高中数学人教A版必修2空间直角坐标系讲义
- 格式:doc
- 大小:132.00 KB
- 文档页数:5
空间直角坐标系【教学目标】1。
掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力。
2.解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探索的精神.【重点难点】教学重点:在空间直角坐标系中确定点的坐标.教学难点:通过建立适当的直角坐标系确定空间点的坐标,以及相关应用。
【课时安排】1课时【教学过程】导入新课大家先来思考这样一个问题,天上的飞机的速度非常的快,即使民航飞机速度也非常快,有很多飞机时速都在1 000 km以上,而全世界又这么多,这些飞机在空中风驰电掣,速度是如此的快,岂不是很容易撞机吗?但事实上,飞机的失事率是极低的,比火车,汽车要低得多,原因是,飞机都是沿着国际统一划定的航线飞行,而在划定某条航线时,不仅要指出航线在地面上的经度和纬度,还要指出航线距离地面的高度.为此我们学习空间直角坐标系,教师板书课题:空间直角坐标系。
推进新课新知探究提出问题①在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示?②在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?③在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?④观察图1,体会空间直角坐标系该如何建立.⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?讨论结果:①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示.②在初中,我们学过平面直角坐标系,平面直角坐标系是以一点为原点O,过原点O分别作两条互相垂直的数轴Ox和Oy,xOy 称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:①互相垂直;②原点重合;③通常取向右、向上为正方向;④单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y).③在空间,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来.④观察图2,OABC—D′A′B′C′是单位正方体,我们类比平面直角坐标系的建立来建立一个坐标系即空间直角坐标系,以O 为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长度,建立三条数轴Ox,Oy,Oz称为x轴、y轴和z轴,这时我们说建立了一个空间直角坐标系O-xyz,其中O叫坐标原点,x轴、y轴和z轴叫坐标轴.如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy平面,yOz平面,zOx 平面.由此我们知道,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长.图1图1表示的空间直角坐标系也可以用右手来确定。
第四章 § 4.3 空间直线坐标系4.3.1 空间直角坐标系学习目标1.了解空间直角坐标系的建系方式;2.掌握空间中任意一点的表示方法;3.能在空间直角坐标系中求出点的坐标.问题导学题型探究达标检测问题导学 新知探究 点点落实知识点 空间直角坐标系思考1 在数轴上,一个实数就能确定一个点的位置.在平面直角坐标系中,需要一对有序实数才能确定一个点的位置.为了确定空间中任意一点的位置,需要几个实数?答案 三个.思考2 空间直角坐标系需要几个坐标轴,它们之间什么关系?答案 空间直角坐标系需要三个坐标轴,它们之间两两相互垂直.1.空间直角坐标系及相关概念(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴: ,这样就建立了一个 (2)相关概念: 叫做坐标原点,叫做坐标轴,通过x 轴、y 轴、z 轴空间直角坐标系Oxyz x 轴、y 轴、z 轴两个坐标轴每点O xOy yOz zOxx 轴y 轴z 轴3.空间一点的坐标空间一点M 的坐标可以用 来表示,_________________叫做点M 在此空间直角坐标系中的坐标,记作 ,其中叫做点M 的横坐标,叫做点M 的纵坐标, 叫做点M 的竖坐标.有序实数组(x ,y ,z )有序实数组(x ,y ,z )(x ,y ,z )x y z题型探究 重点难点 个个击破类型一 求空间点的坐标例1 (1)如图,在长方体ABCD-AB1C1D1中,|AD|=|BC|=3,|AB|=5,1|AA1|=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.