当前位置:文档之家› 小功率同步电动机

小功率同步电动机

小功率同步电动机
小功率同步电动机

第9章小功率同步电动机

9.1 概述

直流和交流伺服电动机的转速是随电机轴上所带的负载阻转矩或者加在控制绕组上的信号电压的改变而变化的。但是在有些控制设备和自动装置中,往往要求电动机具有恒定不变的转速,即要求电动机的转速不随负载和电压的变化而变化。同步电动机就是具有这种特性的电动机。

目前,功率从零点几瓦到数百瓦的各种同步电动机,在需要恒速运转的自动控制装置中得到了广泛的应用。例如它们用于自动和遥控装置,无线电通讯设备,同步联络系统,磁带录音和钟表工业等。

小功率同步电动机是交流电动机,在结构上主要也是由定子和转子两部分组成的。当定子三相或两相绕组通入三相或两相电流时,电机中就会产生旋转磁场。旋转磁场的转速即为同步转速,以下式表示:

p f

n s

60

罩极式定子旋转磁场的产生

A—工作绕组; B—短路环

图9 – 1 罩极式电动机的定子

(a) 两极; (b) 四极

图9 - 2 罩极式电动机的磁通及其相量图

图9-3 磁通的分解

9.2 永磁式同步电动机

图 9 - 4 永磁式同步电动机的工作原理

旋转磁场以同步速n s朝着图示的转向旋转时,根据N极与S极互相吸引的道理,定子旋转磁极就要与转子永久磁极紧紧吸住,并带着转子一起旋转。由于转子是由旋转磁场带着转的,因而转子的转速应该与旋转磁场转速(即同步速

n s )相等。当转子上的负载阻转矩增大时,定子磁极轴线与转子磁极轴线间

的夹角θ就会相应增大;当负载阻转矩减小时,夹角又会减小。

两对磁极间的磁力线如同弹性的橡皮筋一样。尽管负载变化时,定、转子磁极轴线之间的夹角会变大或变小,但只要负载不超过一定限度,转子就始终跟着定子旋转磁场以恒定的同步速n s 转动,即转子转速为

min 60r p f n n s ==

永磁式同步电动机启动比较困难

图9 – 5 永磁式同步电动机的起动转矩

综上所述,影响永磁式同步电动机不能自行起动的因素主要有下面两个方面:

(1) 转子本身存在惯性;

(2) 定、转子磁场之间转速相差过大。

为了使永磁式同步电动机能自行起动,在转子上一般都装有起动绕组。但如果电动机转子本身惯性不大,或者是多极的低速电机,定子旋转磁场转速不很大, 那末永磁式同步电动机不另装起动绕组还是会自己起动的。

图 9 - 6 永磁式同步电动机转子结构

Surface PM Motor with No Rotor Saliency

Inset PM Motor with Teeth Between Magnets to

Create Rotor Saliency

Interior PM Machine

Magnetic field in the cross-section of a 3-phase 9-slot 6-pole electronically controlled IPM motor. Coils are wound around every tooth and inter-connected to

produce a concentrated type winding.

Interior PM Motor with Rotor Saliency via a Single

Flux Barrier

Interior PM Motor with Multiple Flux Barrier Rotor Saliency

Interior PM Motor with Rotor Saliency via a Single Flux Barrier -and a Squirrel Cage Winding for Starting

随着永磁材料性能的不断提高,高性能低价格永磁材料(如钕铁硼)的出现, 使永磁式同步电动机的应用范围更加扩大。与其它型式同步电动机相比,它出力大,体积小,耗电小,结构简单、可靠,因而已成为同步电动机中最主要的品种。 目前功率从几瓦到几百瓦,甚至是几个千瓦的永磁同步电动机在各种自动控制系统中得到广泛的应用。

9.3 反应式同步电动机

9.3.1 工作原理

反应式同步电动机又称为磁阻电动机。这种电机的转子本身是没有磁性的, 只是依靠转子上两个正交方向磁阻的不同而产生转矩(这种转矩一般称为反应转矩)的。图9 - 7所表示的凸极转子就是这种转子。

???

????????? ??-+Ω=θθ2sin 112sin 20d q d X X U X U E m T

图9 – 7 反应式同步电动机的工作原理

与永磁式同步电动机一样,反应式同步电动机的起动也比较困难。反应式同步电动机转子

1—鼠笼条; 2—铁心

图 9 - 12 反应式同步电动机转子

9.4 磁滞式同步电动机

9.4.1 作用原理

1)软磁材料

矫顽力小于100A/m

作为导磁部件构成磁路:定转子冲片等

2)半硬磁材料

矫顽力小于100-1000A/m

磁滞材料:磁滞电机

3)硬磁材料

矫顽力大于1000A/m

作为磁源:永磁材料

磁滞同步电动机结构上的主要特点在于它的转子铁心不是用一般的软磁材料,而是用硬磁材料做成的。这种硬磁材料具有比较宽的磁滞回环,也就是说,它的剩余磁感应B r及矫顽磁力H c要比软磁材料大,单位场强的比磁滞损耗比较大,如图9 - 13所示。

