--18. 如图,四棱锥的底面是矩形,PD ⊥底面ABCD ,,,M 为BC P ABCD -2PD DC ==AD =的中点.(1)求D 到平面APM 的距离;(2)求平面ABCD 与平面APM 所成角的余弦值. 【答案】(1 (2 【解析】【分析】(1)根据点面距离的法向量求法即可求解;(2)根据面面夹角的法向量求法即可求解. 【小问1详解】因为四棱锥的底面是矩形,PD ⊥底面ABCD ,P ABCD -所以可以建立以D 为坐标原点,DA 方向为x 轴,DC 方向为y 轴,DP 方向为z 轴,如图所示的空间直角坐标系,又,,M 为BC 的中点, 2PD DC ==AD =所以,,,,(0,0,0)DA 2,0)M (0,0,2)P 所以,,2)PA =-2,2)PM =-DA = 设平面的法向量为,PAM (,,)n x y z =所以, ()()()),,220,,2,2220nPA x y z z n PM x y z y z ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=+-=⎪⎩取,解得,, 1x=z=y =所以,n =所以D 到平面APM.==【小问2详解】易知,平面ABCD 的一个法向量为,(0,0,2)DP =. ()0,0,2·cos ,m n ⎛===平面ABCD 与平面APM . 19. 已知函数,.()sin cos f x x x x =+()0,2πx ∈(1)求函数在处的切线方程; ()f x πx =(2)求函数的极值. ()f x 【答案】(1)2ππ10x y +-+=(2)的极大值为;的极小值为. ()f x π2()f x 3π2-【解析】【分析】(1)根据导数的几何意义即可求解;(2)根据导数与极值的关系即可求解. 【小问1详解】因为,()sin cos f x x x x =+所以, ()sin cos (sin )f x x x x x =+-'+所以, ()cos f x x x '=所以, (π)πcos ππf '==-而,()ππsin πcos π1f =+=-所以函数f (x )在处的切线方程为:, πx =(1)π(π)y x --=--即, 2ππ10x y +-+=【小问2详解】因为,()sin cos f x x x x =+所以, ()sin cos (sin )f x x x x x =+-'+所以, ()cos f x x x '=令, ()cos 0f x x x '==解得或, 0x =ππ,2x k k =+∈Z 又因为, ()0,2πx ∈所以或,1π2x =3π2x =x 10,π2⎛⎫ ⎪⎝⎭ 12π 13π,π22⎛⎫ ⎪⎝⎭3π23π,2π2⎛⎫ ⎪⎝⎭()f x '+-+()f x ↗极大值 ↘极小值↗函数的极大值为;()f x 1πππππsin cos 22222f ⎛⎫=+=⎪⎝⎭函数的极小值为.()f x 33π3π3π3ππsin cos 22222f ⎛⎫=+=-⎪⎝⎭20. 某同学买了7个盲盒,每个盲盒中都有一个礼物,有4个装小兔和3个装小狗. (1)依次不放回地从中取出2个盲盒,求第1次、第2次取到的都是小兔盲盒的概率; (2)依次不放回地从中取出2个盲盒,求第2次取到的是小狗盲盒的概率.【答案】(1)27(2)37【解析】【分析】(1)设事件“第次取到的是小兔盲盒”,,求出,,再根据条件概=i A i 1,2i =()1P A ()21P A A 率的概率公式计算可得;(2)设事件“第次取到的是小狗盲盒”,,求出,,,再根据全i B =i 1,2i =()1P B ()21P B B ()21P B A 概率的概率公式计算可得. 【小问1详解】设事件“第次取到的是小兔盲盒”,.=i A i 1,2i =∵,,()14117C 4C 7P A ==()132116C 1C 2P A A ==∴, ()()()12121412727P A A P A P A A ==⨯=即第次、第次取到的都是小兔盲盒的概率为.1227【小问2详解】设事件“第次取到的是小狗盲盒”,.i B =i 1,2i =∵,,,()13117C 3C 7P B ==()122116C 1C 3P B B ==()132116C 1C 2P B A ==∴由全概率公式,可知第次取到的是小狗盲盒的概率为2()()()()()2121121P B P B P B B P A P B A =⨯+⨯ 31417372=⨯+⨯. 37=21. 在三棱柱中,平面平面,侧面为菱形,,111ABC A B C -11A B BA ⊥ABC 11A B BA 1π3ABB ∠=,,E 是的中点.1A B AC ⊥2AB AC ==AC(1)求证:平面;1A B ⊥1AB C (2)点P 在线段上(异于点,),与平面所成角为,求的值.1A E 1A E AP 1A BE π41EP EA 【答案】(1)证明见解析(2)125EP EA =【解析】【分析】(1)根据线面垂直的判定定理证明; (2)利用空间向量的坐标运算表示线面夹角即可求解. 