(2)在棱长为a的正四棱锥P-ABCD中,建立适当的空间直角坐标系.①写出四棱锥P-ABCD各个顶点的坐标;②写出棱PA的中点M的坐标.跟踪训练1 在棱长为1的正方体ABCD—AB1C1D1中,E、F分别是D1D、1BD的中点,G在棱CD上,且|CG|= |CD|,H为C1G的中点,试建立适当的坐标系,写出E、F、G、H的坐标.类型二 已知点的坐标确定点的位置例2 在空间直角坐标系Oxyz中,作出点P(5,4,6).解 方法一 第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图所示),即得点P.方法二 以O为顶点构造长方体,使这个长方体在点O处的三条棱分别在x轴、y轴、z轴的正半轴上,且棱长分别为5,4,6,则长方体与顶点O相对的顶点即为所求点P.跟踪训练2 在空间直角坐标系Oxyz中,点P(-2,0,3)位于( )AA.xOz平面内B.yOz平面内C.y轴上D.z轴上解析 因为点P的纵坐标y=0,且x,z均不为0,故点P位于xOz平面内.类型三 空间中点的对称问题例3 求点A(1,2,-1)关于坐标平面xOy及x轴对称的点的坐标.解 过A作AM⊥平面xOy于M,并延长到C,使|AM|=|CM|,则A与C关于坐标平面xOy对称且C(1,2,1).过A作AN⊥x轴交x轴于N,并延长到点B,使|AN|=|NB|,则A与B关于x轴对称且B(1,-2,1),∴A(1,2,-1)关于坐标平面xOy对称的点为C(1,2,1),关于x轴对称的点为B(1,-2,1).跟踪训练3 已知点P(2,3,-1),求:(1)点P关于各坐标平面对称的点的坐标;解 设点P关于xOy坐标平面的对称点为P′,则点P′在x轴上的坐标及在y轴上的坐标与点P的坐标相同,而点P′在z轴上的坐标与点P在z轴上的坐标互为相反数.所以,点P关于xOy坐标平面的对称点P′的坐标为(2,3,1).同理,点P关于yOz,xOz坐标平面的对称点的坐标分别为(-2,3,-1),(2,-3,-1).(2)点P关于各坐标轴对称的点的坐标;解 设点P关于x轴的对称点为Q,则点Q在x轴上的坐标与点P的坐标相同,而点Q在y轴上的坐标及在z轴上的坐标与点P在y轴上的坐标及在z轴上的坐标互为相反数.所以,点P关于x轴的对称点Q的坐标为(2,-3,1).同理,点P关于y轴、z轴的对称点的坐标分别为(-2,3,1),(-2,-3,-1).(3)点P关于坐标原点对称的点的坐标.解 点P(2,3,-1)关于坐标原点对称的点的坐标为(-2,-3,1).达标检测 451231.点P(a,b,c)到坐标平面xOy的距离是( )DA. B.|a| C.|b| D.|c|解析 点P在xOy平面的射影的坐标是P′(a,b,0),所以|PP′|=|c|.2.点P(1,4,-3)与点Q(3,-2,5)的中点坐标是( )C A.(4,2,2) B.(2,-1,2)C.(2,1,1)D.(4,-1,2)解析 设点P与Q的中点坐标为(x,y,z),3.在空间直角坐标系中,已知点A(-1,2,-3),则点A在yOz平面内射(0,2,-3)影的点的坐标是__________.解析 由空间直角坐标系中点的坐标的确定可知,点A在yOz平面内的射影的点的坐标是(0,2,-3).4.点P (1,1,1)关于xOy 平面的对称点P 1的坐标为____________;点P 1关于z 轴的对称点P 2的坐标为________________.解析 点P (1,1,1)关于xOy 平面的对称点P 1的坐标为(1,1,-1),点P 1关于z 轴的对称点P 2的坐标为(-1,-1,-1).(1,1,-1)(-1,-1,-1)5.如图,正四棱柱ABCD-A1B1C1D1(底面为正方形的直棱柱)中,|AA1|=2|AB|=4,点E在CC1上且|C1E|=3|EC|.试建立适当的坐标系,写出点B,C,E,A1的坐标.解 以点D为坐标原点,射线DA,DC,DD1为x轴、y轴、z轴的正半轴,建立如图所示的空间直角坐标系Dxyz.依题设,B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).规律与方法1.空间中确定点M坐标的三种方法:(1)过点M作MM1垂直于平面xOy,垂足为M1,求出M1的x坐标和y坐标,再由射线M1M的指向和线段MM1的长度确定z的坐标.(2)构造以OM为体对角线的长方体,由长方体的三个棱长结合点M的位置,可以确定点M的坐标.(3)若题中所给的图形中存在垂直于坐标轴的平面,或点M在坐标轴或坐标平面上,则利用这一条件,再作轴的垂线即可确定点M的坐标.2.求空间对称点的规律方法(1)空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.(2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.。