图9 – 13 铁磁材料的磁滞回环

图9 - 14表示一个用硬磁材料做成的圆柱形转子放在一般的异步电动机定子之中,定子所产生的旋转磁场用一对N - S磁极来表示。当旋转磁场以同步速相对于转子旋转时,转子的每一部分都要被交变地磁化,转子中所有磁分子将跟着旋转磁场的方向进行排列。如果在开始瞬间,转子磁分子排列的方向与旋转磁场轴线的方向一致,如图9 - 14(a)所示(为了清楚起见,图中只画出两个磁分子),此时定子磁场与转子之间只有径向力F,不产生转矩。当旋转磁场相对转子转动以后,转子磁分子也要跟随旋转磁场方向转动。可是,由于转子是由硬磁材料做成的,它的剩余磁感应B r及矫顽磁力H c比较大,磁分子之间具有很大的摩擦力,因此,磁分子在转动时便不能立即随着旋转磁场方向转过同样的角度,而要落后一个角度θ。这样,所有磁分子产生的合成磁通,也就是转子磁通,就要落后定子旋转磁场一个角度θ,如图9 - 14(b)所示。根据N极与

S极互相吸引的道理,在转子上就要受到一个力F的作用。这个力可以分解为一个径向力F n和一个切向力F t。其中切向力F t就产生了磁滞转矩,用T Z表示,在它的作用下,转子就跟随着定子旋转磁场转动起来。

图9 – 14 磁滞同步电动机的工作原理

由此可见,磁分子轴线落后于旋转磁场轴线一个角度θ是产生磁滞转矩的根本原因,这个角度通常称为磁滞角。显然,磁滞角θ的大小与定子磁场相对于转子的速度无关,它决定于转子所用的硬磁材料的性质。因而当转子在低于同步速n s运转时(常称异步状态运行),不管转子转速如何,在定子旋转磁场的反复磁化下,转子的磁滞角θ都是相同的,因此所产生的磁滞转矩T Z也与转子转速无关。在异步状态运行时,磁滞转矩的机械特性是一条与横轴平行的直线,如图9 - 15所示。

磁滞同步电动机如果在磁滞转矩的作用下起动并到达同步速运行(称为同步状态运行),转子相对旋转磁场就不动,也不再被交变磁化,而是被恒定地磁化。这时,转子类似一个永磁转子,转子磁通的轴线与定子磁场的轴线之间的夹角不是固定不变,而是可以变化的了。当电机轴上的负载阻转矩为0时,被磁化了的转子所产生的磁通轴线与定子磁场的轴线重合,电机不产生转矩。当负载阻转矩增大时,电机就要瞬时减速,定、转子两个磁场间的夹角增大,电机产生的转矩

同步电动机经常出现的故障及原因分析通用版

解决方案编号:YTO-FS-PD944 同步电动机经常出现的故障及原因分 析通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

同步电动机经常出现的故障及原因 分析通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 经常发现的故障现象有: ①定子铁芯松动,运行中噪声大。 ②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。 ③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。 ④转子线圈绝缘损伤,起动绕组笼条断裂。 ⑤转子磁极的燕尾楔松动、退出。 ⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄

大型高压同步电动机

大型高压同步电动机,由于其具有一系列优点,特别是能向电网发送无功功率,改善电网质量,在各行各业得到广泛应用。我公司球磨机用同步电动机曾在一段时期内频繁损坏,直接影响到我公司的生产和设备的安全运行。因此正确分析判断同步电机的故障原因,并提出相应对策,就成了我们的当务之急。 一、事故征象 我公司现有16台1300KW/6KV同步电动机。在2000年以前平均每年要出现2~3次电机烧损的事故。其事故主要征象为:定子绕组端部绑线崩断,电机定子绕组过热,起动绕组笼条开焊、断裂,电机起动及运行中出现异常声响,经常启动失败等现象。 尤其是在1999年1月12日我公司7#同步电动机运行过程中突然放炮,造成7#同步电动机定子线圈局部严重烧坏,高压电缆接头烧损,电流互感器崩坏,由于7#同步机脱扣装置拒动,保护不能正常动作,持续大电流引起密地变电所密27选Ⅱ线保护动作跳闸,影响到选Ⅱ所带其它用电设备停机。 二、事故原因的基本判断分析 1、电机质量分析: 电机的正常使用寿命一般应在20年左右。统计我公司所损坏的同步电动机,运行寿命大多在10年以下,尤其是这台7#同步电动机大修后,投运仅4个月便出现了这次放炮烧损事故。 在事故分析中,部分电气技术人员将事故的主要原因归结到电机的大修上。这种大面积的电机损害事故,将事故原因归结到电机质量上,我对此提出异议。建议将视线转移到对励磁系统的分析上;事实证明,电机修理厂在电机返修中对其重点部位进行了种种加强措施,甚至于提高了绝缘等级,但效果并不显著。损坏事故仍不断出现。 2、励磁系统原因分析: 针对同步电动机起动运行过程中发生异常声响、电机定子绕组过热、起动绕组笼条开焊、断裂等诸多现象,在排除电机质量原因引起事故的条件下,有必要对现行的励磁系统进行合理的分析,从而找出电机频繁损坏的真正原因:励磁系统设计不合理。 三、励磁系统存在的主要问题与电机故障原因的内在联系 1、励磁装置起动回路设计不合理,使同步电机经常处在脉振情形下起动。 原主电路为桥式半控励磁装置,其原理图如图1所示。 电机在起动过程中,在转子线圈内将感应一交变电势,其正半波通过ZQ形成回路,产生+if;而其负半波则通过KQ及RF形成回路,产生-if。由于负载电路不对称,形成+if与-if 电流不对称,if曲线如图2所示。电机定子电流因此也产生强烈脉振,其曲线如图3。电机因而遭受到脉振转矩的强烈振动。造成整个厂房大厅内都可以听到电机起动过程发出的强烈振动声。这种声音一直持续到电机起动结束才消失。

