现代控制理论模型参考自适应控制
- 格式:ppt
- 大小:6.95 MB
- 文档页数:99
一、概述1.自适应控制的控制对象:自适应控制的研究对象是具有一定程度不确定性的系统,这里所谓的“不确定性”是指描述被控对象及其环境的数学模型不是完全确定的,其中包含一些未知因素和随机因素。
2.自适应控制的基本思想是:在控制系统设计时,不断地测量受控对象的状态,性能或参数,从而“认识”或“掌握”系统当前的运行状况,并将系统当前的性能指标与期望的指标相比较,从而根据比较结果作出决策,来改变控制器的结构、参数或根据自适应的规律来改变控制作用,以保证系统运行在某种意义下最优或次优的状态。
3.吉布森1962年提出以下定义:(1)在线辨识:一个自适应控制系统必须能提供对象当前状态的连续信息;(2)决策控制:它必须将系统当前的性能和希望的或者最优的性能进行比较,并作出使系统趋向最优性能的决策;(3)在线修正:它必须对控制器进行修正以便是系统趋向最优状态。
这三方面的功能是自适应系统所必须具有的功能。
4.与其他控制方法的比较自适应控制和常规的反馈控制和最优控制一样,也是一种基于数学模型的控制方法,所不同的只是自适应控制所依据的关于模型和扰动的先验知识比较少,需要在系统的运行过程中去不断提取有关模型的信息,使模型逐步完善。
具体地说,可以依据对象的输入输出数据,不断地辨识模型参数,这个过程称为系统的在线辩识。
随着生产过程的不断进行,通过在线辩识,模型会变得越来越准确,越来越接近于实际。
既然模型在不断的改进,显然,基于这种模型综合出来的控制作用也将随之不断的改进。
在这个意义下,控制系统具有一定的适应能力。
比如说,当系统在设计阶段,由于对象特性的初始信息比较缺乏,系统在刚开始投入运行时可能性能不理想,但是只要经过一段时间的运行,通过在线辩识和控制以后,控制系统逐渐适应,最终将自身调整到一个满意的工作状态。
再比如某些控制对象,其特性可能在运行过程中要发生较大的变化,但通过在线辩识和改变控制器参数,系统也能逐渐适应。
常规的反馈控制系统对于系统内部特性的变化和外部扰动的影响都具有一定的抑制能力,但是由于控制器参数是固定的,所以当系统内部特性变化或者外部扰动的变化幅度很大时,系统的性能常常会大幅度下降,甚至是不稳定。
模型参考自适应控制与模型控制比较模型参考自适应控制(Model Reference Adaptive Control, MRAC)和模型控制(Model-based Control)都是现代控制理论中常用的方法。
它们在实际工程应用中具有重要意义,本文将对这两种控制方法进行比较和分析。
一、模型参考自适应控制模型参考自适应控制是一种基于模型的自适应控制方法,主要用于模型未知或参数变化的系统。
该方法基于一个参考模型,通过在线更新控制器参数以追踪参考模型的输出,从而实现对系统的控制。
在模型参考自适应控制中,首先需要建立系统的数学模型,并根据实际系统的特性选择合适的参考模型。
然后通过设计自适应控制器,利用模型参数估计器对系统的不确定性进行补偿,实现对系统输出的精确追踪。
模型参考自适应控制的优点在于其适应性强,能够处理模型未知或参数变化的系统。
它具有很好的鲁棒性,能够适应系统的不确定性,同时可以实现对参考模型的精确追踪。
然而,模型参考自适应控制也存在一些缺点,如对系统模型的要求较高,需要较为准确的模型参数估计。
二、模型控制模型控制是一种基于数学模型的控制方法,通过对系统的建模和分析,设计出合适的控制器来实现对系统的控制。
模型控制方法主要有PID控制、状态反馈控制、最优控制等。
在模型控制中,首先需要建立系统的数学模型,并对模型进行分析和优化。
然后根据系统的特性,设计合适的控制器参数。
最后,将控制器与系统进行耦合,实现对系统的控制。
模型控制的优点在于其理论基础牢固,控制效果较好。
它能够根据系统的数学模型进行精确的设计和分析,具有较高的控制精度和鲁棒性。
然而,模型控制方法在实际应用中对系统模型的要求较高,而且对系统参数变化不敏感。
三、比较与分析模型参考自适应控制与模型控制都是基于模型的控制方法,它们在实际应用中具有各自的优缺点。
相比而言,模型参考自适应控制具有更强的适应性和鲁棒性,能够处理模型未知或参数变化的系统。
10.自适应控制严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。
如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。
如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。
所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。