【小问1详解】因为四边形为菱形,所以,11A B BA 11A B AB ⊥又因为,,平面,, 1A B AC ⊥1AB AC ⊂1AB C 1AB AC A = 所以平面. 1A B ⊥1AB C 【小问2详解】取的中点O ,连接,四边形为菱形,且, AB 1B O 11A B BA 1π3ABB ∠=所以.1B O AB ⊥因为平面平面,平面平面,11A B BA ⊥ABC 11A B BA ⋂ABC AB =平面,1B O ⊂11A B BA 所以平面,所以,又因为,与相交, 1B O ⊥ABC 1B O AC ⊥1A B AC ⊥1B O 1A B 所以平面.取中点D ,连结, AC ⊥11A B BA BC OD 以O 为原点,,,为空间基底建立直角坐标系.OB OD 1OB则,,,,()1,0,0B ()1,0,0A-(1A -()1,1,0E -所以,.(1BA =-()2,1,0BE =- 设平面的一个法向量为,1A BE (),,n x y z =所以,令,则,,13020n BA x n BE x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩1x=z =2y =所以.(1,n =设,可得点,. 1EP EA λ=()1,1P λλ---(),1AP λλ=-- 由题意πsin cos ,4AP n AP n AP n ⋅===解得或(舍),即. 2=5λ0λ=125EP EA =22. 已知函数,.()ln 1f x x mx =-+()()e 2xg x x =-(1)若的最大值是1,求的值;()f x m (2)若对其定义域内任意,恒成立,求的取值范围. x ()()f x g x ≤m 【答案】(1) 1em =(2) [)1,+∞【解析】【分析】(1)先求定义域,再求导,分与两种情况,分类讨论得到当,时,0m ≤0m >0m >1x m=取得最大值,列出方程,求出的值;()f x m (2)转化为在上恒成立问题,构造,二次求导,利用1ln 2e x x m x +-≥-()0,∞+()1ln e xx x xϕ+=-隐零点求出,取对数后,利用同构得到,求出在处取得最大值,0020e n 0l x x x +=01e x x =()x ϕ0x x =列出不等式,求出的取值范围. m 【小问1详解】的定义域为,. ()f x ()0,∞+()11mx f x m x x-'=-=若,,在定义域内单调递增,无最大值;0m ≤()0f x ¢>()f x若,令,解得:,令,解得:, 0m >()0f x ¢>10,x m ⎛⎫∈ ⎪⎝⎭()0f x '<1,x m ⎛⎫∈+∞ ⎪⎝⎭故时,单调递增,时,单调递减. 10,x m ⎛⎫∈ ⎪⎝⎭()f x 1,x m ⎛⎫∈+∞ ⎪⎝⎭()f x 时,取得极大值,也是最大值,故,1x m∴=()f x 11ln 1f m m ⎛⎫== ⎪⎝⎭;1em ∴=【小问2详解】原式恒成立,即在上恒成立,()ln 1e 2xx mx x -+≤-()0,∞+即在上恒成立. 1ln 2e xx m x+-≥-()0,∞+设,则. ()1ln e x x x x ϕ+=-()22e ln x x xx xϕ+'=-设,则, ()2e ln xh x x x =+()()212e 0xh x x x x'=++>在上单调递增,且,.()h x ∴()0,∞+112e e 211e 1e 10e eh -⎛⎫=⋅-=-< ⎪⎝⎭()1e 0h =>有唯一零点,且,()h x ∴01,1x e ⎛⎫∈ ⎪⎝⎭020e n 0l xx x +=即. 000ln ex x x x -=两边同时取对数,得,易知是增函数,()()0000ln ln ln ln x x x x +=-+-ln y x x =+,即. 00ln x x ∴=-01ex x =因为,所以当时,, ()()2h x x x ϕ'=-()00,x x ∈()()20h x x xϕ'=->当时,, ()0,x x ∈+∞()()20h x x xϕ'=-<故在上单调递增,在上单调递减,在处取得极大值,也是最大值,()x ϕ()00,x ()0,x +∞()x ϕ0x x =, ()()0000000e 11ln 11x x x x x x x x ϕϕ+-∴≤=-=-=-, 21m ∴-≥-,1m ∴≥故的取值范围是.m [)1,+∞【点睛】隐零点的处理思路:第一步:用零点存在性定理判定导函数零点的存在性,其中难点是通过合理赋值,敏锐捕捉零点存在的区间,有时还需结合函数单调性明确零点的个数;第二步:虚设零点并确定取值范围,抓住零点方程实施代换,如指数与对数互换,超越函数与简单函数的替换,利用同构思想等解决,需要注意的是,代换可能不止一次.。