同步电机课后习题参考答案

14-1水轮发电机和汽轮发电机结构上有什么不同,各有什么特点? 14-2 为什么同步电机的气隙比同容量的异步电机要大一些? 14-3 同步电机和异步电机在结构上有哪些异同之处? 14-4 同步发电机的转速为什么必须是常数?接在频率是50Hz电网上,转速为150r/min的水轮发电机的极数为多少? 14-5 一台三相同步发电机S N=10kV A,cosφN=0.8(滞后),U N=400V,试求其额定电流I N和额定运行时的发出的有功功率P N和无功功率Q N。 14-6 同步电机在对称负载下稳定运行时,电枢电流产生的磁场是否与励磁绕组匝链?它会在励磁绕组中感应电势吗? 14-7 同步发电机的气隙磁场在空载状态是如何激励的,在负载状态是如何激励的? 14-8 隐极同步电机的电枢反应电抗与与异步电机的什么电抗具有相同的物理意义? 14-9 同步发电机的电枢反应的性质取决于什么,交轴和直轴电枢反应对同步发电机的磁场有何影响? 答案: 14-3 2p=40 14-4 I N=14.43A,P N=8kW,Q N=6 kvar

15-1 同步电抗的物理意义是什么?为什么说同步电抗是与三相有关的电抗,而它的值又是每相的值? 15-2 分析下面几种情况对同步电抗有何影响:(1)铁心饱和程度增加;(2)气隙增大;(3)电枢绕组匝数增加;(4)励磁绕组匝数增加。 15-9 (1) * 0E =2.236, (2) *I =0.78(补充条件: X*S 非=1.8) 15-10 (1) *0E =1.771, 0E =10.74kV , 4.18=θ 15-11 0 2.2846E * =, 013.85kv E =,32.63θ= 15-12 012534.88v E =,57.42ψ=,387.61A d I =,247.7A q I = 16-1 为什么同步发电机的稳态短路电流不大,短路特性为何是一直线?如果将电机的转速降到0.5n 1则短路特性,测量结果有何变化? 16-2 什么叫短路比,它与什么因素有关? 16-3 已知同步发电机的空载和短路特性,试画图说明求取Xd 非和Kc 的方法。 16-4 有一台两极三相汽轮同步发电机,电枢绕组Y 接法,额定容量S N =7500kV A ,额定电压U N =6300V ,额定功率因数cos φN =0.8(滞后),频率f =50Hz 。由实验测得如下数据: 空载实验 短路实验测得N k I I =时,A 208fk =I ,零功率因数实验I =I N ,U =U N 时测得A 433fN0=I 试求:(1)通过空载特性和短路特性求出X d 非和短路比;(2)通过空载特性和零功率因数特性求出X σ和I fa ;(3)额定运行情况下的I fN 和u ?。 16-5 一台15000kV A 的2极三相Y 联接汽轮发电机, kV 5.10N =U ,8.0cos N =?(滞 09.2*** (2)额定负载时的励磁电流标么值。

同步电动机的起动分析

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场) 气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX、BY、CZ三个在空间错开120 分布的线圈代表三相对称交流绕组。 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 感应电势有效值:每相感应电势的有效值为E0 =4.44fNψ Φ 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p ,即 f=pn/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间的夹角δ,δ称为功率角。

同步电动机经常出现的故障及原因分析

同步电动机经常出现的故障及原因分析 经常发现的故障现象有:①定子铁芯松动,运行中噪声大。②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。④转子线圈绝缘损伤,起动绕组笼条断裂。⑤转子磁极的燕尾楔松动、退出。⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。 2 传统励磁技术存在的缺陷 2.1 励磁装置起动回路及环节设计不合理 同步电动机励磁装置主回路中的主桥分为:全控桥式和半控桥式,下面分别以这两种方式分析。 ①半控桥式励磁装置:由三只大功率晶闸管和一只大功率二极管组成,如图1所示。电动机在起动过程中,存在滑差,在转子线圈内将感应-交变电势,其正半波通过ZQ形成回路,产生+if,其负半波则通过KQ,RF形成回路,产生-if,如图2所示,由于回路不对称,则形成的-if与+if也不对称,致使定子电流强烈脉动,波形如图3所示。使电动机因此而强烈振动,直到起动结束才消失。 ②全控桥工励磁装置:由6只大功率晶闸管组成,如图4所示。

在起动过程中,随着滑差减小,当转速达到50%以上时,励磁感应电流负半波通路时通时断,同样形成+if与-if电流不对称从而形成脉振转矩,造成电动机强烈振动。 ③投励时“转子位置角”不合理。无论是全控桥还是半控桥,电动机起动过程投励时,都产生 沉闷的冲击,这种冲击,同样会造成电机损害,这是“转子位置角”不合理所致。 以上所出现的脉振、投励时的冲击,并不一定一次性使电机损坏,但每次起动都会使电机产生疲劳,造成电机内部损害,积而久之,必然造成电机内部故障。 2.2 将GL型反时限继电器兼做失步保护 传流动磁装置将GL型继电器兼做失步保护,当电机失步时,它不能动作(如带风机类负载)或不及时动作(如带往复式压缩机类负载),使电动机或励磁装置损坏。 ①失励失步:是指同步电动机励磁绕组失去直流励磁或严重欠励磁,使同步电动机失去静态稳定,滑出同步,此时丢转不明显,负载基本不变,定子电流过流不大,电机无异常声音,GL型继电器往往拒动或动作时限加长,且失励失步值班人员-不易发现,待电动机冒烟时,已失步较长时间,已造成了电机或励磁装置损害。但不一定当场损坏电机,而是造成电机内部暗伤,经常出现电机冒烟后,停机检查又查不出毛病,电机还可以再投入运行。