4.3 空间直角坐标系[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P134~P137,回答下列问题.(1)平面直角坐标系由两条互相垂直的数轴组成,设想空间直角坐标系由几条数轴组成?其相对位置关系如何?提示:三条交于一点且两两互相垂直的数轴.(2)建立了空间直角坐标系以后,空间中任意一点M对应的三个有序实数如何找到呢?提示:如图所示,设点M是空间的一个定点,过点M分别作垂直于x轴、y轴和z轴的平面,依次交x轴,y轴和z轴于点P、Q和R.设点P、Q和R在x轴、y轴和z轴上的坐标分别是x,y和z,那么点M就对应唯一确定的有序实数组(x,y,z).(3)设点P1(x1,y1,z1),P2(x2,y2,z2)在xOy平面上的射影分别为M、N.①M、N的坐标是什么?点M、N之间的距离如何?②若直线P1P2是xOy平面的一条斜线,点P1,P2间的距离如何?提示:①M(x1,y1,0),N(x2,y2,0);|MN|=x1-x22+y1-y22.②如图,在Rt△P1HP2中,|P1H|=|MN|=x1-x22+y1-y22,根据勾股定理,得|P1P2|=|P1H|2+|HP2|2=x1-x22+y1-y22+z1-z22.2.归纳总结,核心必记(1)空间直角坐标系及相关概念①空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了空间直角坐标系Oxyz.②相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.(3)空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M 在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫点M的横坐标,y叫点M的纵坐标,z叫点M的竖坐标.(4)空间两点间的距离公式①点P(x,y,z)到坐标原点O(0,0,0)的距离,|OP|=x2+y2+z2.②任意两点P1(x1,y1,z1),P2(x2,y2,z2)间的距离,|P1P2|=x1-x22+y1-y22+z1-z22.[问题思考](1)给定的空间直角坐标系下,空间任意一点是否与有序实数组(x,y,z)之间存在唯一的对应关系?提示:是.给定空间直角坐标系下,空间给定一点其坐标是唯一的有序实数组(x,y,z);反之,给定一个有序实数组(x,y,z),空间也有唯一的点与之对应.(2)空间两点间的距离公式对在坐标平面内的点适用吗?提示:适用.空间两点间的距离公式适用于空间任意两点,对同在某一坐标平面内的两点也适用.[课前反思]通过以上预习,必须掌握的几个知识点.(1)怎样建立空间直角坐标系?如何确定空间一点的坐标?;(2)空间两点间的距离公式是什么?怎样用?.(1)如图数轴上A点、B点.(2)如图在平面直角坐标系中,P、Q点的位置.(3)下图是一个房间的示意图,我们如何表示板凳和气球的位置?[思考1] 上述(1)中如何确定A、B两点的位置?提示:利用A、B两点的坐标2和-2.[思考2] 上述(2)中如何确定P、Q两点的位置?提示:利用P、Q两点的坐标(a,b)和(m,n).[思考3] 对于上述(3)中,空间中如何表示板凳和气球的位置?提示:可借助于平面坐标系的思想建立空间直角坐标系,如图示.讲一讲1.建立适当的坐标系,写出底边长为2,高为3的正三棱柱的各顶点的坐标.(链接教材P135—例1)[尝试解答] 以BC的中点为原点,BC所在的直线为y轴,以射线OA所在的直线为x 轴,建立空间直角坐标系,如图.由题意知,AO=32×2=3,从而可知各顶点的坐标分别为A(3,0,0),B(0,1,0),C(0,-1,0),A1(3,0,3),B1(0,1,3),C1(0,-1,3).空间中点P坐标的确定方法(1)由P点分别作垂直于x轴、y轴、z轴的平面,依次交x轴、y轴、z轴于点P x、P y、P z,这三个点在x轴、y轴、z轴上的坐标分别为x、y、z,那么点P的坐标就是(x,y,z).(2)若题所给图形中存在垂直于坐标轴的平面,或点P在坐标轴或坐标平面上,则要充分利用这一性质解题.练一练1.如图所示,VABCD是正棱锥,O为底面中心,E,F分别为BC,CD的中点.已知|AB|=2,|VO|=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.解:∵底面是边长为2的正方形,∴|CE|=|CF|=1.∵O点是坐标原点,∴C(1,1,0),同样的方法可以确定B(1,-1,0),A(-1,-1,0),D(-1,1,0).∵V在z轴上,∴V(0,0,3).讲一讲2.在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.[尝试解答] (1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x=2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3(6,-3,-12).