高二上学期期中考试数学试题(带答案)高二上学期期中考试数学试题(带答案)注:题号后(A)表示1-7班必做,(B)表示8班必做。
)完卷时间:120分钟,总分:150分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设$a,b,c\in R$,且$a>b$,则()A.$ac>bc$B.$\frac{1}{a}<\frac{1}{b}$C.$a^2>b^2$D.$a^3>b^3$2.已知数列$\{a_n\}$是公差为2的等差数列,且$a_1,a_2,a_5$成等比数列,则$a_2=$()A.$-2$B.$-3$C.$2$D.$3$3.已知集合$A=\{x\in R|x^2-4x-12<0\},B=\{x\in R|x<2\}$,则$A\cap B=$()A.$\{x|x<6\}$B.$\{x|-2<x<2\}$C.$\{x|x>-2\}$D.$\{x|2\leq x<6\}$4.若变量$x,y$满足约束条件$\begin{cases}x+y\leq 4\\x\geq 1\end{cases}$,则$z=2x+y$的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和55.已知等比数列$\{a_n\}$的前三项依次为$a-1,a+1,a+4$,则$a_n=$A.$4\cdot (\frac{3}{2})^{n-1}$B.$4\cdot (\frac{2}{3})^{n-1}$C.$4\cdot (\frac{3}{2})^{n-2}$D.$4\cdot (\frac{2}{3})^{n-2}$6.在$\triangle ABC$中,边$a,b,c$的对角分别为$A,B,C$,且$\sin^2 A+\sin^2 C-\sin A\sin C=\sin^2 B$。
高二数学试题:人教版高二数学期中考试卷查字典数学网为大家提供高二数学试题:人教版高二数学期中考试卷一文,供大家参考使用:
高二数学试题:人教版高二数学期中考试卷
高二数学期中检测试卷
内容:必修5+选修2-1第一二章
班级姓名得分
一、选择题:本大题共8小题,每小题5分,满分40分。
1、在数列中,等于()
A、11
B、12
C、13
D、14
2、.在△ABC中,A=45o,B=30o,b=2,则a的值为()
A、4
B、2
C、
D、3
3、不等式的解集是()
A、B、C、D、
4、已知且不为0,那么下列不等式成立的是()
A、B、C、D、
5、已知等差数列中,的值是()
A、64
B、30
C、31
D、15
6、等比数列中, 则的前4项和为()
A、81
B、120
C、168
D、192
7、等差数列的前2项和为30,前4项和为100,则它的前6项和是()
A、130
B、170
C、210
D、260
8、当时,不等式恒成立,则实数的取值范围是()
A、B、C、D、
二、填空题:本大题共7小题,每小题5分,满分35分。
9、命题存在的否定是
10、在锐角中,三边所对的角分别为A、B、C,已知的面积,则角
11、椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为
12、若抛物线上一点M到焦点的距离为5,则点M的纵坐标是
13、设实数满足,则的最大值是
14、已知数列满足则
15、某校要建造一个容积为4800,深为3的长方体无盖水池,池底和池壁的造价每平方米分别为150元和120元,那么水池的最低总造价为元。
三、解答题:本大题共6小题,满分75分。
请写出文字说明、证明过程和演算步骤。
16、求椭圆的长轴长、短轴长、离心率、焦点和顶点的坐标。
17、已知在等差数列中
(1)求通项公式;(2)求前项和的最大值。
18、一缉私艇发现在方位角45方向,距离12海里的海面上
有一走私船正以10海里/小时的速度沿方位角为105方向逃窜,若缉私艇的速度为14海里/小时,缉私艇沿方位角的方向追去,若要在最短的时间内追上该走私船,求追及所需时间和角的正弦.(注:方位角是指正北方向按顺时针方向旋转形成的角)
19、已知点P(3,4)是椭圆上的一点,为椭圆的两焦点,若,试求:(1)椭圆的方程;(2)的面积。
20、已知抛物线与直线相交于A、B两点;
(1)求证:(2)当的面积等于,求的值。
21、已知为各项都为正数的等比数列,为等差数列的前n项和,
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
(1)求和的通项公式;
(2)设,求
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,
其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
以上就是高二数学试题:人教版高二数学期中考试卷的所有内容,希望对大家有所帮助!
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?。