保护

4.5 3~10 KV电动机的保护 4.5.1 设计规范对保护置要求 (1)对电压为3KV及以上的异步电动机和同步电动机的下列故障及异常运行方式,应装设相应的保护装置: 1)定子绕组相间短路; 2)定子绕组单相接地; 3)定子绕组过负荷; 4)定子绕组低电压; 5)同步电动机失步; 6)同步电动机失磁; 7)同步电动机出现非同步冲击电流。 (2)对电动机绕组及引出线的相间短路,装设相应的保护装置,应符合下列规定: 1)2MW以下的电动机,宜采用电流速断保护,保护装置宜采用两相式。 2)2MW及以上的电动机,或电流速断保护灵敏系数不符合要求的2MW以下电动机,应装设纵联差动保护。 3)保护装置应动作于跳闸。对于具有自动灭磁装置的同步电动机,保 护装置尚应动作于灭磁。 (3)对单相接的故障,当接地电流大于5A时,应装设有选择性的单相接地保护;当接地电流小于5A时可装设接地检测装置。 单相接地电流为10A及以上时保护装置动作于跳闸;单相接地电流为10A以下时,保护装置可动作于跳闸或信号。 (4)对电动机的过负荷应装设过负荷保护,并应符合下列规定:

1)生产过程中易发生过负荷的电动机应装设过负荷保护。保护装置应根据负荷特性,带时限作用于信号或跳闸。 2)起动或自起动困难、需要防止起动或自起动时间过长的电动机,应装设过负荷保护,保护装置应动作于跳闸。 (5)对母线电压短时降低或中断,应装设电动机低电压保护,并应符合下列规定: 1)当电源电压短时降低或短时中断后又恢复时,需要断开的次 要电动机和有备用自动投入机械的电动机,应装设低电压保护。 2)根据生产过程不允许或不需要自起动的电动机,应装设低电压保护 3)在电源电压长时间消失后须从电力网中自动断开的电动机,应装设低电压保护。 4)保护装置应动作于跳闸。 (6)对同步电动机失步,应装设失步保护。 失步保护带时限动作,对于重要电动机,动作于再同步控制回路;不能再同步或根据生产过程不需要再同步的电动机,应动作于跳闸。(7)对同步电动机失磁可引起母线电压严重降低,易装设专用失磁保护。失磁保护应带时限动作于跳闸。 (8)2MW及以上以及不允许非同步冲击的同步电动机,应装设防止电源短时中断在恢复时造成非同步冲击的保护。保护装置应确定保在电源恢复前动作。重要电动机的保护装置,应作用于再同步控制回路;不能再同步或根据生产过程不需要再同步的电动机,保护装置应动作于跳闸。 4.5.2 保护配置 3~10kV电动机的继电保护配置见表4—17

同步电动机经常出现的故障及原因分析(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 同步电动机经常出现的故障及原 因分析(通用版)

同步电动机经常出现的故障及原因分析(通 用版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 经常发现的故障现象有: ①定子铁芯松动,运行中噪声大。 ②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。 ③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。 ④转子线圈绝缘损伤,起动绕组笼条断裂。 ⑤转子磁极的燕尾楔松动、退出。 ⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电

动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。 XX设计有限公司 Your Name Design Co., Ltd.

同步电动机常见启动故障分析及处理

同步电动机常见启动故障分析及处理 摘要:同步电动机能否顺利启动,不仅影响到同步电动机自身的安全,还影响到生产系统,为了快速、准确的发现故障、排除故障,对同步电动机常见的启动故障分析就显得非常必要。文章结合维修实践,分析了同步电动机常见启动故障,并给出了具体的处理措施,为今后同步电动机启动故障的维修提供了方法,具有一定的参考价值。 0 引言 同步电动机由于其功率因数高,运行效率高,稳定性好,转速恒定等优点广泛应用于工业生产中。熟悉同步电动机启动故障,并及时排除故障,对电 动机本身及生产系统都具有现实意义,为了能及时、准确排除故障,必须对 同步电动机常见故障进行详细的分析。 1 常见故障 1)同步电动机通电后,不能启动。 同步电动机接通电源后,不能启动和运行,一般有以下几方面的原因:(一)电源电压过低,由于同步电动机启动转矩正比于电压的平方,电源电压过低,使得电机的启动转矩大幅下降,低于负载转矩,从而无法启动,对此,应提高电源电压,以增大电机的启动转矩。(二)电动机本身的故障检查电动机定、转子绕组有无断、短路,开焊和连接不良等故障,这些故障都使电机无法建立起额定的磁场强度,从而电动机无法启动;检查电动机轴承有无损坏,端盖有无松动,如果轴承损坏或端盖松动,造成转子下沉,与定子铁心相擦,从而导致电机无法启动。对定、转子绕组故障可用低压摇表,逐步查找,视具体情况,采取相应的处理方法,对轴承和端盖松动故障,每次开车前都应盘车,看电动机转子转动是否灵活,如轴承(或轴瓦)损坏,应及时更换。(三)控制装置故障此类故障多为励磁装置的直流输出电压调整不当或无输出,造成电动机的定子电流过大,致使电机过流保护动作或引起电机的失磁运行,此时,检查励磁装置的输出电压、电流是否正常,电压、电流波形是否正常,如电压或电流波形不正常,为了节省时间,更换备用触发板。(四)机械故障如被拖动的机械卡住,