(1)求空间对称点的规律方法空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.(2)空间直角坐标系中,任一点P(x,y,z)的几种特殊对称点的坐标如下:①关于原点对称的点的坐标是P1(-x,-y,-z);②关于x轴(横轴)对称的点的坐标是P2(x,-y,-z);③关于y轴(纵轴)对称的点的坐标是P3(-x,y,-z);④关于z轴(竖轴)对称的点的坐标是P4(-x,-y,z);⑤关于xOy坐标平面对称的点的坐标是P5(x,y,-z);⑥关于yOz坐标平面对称的点的坐标是P6(-x,y,z);⑦关于xOz坐标平面对称的点的坐标是P7(x,-y,z).练一练2.保持本解中的点P不变,(1)求点P关于y轴的对称点的坐标;(2)求点P关于yOz平面的对称点的坐标;(3)求点P关于点N(-5,4,3)的对称点的坐标.解:(1)由于点P关于y轴对称后,它在y轴的分量不变,在x轴、z轴的分量变为原来的相反数,故对称点的坐标为P1(2,1,-4).(2)由于点P关于yOz平面对称后,它在y轴、z轴的分量不变,在x轴的分量变为原来的相反数,故对称点的坐标为P2(2,1,4).(3)设所求对称点为P3(x,y,z),则点N为线段PP3的中点,由中点坐标公式,可得-5=-2+x2,4=1+y2,3=4+z2,即x=2×(-5)-(-2)=-8,y=2×4-1=7,z=2×3-4=2,故P3(-8,7,2).(1)已知数轴上A点的坐标2,B点的坐标-2.(2)已知平面直角坐标系中P(a,b),Q(m,n).[思考1] 如何求数轴上两点间的距离?提示:|AB|=|x1-x2|=|x2-x1|.[思考2] 如何求平面直角坐标系中P、Q两点间距离?提示:d=|PQ|=a-m2+b-n2.[思考3] 若在空间中已知P1(x1,y1,z1),P2(x2,y2,z2),如何求|P1P2|?提示:与平面直角坐标系中两点的距离求法类似.讲一讲3.已知点A(-4,-1,-9),B(-10,1,-6),C(-2,-4,-3),试判断△ABC的形状.[尝试解答]|AB|=-4+2+-1-2+-9+2=49=7,|BC|=-10+2++2+-6+2=98=72,|AC|=-4+2+-1+2+-9+2=49=7,则|AB|=|AC|,且|AB|2+|AC|2=|BC|2,所以△ABC为等腰直角三角形.求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.练一练3.已知两点P(1,0,1)与Q(4,3,-1).(1)求P、Q之间的距离;(2)求z轴上的一点M,使|MP|=|MQ|.解:(1)|PQ|=-2+-2++2=22.(2)设M(0,0,z),由|MP|=|MQ|,得12+02+(z-1)2=42+32+(z+1)2,∴z=-6.∴M(0,0,-6).——————————[课堂归纳·感悟提升]—————————————1.本节课的重点是了解右手直角坐标系及有关概念,掌握空间直角坐标系中任意一点的坐标的含义,会建立空间直角坐标系,并能求出点的坐标,理解空间两点间距离公式的推导过程和方法,掌握空间两点间的距离公式及其简单应用.难点是空间直角坐标系的建立及求相关点的坐标、空间两点间距离公式及其简单运用.2.本节课要重点掌握的规律方法(1)空间直角坐标系中点的坐标的确定方法,见讲1.(2)求空间中对称点坐标的规律,见讲2.(3)空间两点间距离公式的应用,见讲3.3.本节课的易错点是空间中点的坐标的确定,如讲1.课下能力提升(二十六) [学业水平达标练]题组1 空间直角坐标系的建立及坐标表示 1.点(2,0,3)在空间直角坐标系中的( ) A .y 轴上 B .xOy 平面上 C .xOz 平面上 D .第一象限内解析:选C 点(2,0,3)的纵坐标为0,所以该点在xOz 平面上.2.在空间直角坐标系中,点P (4,3,-1)关于xOz 平面的对称点的坐标是( ) A .(4,-3,-1) B .(4,3,-1) C .(3,-4,1) D .(-4,-3,1)解析:选A 过点P 向xOz 平面作垂线,垂足为N ,则N 就是点P 与它关于xOz 平面的对称点P ′连线的中点,又N (4,0,-1),所以对称点为P ′(4,-3,-1).3.已知A (3,2,-4),B (5,-2,2),则线段AB 中点的坐标为________. 解析:设中点坐标为(x 0,y 0,z 0),则x 0=3+52=4,y 0=2-22=0,z 0=-4+22=-1,∴中点坐标为(4,0,-1). 答案:(4,0,-1)4.点P (1,2,-1)在xOz 平面内的射影为B (x ,y ,z ),则x +y +z =________. 解析:点P (1,2,-1)在xOz 平面内的射影为B (1,0,-1),∴x =1,y =0,z =-1,∴x +y +z =1+0-1=0.答案:05.