因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。
目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。
10.1模型参考自适应控制10.1.1模型参考自适应控制原理模型参考自适应控制系统的基本结构与图10.1所示:10.1模型参考自适应控制系统它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。
实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。
在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。
在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。
一 原理及方法模型参考自适应系统,是用理想模型代表过程期望的动态特征,可使被控系统的特征与理想模型相一致。
一般模型参考自适应控制系统的结构如图1所示。
图1 一般的模型参考自适应控制系统其工作原理为,当外界条件发生变化或出现干扰时,被控对象的特征也会产生相应的变化,通过检测出实际系统与理想模型之间的误差,由自适应机构对可调系统的参数进行调整,补偿外界环境或其他干扰对系统的影响,逐步使性能指标达到最小值。
基于这种结构的模型参考自适应控制有很多种方案,其中由麻省理工学院科研人员首先利用局部参数最优化方法设计出世界上第一个真正意义上的自适应控制律,简称为MIT 自适应控制,其结构如图2所示。
图2 MIT 控制结构图系统中,理想模型Km 为常数,由期望动态特性所得,被控系统中的增益Kp 在外界环境发生变化或有其他干扰出现时可能会受到影响而产生变化,从而使其动态特征发生偏离。
而Kp 的变化是不可测量的,但这种特性的变化会体现在广义误差e 上,为了消除或降低由于Kp 的变化造成的影响,在系统中增加一个可调增益Kc ,来补偿Kp 的变化,自适应机构的任务即是依据误差最小指标及时调整Kc ,使得Kc 与Kp 的乘积始终与理想的Km 一致,这里使用的优化方法为最优梯度法,自适应律为:⎰⨯+=tm d y e B Kc t Kc 0)0()(τMIT 方法的优点在于理论简单,实施方便,动态过程总偏差小,偏差消除的速率快,而Yp Yme+__+R参考模型调节器被控对象适应机构可调系统———kmq(s)p(s)KcKpq(s)-----p(s)适应律Rymype+-且用模拟元件就可以实现;缺点是不能保证过程的稳定性,换言之,被控对象可能会发散。
二 对象及参考模型该实验中我们使用的对象为:122)()()(2++==s s s p s q K s G pp 参考模型为:121)()()(2++==s s s p s q K s G mm 用局部参数最优化方法设计一个模型参考自适应系统,设可调增益的初值Kc(0)=0.2,给定值r(t)为单位阶跃信号,即r(t)=A ×1(t)。
自适应控制理论自适应控制理论是一种新兴的控制理论,它研究了如何利用信息有效地控制系统,使系统可以适应不断变化的环境,自动调整参数,以获得最佳性能。
自适应控制理论在许多领域都有广泛的应用,包括机器人、传感器网络、计算机控制系统、飞行控制系统等。
采用自适应控制设计的系统可以在未中断系统性能的情况下自动调整输入以适应环境变化。
自适应控制是一种基于模型的控制方法,它利用参考模型来提供自动调整的反馈指令,以致使系统在不断变化的环境中保持性能指标稳定。
它有利于系统抗干扰,可以在被控系统中对抗正态、非正态和外界扰动,并为机器人系统提供决策和推理的能力。
由于自适应控制的计算复杂度较高,因此在实际应用中,常常结合计算机视觉技术实现自适应控制。
因此,自适应控制技术的研究和进步,有助于提高机器人系统的性能和缩短开发时间。
同时,计算机视觉也是自适应控制的一个关键组成部分。
它可以帮助机器从像素级别上准确获取环境信息,重建复杂的空间模型,实现实时信息获取和处理。
计算机视觉技术在自适应控制领域具有重要意义,它可以有效地提高机器人系统的处理能力,实现对不可预测环境内容的实时调整。
自适应控制的应用范围十分广泛,同时也极具挑战性。
它的发展和实践可以更好地提高机器人系统的处理能力,有效地抵制不可预测的干扰,以实现工业机器人的自动化和智能化。
因此,自适应控制理论有望在未来进一步发展壮大,为实现可靠的智能控制提供有力支持。
总之,自适应控制理论是一个新兴的控制理论,它能够有效地针对不断变化的外部环境,发挥最佳控制性能。
同时,计算机视觉技术也是自适应控制的重要支撑,可以更好地提高机器人系统的处理能力和灵活度。
预计自适应控制理论在未来将取得更大的发展,为实现可靠的智能控制提供有力支持。