电动机保护措施与装置

电动机知识 电动机保护措施与装置 为了防止电动机发生故障而损坏,甚而使事故扩大,对电动机一般有以下几种电气保护措施: 1)短路保护对电动机及其线路的短路大电流作及时的切断保护,一般采用熔丝或断路器的电磁瞬时脱扣作短路保护。 2)过载(过负荷)保护电动机一般采用热继电器(与接触器配合)或断路器的热脱扣器进行过载保护。 3)断相运行保护(又称缺相运行保护或两相运行保护)缺相运行保护也是一种过载保护,在条件允许时,应单独设置缺相运行保护装置。常用保护方法有: (1)采用带断相保护装置的热继电器作缺相保护; (2)欠电流继电器断相保护; (3)零序电压继电器断相保护; (4)断丝电压继电器断相保护; (5)利用速饱和电流互感器保护; (6)电子式断相保护线路。 4)失压和欠压(低电压)保护为了防止电动机在过低电压下起动和运行,一般采用交流接触器的电磁机构,断路器的失压脱扣器,自耦减压起动器的欠压脱扣器及电压继电器等。 5)接地或接零保护当电动机外壳带电时,防止人接触及机壳而触电的保护装置。 〃电动机启动困难或根本不能起动的原因及 〃锤片式粉碎机的常见故障及排除方法 〃合理选用配电变压器的容量 〃电动机正常运行时对三相电压的要求 〃实现电动机继电接触控制需要基本的控制

〃潜水排污泵及井用潜水电泵四大常见冷却 〃电动机的正反转控制 〃电机发生以下故障应立即切断电源 〃冬季收藏农机具要七防 Domain:https://www.doczj.com/doc/8211063799.html, dnf辅助More:d2gs2f 〃电动机单线远程正反转控制电路图_电路 〃同步电动机的结构_电路图 〃直流无刷电动机原理与控制_电路图 〃塔机电气系统维护及故障排查方法 〃电动机工作电流超限报警电路_电路图 〃申励电动机的半波调速电路_电路图 〃高压数字绝缘电阻测试仪厂家为您解读电 〃三个接触器控制的星形-三角形降压起动 〃电动机刀开关控制线路_电路图 〃五菱之光微型车启动困难、无怠速、易熄 〃海尔XQG52-HDY800等玫瑰钻系列滚筒式洗 〃接触器控制的单向运行控制线路_电路图 〃防爆油桶泵的优势分析 〃频器容量问题解决注意事项简析 〃基于UC3637的直流电动机PWM控制电路图_ 〃电动机轴承异响故障分析及应对措施 〃多台电动机逐一星形三角形起动电路_电 〃变频器的暂停减速功能 〃变频器过压类故障的分析 〃变频器启动前的直流制动功能 〃变频器与电动机的距离 收录时间:2014年02月24日15:05:08 来源:《高效饲料加工技术问答》作者:

同步电动机计算例题

同步电动机计算例题1 例:某工厂电力设备所消耗的总功率为2400kW ,cos 0.8?=(滞后)。今欲添置功率为400kW 的电动机。现有400kW 、cos 0.8?=(滞后)的感应电动机和400kW 、cos 0.8?=(超前)的同步电动机可供选用,试问在这两种情况下,工厂的总视在功率和功率因数各为多少(电动机的损耗不计)? 解:工厂原来所耗功率情况: 有功功率 2400P kW =,视在功率 24003000cos 0.8 P S kVA ?===, 由于cos 0.8?=(滞后),故sin 0.6?=,于是无功功率为 sin 30000.61800Q S kvar ?==?=。添置电动机运行示意图及相量图如下图。 1、选用感应电动机时 总有功功率()'24004002800P kW kW =+=, 总无功功率 '40018000.621000.8Q kvar kvar ??=+?= ??? (滞后)。 总视在功率'3500S kVA ===,总功率因数 ' ' 'cos 0.8P S ?==(滞后)不变。 2、选用同步电动机时

从相量图知,同步电动机电流超前电网电压,同步电动机电流的无功分量和原负载电流的无功分量反相位,同步电动机电流的有功分量和原负载电流的有功分量同相位。 总有功功率()'' 24004002800P kW kW =+=, 总无功功率 ''4001800(0.6)15000.8Q kvar kvar ??=+-?= ??? (滞后)。 总视在功率 ''3176S kVA ===, 总功率因数 ''''''2800cos 0.88153176 P S ?===(滞后)。 计算表明,若选用同步电动机,则工厂所需的总视在功率较少,总功率因数提高。