如图,在长方体ABCD A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标.解:以A 为坐标原点,射线AB ,AD ,AA 1的方向分别为正方向建立空间直角坐标系,如图所示.分别设|AB |=1,|AD |=2,|AA 1|=4,则|CF |=|AB |=1,|CE |=12|AB |=12,所以|BE |=|BC |-|CE |=2-12=32.所以点E 的坐标为⎝ ⎛⎭⎪⎫1,32,0,点F 的坐标为(1,2,1).6.如图,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,求点D 的坐标.解:过点D 作DE ⊥BC ,垂足为E .在Rt △BDC 中,∠BDC =90°,∠DCB =30°,BC =2,得|BD |=1,|CD |=3,∴|DE |=|CD |sin 30°=32,|OE |=|OB |-|BE |=|OB |-|BD |cos 60°=1-12=12, ∴点D 的坐标为⎝ ⎛⎭⎪⎫0,-12,32.题组2 空间两点间的距离7.(2016·长春高一检测)已知点A (x,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( )A .-3或4B .6或2C .3或-4D .6或-2 解析:选D 由题意得x -2+-2+-2=26,解得x =-2或x =6.8.在空间直角坐标系中,正方体ABCD A 1B 1C 1D 1的顶点A 的坐标为(3,-1,2),其中心M 的坐标为(0,1,2),则该正方体的棱长为________.解析:由A (3,-1,2),中心M (0,1,2), 所以C 1(-3,3,2).正方体体对角线长为|AC 1|=[3--2+-1-2+-2=213,所以正方体的棱长为2133=2393.答案:2393[能力提升综合练]1.在长方体ABCD A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5 D .2 6解析:选B 由已知求得C 1(0,2,3),∴|AC 1|=29.2.点A (1,2,-1),点C 与点A 关于面xOy 对称,点B 与点A 关于x 轴对称,则|BC |的值为( )A .2 5B .4C .2 2D .27解析:选B 点A 关于面xOy 对称的点C 的坐标是(1,2,1),点A 关于x 轴对称的点B 的坐标是(1,-2,1),故|BC |=-2++2+-2=4.3.△ABC 在空间直角坐标系中的位置及坐标如图所示,则BC 边上的中线的长是( )A. 2 B .2 C. 3 D .3解析:选C BC 的中点坐标为M (1,1,0),又A (0,0,1), ∴|AM |=12+12+-2= 3.4.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( )A.62B. 3C.32 D.63解析:选A 设P (x ,y ,z ),由题意可知⎩⎪⎨⎪⎧x 2+y 2=1,y 2+z 2=1,x 2+z 2=1,∴x 2+y 2+z 2=32,∴x 2+y 2+z 2=62.5.在空间直角坐标系中,点(-1,b,2)关于y 轴的对称点是(a ,-1,c -2),则点P (a ,b ,c )到坐标原点O 的距离|PO |=________.解析:点(-1,b,2)关于y 轴的对称点是(1,b ,-2),所以点(a ,-1,c -2)与点(1,b ,-2)重合,所以a =1,b =-1,c =0,所以|PO |=12+-2+02= 2.答案: 26.在棱长为1的正方体ABCD A 1B 1C 1D 1中,F 是BD 的中点,G 在棱CD 上,且|CG |=14|CD |,E 为C 1G 的中点,则EF 的长为________.解析:建立如图所示的空间直角坐标系,D 为坐标原点,由题意,得F ⎝ ⎛⎭⎪⎫12,12,0,C 1(0,1,1),C (0,1,0),G ⎝⎛⎭⎪⎫0,34,0,则E ⎝ ⎛⎭⎪⎫0,78,12.所以|EF |=⎝ ⎛⎭⎪⎫0-122+⎝ ⎛⎭⎪⎫78-122+⎝ ⎛⎭⎪⎫12-02=418. 答案:4187.如图所示,在长方体ABCD A 1B 1C 1D 1中,|AB |=|AD |=3,|AA 1|=2,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 中点,求M 、N 两点间的距离.解:如图所示,分别以AB 、AD 、AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系.由题意可知C (3,3,0),D (0,3,0), ∵|DD 1|=|CC 1|=|AA 1|=2,∴C 1(3,3,2),D 1(0,3,2),A 1(0,0,2). ∵N 为CD 1的中点,∴N ⎝ ⎛⎭⎪⎫32,3,1. M 是A 1C 1的三分之一分点且靠近A 1点,∴M (1,1,2). 