2016-2017学年山东省临沂市蒙阴县八年级(下)期末数学试卷
- 格式:doc
- 大小:300.00 KB
- 文档页数:21
临沂市蒙阴第二学期八年级期末教学质量抽测数学试卷(时间:90分钟 分值:120分)一、选择题:将正确答案的代号填在下列答题框中(每小题3分,共30分).1.要使分式32-x 有意义,x 的取值范围是 A .x ≠3 B .3-≠x C .x ≠±3 D .3±=x2.某种花粉的直径为0.000562m 用科学记数法表示是A .5.632×103mB .5.62×104mC .5.62×10—4mD .5.62×10—3m 3.将分式yx y x +-中x 、y 都扩大2倍,则分式的值 A .不变 B .扩大2倍C .缩小2倍D .不能确定 4.三角形的三边上的中线相交于一点,这一点叫三角形的A .内心B .重心C .垂心D .外心5.已知矩形面积为36m 2,它的长和宽分别为x cm 、y cm ,则y 与x 之间函数是A .正比例函数B .一次函数C .反比例函数D .既不是反比例函数也不是正比例函数 6.能判定四边形ABCD 是平行四边形的题设是A .AB//CD ,AD=BCB .∠A=∠B ,∠C=∠DC .AB=CD ,AD=BC D .AB=AD ,CB=CD7.小颖准备参加校运动会的跳远比赛,下面是他近期六次跳远的成绩(单位:米):3.6,3.8,4.2,4.0,3.8,4.0,那么这组数据的A .众数是3.9米B .中位数是3.8米C .极差是0.6米D .平均数是4.0米8.四边形ABCD 的对角线AC 、BD 相交于O ,能判断它是正方形的题设是A .AO=CO ,BO=DOB .AO=BO=CO=DOC .AO=CO ,BO=DO ,AC ⊥BDD .AO=BO=CO=DO ,AC ⊥BD 9.下列四个算式:(b a ,为任意数) (1)a a a a =⨯÷1;(2)8121)21(33==-;(3)10=a ;(4)1)(-=---=---ba b a b a b a . 其中正确的个数是 A .0B .1C .2D .3 10.一个10m 长的梯子,斜靠在一竖直的墙上,这时梯足距离底端6m ,如果将梯子的顶端沿墙下滑2m ,那么梯足将滑A .2mB .1mC .0.75mD .0.5m二、填空题:将正确的答案直接填在题中的横线上(每小题4分,共24分).11.反比例函数xy 4-=的图象在第 象限. 12.如图所示,如果矩形的一条对角线长为8cm ,两条对角线的一个交角为120°,则矩形的边AB 长为 cm .13.化简:=-÷+--xx x x x x 24)22( . 14.已知菱形ABCD 的面积是24cm 2,对角线AC=8cm ,则菱形的边长为 cm .15.等腰梯形ABCD 中,AD//BC ,AD=3cm ,BC=7cm ,∠B=60°,则梯形的腰长是 cm .16.已如如图,AD=4,CD=3,∠ADC=90°,AB=13,BC=12,则此图形围成的面积为 .三、解答题:(本题共6小题,共66分)17.(本小题满分8分)为了迎接“2008北京奥运”,中央电视台特设“赢在中国”栏目,在全国进行“奥运舵手”海选活动.为了在一次射击比赛中选拔一名射击队员,甲、乙两人前5次射击的成绩分别为(单位:环):甲:10 8 5 10 7乙:7 10 8 7 8请你根据所学的统计知识,说明选谁更为合理.(两个角度说理)18.(本小题满分10分)已知如图,在□ABCD 中,E 、F 是对角线AC 上的点,且AF=CE .求证:DE=BF .19.(本小题满分10分)如图,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的下底面A点有一只蚂蚁,它想吃到上底面上与A点相对的C点处的食物,需要爬行的最短路程是多少?( 的值取3)20.(本小题满分12分)已知菱形ABCD中,∠B=72°,请设计两种不同的方法,将菱形ABCD分割成四个三角形,使得每个三角形都是等腰三角形.21.(本小题满分12分)李老师家在商场与学校之间,离学校1千米,离商场2千米.一天李老师骑车到商场买奖品后再到学校,结果比平常步行直接到校迟20分钟.已知骑车速度为步行速度的2.5倍,买奖品时间为10分钟,求骑车的速度.22.(本小题满分14分)某校实践活动小组进行野外考察,途中遇到一片几十米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着前进路线铺了若干块木板,构筑成一条临时通道.木板对面的压强P(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.(1)请直接写出这一函数表达式和自变量取值范围;(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?。
2017-2018学年山东省临沂市蒙阴县八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)点P(﹣2,3)关于y轴对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)2.(3分)京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个3.(3分)要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣14.(3分)下列运算正确的是()A.x4+x4=x8B.x6÷x2=x3C.x•x4=x5D.(x2)3=x85.(3分)下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,96.(3分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.x2﹣1=(x+1)(x﹣1)C.x2﹣x+2=x(x﹣1)+2 D.x2+2x﹣1=(x﹣1)27.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组8.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或179.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a210.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°11.