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

同步电机课后习题参考答案

14- 1 水轮发电机和汽轮发电机结构上有什么不同,各有什么特点? 14- 2 为什么同步电机的气隙比同容量的异步电机要大一些? 14-3 同步电机和异步电机在结构上有哪些异同之处? 14-4 同步发电机的转速为什么必须是常数?接在频率是50Hz 电网上,转速为150r/min 的水轮发电机的极数为多少? 14-5 一台三相同步发电机S N=10kVA,cosφN=0.8(滞后),U N=400V,试求其额定电流I N 和额定运行时的发出的有功功率P N 和无功功率Q N。 14-6 同步电机在对称负载下稳定运行时,电枢电流产生的磁场是否与励磁绕组匝链?它会在励磁绕组中感应电势吗? 14-7 同步发电机的气隙磁场在空载状态是如何激励的,在负载状态是如何激励的? 14-8 隐极同步电机的电枢反应电抗与与异步电机的什么电抗具有相同的物理意义? 14-9 同步发电机的电枢反应的性质取决于什么,交轴和直轴电枢反应对同步发电机的磁场有何影响? 答案: 14-3 2p=40 14-4 I N =14.43A ,P N =8kW ,Q N=6 kvar 1 / 9

2 / 9 15- 1 同步电抗的物理意义是什么?为什么说同步电抗是与三相有关的电抗,而它的值又是每 相 的值? 15- 2 分析下面几种情况对同步电抗有何影响: (1)铁心饱和程度增加; (2)气隙增大; (3) 电枢绕组匝数增加; ( 4)励磁绕组匝数增加。 15-9 (1) E 0 =2.236 , (2) I =0.78 ( 补充条件: X*S 非=1.8) 15-10 (1) E 0 =1.771, E 0 =10.74kV , 18.4 15-11 E 0 2.2846 , E 0 13.85kv , 32.63 15-12 E 0 12534.88v , 57.42 , I d 387.61A , I q 247.7A 16- 1 为什么同步发电机的稳态短路电流不大,短路特性为何是一直线?如果将电机的转速降 到 0.5n 1 则短路特性,测量结果有何变化? 16- 2 什么叫短路比,它与什么因素有关? 16- 3 已知同步发电机的空载和短路特性,试画图说明求取X d 非 和 Kc 的方法。 16-4 有一台两极三相汽轮同步发电机,电枢绕组 Y 接法,额定容量 S N =7500kV A ,额定 电压 U N N 短路实验测得 k N 时, fk ,零功率因数实验 I=I N ,U=U N 时测得 fN0 试求:(1)通过空载特性和短路特性求出 X d 非和短路比;(2)通过空载特性和零功率因数特性 求出 X σ和 I fa ;(3)额定运行情况下的 I fN 和 u 。 16-5 一台 15000kVA 的 2 极三相 Y 联接汽轮发电机, U N 10.5kV ,cos N 0.8(滞 * *d p a 1(2)额定负载时的励磁电流标么值。

10KV电动机保护

10(6)kV同步电动机断电失步保护及同ZCH和BZT装置的配合 作者:尹世华/张铁锴 摘要:介绍了大型同步电动机断电失步保护及同ZCH,BZT装置的配合实施方案及解决办法。论述了电源短时中断时同步电动机的过渡过程及对ZCH和BZT的影响;介绍了同步电动机断电失步保护的典型接线。 关键词:同步电动机功率因数ZCH BZT 失步保护 大型同步电动机有许多优点,尤其是能发送无功功率,提高功率因数,节约电能。它的运行安全性和连续性对于生产具有重大影响。同步电动机的控制相对异步机来讲也复杂一些,主要体现在电机起动过程控制以及运行时的控制。起动控制主要是异步运行牵入同步的过程,而运行的控制主要体现在同步机受到各种扰动后的控制。影响同步机正常运行的扰动主要体现在:①带励失步。电机带有正常或接近正常的直流励磁,而定转子磁场又不同步。这主要是因为相邻线路短路后母线电压大幅度瞬间降低或母线电压长时间降低以及电机负荷突增等因素。②欠励失步。直流励磁系统失去直流励磁或严重欠励而使电机失步。③断电失步。当供电系统故障或电源切换时,使同步机的电源出现短时间中断而致使电机失步。 1 电源短时中断时同步电动机的过渡过程及对ZCH,BZT的影响 (1) 断电时同步电动机的过渡过程 断电失步易使同步机遭受到严重损伤的主要原因是在电源恢复瞬间电机遭受到的非同期冲击,此时的非同期冲击包括非同期电流和非同期转矩,其值往往远大于电机出口短路时的冲击电流和冲击转矩,是电机设备所不能承受的。在实际生产中断电失步往往是由于短路故障造成的,图1 所示为一典型的电气系统接线。

当K1或K2点发生短路时,在切除短路故障的同时,同步机的电源就中断了,在ZCH或BZT装置动作后,供电电源将重新恢复。若电源中断时间过长(一般大于0.2 s) ,超出同步机的稳定极限,同步电动机就会失步。从短路开始至电源恢复这一过程中,同步机的各项参数变化见图2,其中| u| =f (t) 为电压幅值随时间变化的曲线;n = f(t) 为同步机转速随时间变化的曲线,fu=f(t) 为同步机机端电压频率随时间变化的曲线。 在电源中断的短时间内,依靠同步机本身的惯性以及直流励磁,同步机将由电动工况转为发电工况,向系统发送无功功率,此时机端母线电压不但不会降低,反而会有一定程度的上升,而其频率会随电机转