由两点间距离公式, 得|MN |=⎝ ⎛⎭⎪⎫32-12+-2+-2=212. 8.如图所示,直三棱柱ABC A 1B 1C 1中,|C 1C |=|CB |=|CA |=2,AC ⊥CB ,D ,E 分别是棱AB ,B 1C 1的中点,F 是AC 的中点,求DE ,EF 的长度.解:以点C 为坐标原点,CA 、CB 、CC 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系. ∵|C 1C |=|CB |=|CA |=2,∴C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,2),B 1(0,2,2), 由中点坐标公式可得,D (1,1,0),E (0,1,2),F (1,0,0), ∴|DE |=-2+-2+-2=5,|EF |=-2+-2+-2= 6.11。
(同步复习精讲辅导)北京市2014-2015学年高中数学空间直角坐
标系讲义新人教A版必修2
重难点易错点解析
题一
题面:有下列叙述
① 在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c);
②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c);
③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c);
④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。
其中正确的个数是()
A、1
B、2
C、3
D、4
题二
题面:已知点A(-3,1,4),则点A关于原点的对称点的坐标为()
A、(1,-3,-4)
B、(-4,1,-3)
C、(3,-1,-4)
D、(4,-1,3)
金题精讲
题一
题面:已知点A(-3,1,-4),点A关于x轴的对称点的坐标为()
A、(-3,-1,4)
B、(-3,-1,-4)
C、(3,1,4)
D、(3,-1,-4)
题二
题面:点(2,3,4)关于xoz 平面的对称点为( )
A 、(2,3,-4)
B 、(-2,3,4)
C 、(2,-3,4)
D 、(-2,-3,4)
题三 题面:点P (a ,b ,c )到坐标平面xOy 的距离是( )
A 、22a b +
B 、|a|
C 、|b|
D 、|c|
题四
题面:在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作yOz 平面的垂线PQ , 则垂足Q 的坐标是______________。
题五
题面:A (1,-2,11),B (4,2,3),C (6,-1,4)为三角形的三个顶点,则ABC ∆是( )
A 、直角三角形
B 、钝角三角形
C 、锐角三角形
D 、等腰三角形
题六
题面:若点A (2,1,4)与点P (x ,y ,z )的距离为5,则x ,y ,z 满足的关系式是_______________.
题七
题面:已知点A 在x 轴上,点B (1,2,0),且|AB 5则点A 的坐标是_________________.
题八
题面:以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为()
A、(1
2
,1,1) B、(1,
1
2
,1) C、(1,1,
1
2
) D、(
1
2
,
1
2
,1)
题九
题面:以棱长为1的正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴,建立空间直角坐标系,则面AA1B1B对角线交点的坐标为-__________。
题十
题面:设z为任意实数,相应的所有点P(1,2,z)的集合图形为__________。
题十一
题面:在空间直角坐标系中,方程x2-4(y-1)2=0表示的图形是()
A、两个点
B、两条直线
C、两个平面
D、一条直线和一个平面
思维拓展
题面:试写出三个点使得它们分别满足下列条件:
(1)三点连线平行于x轴;
(2)三点所在平面平行于xoy坐标平面;
学习提醒
类比平面,结合立体
讲义参考答案
重难点易错点解析
题一
答案:C
题二
答案:C
金题精讲
题一
答案:A
题二
答案:C
题三
答案:D
题四
答案:(023)
题五
答案:A
题六
答案:
222 (2)(1)(4)25 x y z
-+-+-=
题七
答案:(0,0,0)或(2,0,0)
题八
答案:C 题九
答案:(1
2
,0,
1
2
)
题十
答案:过点(1,2,0)且平行于z轴的一条直线。
题十一
答案:C
满分冲刺
题一
答案;C
题二
答案:29
思维拓展
答案:
(1)(1,2,3),(-2,1,3),(1,-1,3)(只要三点的纵坐标和竖坐标相等即可)。
(2)(1,2,3),(-2,1,3),(1,-1,3)(只要三点的竖坐标相等即可)。