同步电机习题答案

同步电机习题与答案 6.1 同步电机的气隙磁场,在空载时是如何激励的?在负载时是如何激励的?[答案见后] 6.2 为什么大容量同步电机采用磁极旋转式而不采用电枢旋转式? [答案见后] 6.3 在凸极同步电机中,为什么要采用双反应理论来分析电枢反应? [答案见后] 6.4 凸极同步电机中,为什么直轴电枢反应电抗X ad大于交轴电枢反应电抗X aq?[答案见后] 6.5 测定同步发电机的空载特性和短路特性时,如果转速降为原来0.95n N,对试验结果有什么影响? [答案见后] 6.6 一般同步发电机三相稳定短路,当I k=I N时的励磁电流I fk和额定负载时的 励磁电流I fN 都已达到空载特性的饱和段,为什么前者X d 取不饱和值而后者取饱 和值?为什么X q 一般总是采用不饱和值? [答案见后] 6.7 为什么同步发电机突然短路,电流比稳态短路电流大得多?为什么突然短路电流大小与合闸瞬间有关? [答案见后] 6.8 在直流电机中,E>U还是U>E是判断电机作为发电机还是作为电动机运行的依据之一,在同步电机中,这个结论还正确吗?为什么? [答案见后]

6.9 当同步发电机与大容量电网并联运行以及单独运行时,其cosφ是分别由什么决定的?为什么? [答案见后] 6.10 试利用功角特性和电动势平衡方程式求出隐极同步发电机的V形曲线。[答案见后] 6.11 两台容量相近的同步发电机并联运行,有功功率和无功功率怎样分配和调节? [答案见后] 6.12 同步电动机与感应电动机相比有何优缺点? [答案见后] 6.13 凸极式同步发电机在三相对称额定负载下运行时,设其负载阻抗为R+jX,试根据不考虑饱和的电动势相量图证明下列关系式 [答案见后] 6.14 试述直流同步电抗X d、直轴瞬变电抗X′d、直轴超瞬变电抗X"d的物理意义和表达式,阻尼绕组对这些参数的影响? [答案见后] 6.15 有一台三相汽轮发电机,P N=25000kW,U N=10.5kV,Y接法,cosφN=0.8(滞后),作单机运行。由试验测得它的同步电抗标么值为X* =2.13。电枢电 t 阻忽略不计。每相励磁电动势为7520V,试分析下列几种情况接上三相对称负载时的电枢电流值,并说明其电枢反应的性质:

电动机纵联差动保护

电动机纵联差动保护 一、比率制动差动保护 (1)电动机二次额定电流 1 n TA I n =? (2)差动保护最小动作电流 I s =K rel (·K cc ·K er +Δm )I n ap K K rel ——可靠系数,取K rel =2 ap K ——外部短路切除引起电流互感器误差增大的系数(非周期分量系数)=2 ap K K cc ——同型系数,电流互感器同型号时取K cc =0.5,不同型号时K cc =1 K er ——电流互感器综合误差取K er =0.1 Δm ——通道调整误差,取Δm =0.01~0.02 I s =2 (2×0.5×0.1+0.02)I n =0.24 I n 一般情况下,取I s =(0.25~0.35)I n ,当不平衡电流较大时,I s =0.4I n (3)确定拐点电流I t 有些装置中拐点电流是固定的,如I t = I n ;当拐点电流不固定时可取I t = (0.5~0.8)I n (4)确定制动特性斜率s 按躲过电动机最大起动电流下差动回路的不平衡电流整定 最大起动电流I st ·max 下的不平衡电流I umb ·max 为 I umb ·max =(·K cc ·K er +Δm ) I st ·max ap K =2,K cc =0.5,K er =0.1,Δm=0.02,I st ·max =K st I n (取I st =10) ap K I umb ·max =(2×0.5×0.1+0.02)10I n =1.2I n 比率制动特性斜率为 t n st s umb rel I I K I I K s ??= ?max K rel =2,当I s =0.3 I n ,I t =0.8 I n ,K st =7 2 1.20.30.3470.8n n n n I I s I I ×?==? 一般取s =0.3~0.5 (5)灵敏系数计算 电动机机端最小两相短路电流为 (2)1 2K L I x x = ?′+ x ′- 电动机供电系统处最小运行方式时折算到S B 基准容量的系统阻抗标幺值 U B - 电动机供电电压级的平均额定电压U B =6.3(10.5)kV X L - 电动机供电电缆折算到S B 基准容量的阻抗标幺值 制动电流(2)res TA 2K I I n =相应的动作电流为

同步电动机经常出现的故障及原因分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.同步电动机经常出现的故障及原因分析正式版

同步电动机经常出现的故障及原因分 析正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 经常发现的故障现象有: ①定子铁芯松动,运行中噪声大。 ②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。 ③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。 ④转子线圈绝缘损伤,起动绕组笼条断裂。 ⑤转子磁极的燕尾楔松动、退出。 ⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机

仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。 ——此位置可填写公司或团队名字——

CSC 237A数字式电动机保护装置

CSC 237A数字式电动机综合保护测控装置 1装置简介 本装置适用于10kV及以下各种中性点非直接接地系统,作为大中型异步电动机(数百千瓦以上) 相间故障、过负荷、堵转等综合保护。可在开关柜就地安装。 2 主要功能及技术参能 2.1 保护功能 ?反应相间故障的速断保护 ?反应堵转的过电流保护 ?过负荷保护(可选择跳闸或仅告警发信) ?长起动保护 ?过热保护(过热跳闸、过热告警、热积累记忆功能) ?不平衡保护(断相/反相,负序过流保护,可选择定时限或反时限) ?接地保护(零序过流保护,可选择跳闸或仅告警发信) ?低电压保护 ?F-C过流闭锁 ?非电量保护 2.2 测控功能 ?15路开入遥信采集、装置遥信变位、事故遥信 ?正常断路器遥控分合 ?Ua、Ub、Uc、Ia、Ic、P、Q、COSф等模拟量的遥测 ?各种事件SOE等

2.3 技术参数

3 保护元件 3.1 长起动保护 装置测量电动机起动时间Tstart的方法:当电动机的最大相电流从零突变到10%Ie时开始计时,直到起动电流过峰值后下降到120%Ie时为止,之间的历时称为Tstart。(Ie为电动机额定电流。)电动机起动时间过长会造成转子过热,当装置实际测量的起动时间超过整定的允许起动时间Tstart时,保护动作于跳闸。

图1 异步电动机起动电流特性 为了降低起动电流,减少对电网的无功冲击,大型的异步电动机常常串联电抗器或者电阻,以实现降压起动;起动完毕后短接串联电抗器或者电阻。本装置设置了专用的控制字,如果选择“降压起动方式投入”,则装置在起动完毕以后,给出一付“投全压”的接点,以便及时短接分压电抗器,使电动机进入额定电压运行。 为了试验方便,当CSC 237保护装置检测到电动机在“起动过程中”时(即上图中的Tstart时段),面板MMI最下一指示绿灯(备用)点亮。 3.2 过热保护 过热保护综合考虑了电动机正序、负序电流所产生的热效应,为电动机各种过负荷引起的过热提供保护,也作为电动机短路、起动时间过长、堵转等的后备。 用等效电流Ieq来模拟电动机的发热效应,即: Ieq= 2 2 2 2 1 1 I K I K+ 式中:Ieq-等效电流 I1-正序电流 I2-负序电流 K1-正序电流发热系数,电动机起动过程中取0.5,电动机起动结束后取1.0 K2-负序电流发热系数 根据电动机的发热模型,电动机的动作时间t和等效运行电流Ieq之间的特性曲线由下列公式给出:

实验三三相同步电动机

实验报告 实验名称:三相同步电动机 小组成员:许世飞许晨光杨鹏飞王凯征 一.实验目的 1.掌握三相同步电动机的异步起动方法。 2.测取三相同步电动机的V形曲线。 3.测取三相同步电动机的工作特性。 二.预习要点 1.三相同步电动机异步起动的原理及操作步骤。 2.三相同步电动机的V形曲线是怎样的?怎样作为无功发电机(调相机)?3.三相同步电动机的工作特性怎样?怎样测取? 三.实验项目 1.三相同步电动机的异步起动。 ≈0时的V形曲线。 2.测取三相同步电动机输出功率P 2 3.测取三相同步电动机输出功率P =0.5倍额定功率时的V 形曲线。 2 4.测取三相同步电动机的工作特性。 四.实验设备及仪器 1.实验台主控制屏; 2.电机导轨及转速测量; 3.功率、功率因数表(NMCL-001); 4.同步电机励磁电源(含在主控制屏左下方,NMEL-19); 5.直流电机仪表、电源(含在主控制屏左下方,NMEL-18); 6.三相可调电阻器900Ω(NMEL-03); 7.三相可调电阻器90Ω(NMEL-04); 8.旋转指示灯及开关板(NMEL-05A);

9.三相同步电机M08; 10.直流并励电动机M03。 五.实验方法 被试电机为凸极式三相同步电动机M08。 1.三相同步电动机的异步起动 实验线路图如图3-1。 实验开始前,MEL-13中的“转速控制”和“转矩控制”选择开关扳向“转矩控制”,“转矩设定”旋钮逆时针到底。 R 的阻值选择为同步发电机励磁绕组电阻的10倍(约90欧姆),选用NMEL-04中的90Ω电阻。 开关S 选用NMEL-05。 同步电机励磁电源(NMEL-19)固定在控制屏的右下部。 a .把功率表电流线圈短接,把交流电流表短接,先将开关S 闭合于励磁电流源端,启动励磁电流源,调节励磁电流源输出大约0.7A 左右,然后将开关S 闭合于可变电阻器R (图示左端)。 b .把调压器退到零位,合上电源开关,调节调压器使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。 c .当转速接近同步转速时,把开关S 迅速从左端切换闭合到右端,让同步电动机励磁绕组加直流励磁而强制拉入同步运行,异步起动同步电动机整个起动过程 图4-5 三相同步电动机接线图(MCL-II、MEL-IIB)图3-1 三相同步电动机接线图(MCL-11、MEL-11B )

永磁同步电机综合保护器工作原理

永磁同步电机工作原理 同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 一、发电机获得励磁电流的几种方式 1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。 2、交流励磁机供电的励磁方式,现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100200HZ的中频发电机,而交流副励磁机则采用400500HZ的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。 3、无励磁机的励磁方式: 在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和维护工作量少等优点。自复励磁方式除没有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。 二、发电机与励磁电流的有关特性 1、电压的调节 自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统。无功负荷电流是造成发电机端电压下降的主要原因,当励磁电流不变时,发电机的端

相关主题
文本预览
相关文档 最新文档