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个 B.3个 C.2个 D.1个12.(3分)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣二.填空题:你能填得又对又快吗?(把答案填在答题卡上,每小题3分,共21分)13.(3分)计算:(﹣3a2b3)2=.14.(3分)计算: +=.15.(3分)若关于x的分式方程无解,则m的值是.16.(3分)如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.17.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF=.18.(3分)如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件.(只需写出符合条件一种情况)19.(3分)观察给定的分式;,猜想并探索规律,第n个分式是.三.解答题:一定要细心,你能行!(共63分)20.(10分)计算:(1)(a+6)(a﹣2)﹣a(a+3);(2).21.(10分)因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.22.(10分)解方程与化简(1)解方程:;(2)当x=﹣2,求分式:的值.23.(10分)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?24.(11分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE.(2)连接OA,BC,试判断直线OA,BC的关系,并说明理由.25.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.2017-2018学年山东省临沂市蒙阴县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)点P(﹣2,3)关于y轴对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【解答】解:点P(﹣2,3)关于y轴对称的点的坐标是:(2,3).故选:A.2.(3分)京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:由图可得,第1,3,4个图形是轴对称图形,共3个.故选C.3.(3分)要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.4.(3分)下列运算正确的是()A.x4+x4=x8B.x6÷x2=x3C.x•x4=x5D.(x2)3=x8【解答】解:A、合并同类项,系数相加字母和字母的指数不变,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、幂的乘方,底数不变指数相乘,故选:C.5.(3分)下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9【解答】解:A、3+3>3,符合三角形的三边关系定理,故本选项错误;B,3+4>5,3+5>4,5+4>3,符合三角形的三边关系定理,故本选项错误;C、5+6>10,5+10>6,6+10>5,符合三角形的三边关系定理,故本选项错误;D、4+5=9,不符合三角形的三边关系定理,故本选项正确;故选D.6.(3分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.x2﹣1=(x+1)(x﹣1)C.x2﹣x+2=x(x﹣1)+2D.x2+2x﹣1=(x﹣1)2【解答】解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;B、x2﹣1=(x+1)(x﹣1),故本选项正确;C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.故选B.7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.8.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.9.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【解答】解:==﹣ab.故选:B.10.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.11.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个 B.3个 C.2个 D.1个【解答】解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选B.12.(3分)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣【解答】解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.二.填空题:你能填得又对又快吗?(把答案填在答题卡上,每小题3分,共21分)13.(3分)计算:(﹣3a2b3)2=9a4b6.【解答】解:(﹣3a2b3)2=(﹣3)2(a2)2(b3)2=9a4b6,故答案为:9a4b6.14.(3分)计算: +=.【解答】解:原式=+==.故答案为:.15.(3分)若关于x的分式方程无解,则m的值是3.【解答】解:去分母,得m﹣3=x﹣1,x=m﹣2.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=3,即m的值为3.故答案为3.16.(3分)如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为70.【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.17.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF=48°.【解答】解:∵BD平分∠ABC,∠ABD=24°,∴∠ABC=2∠ABD=48°,∠D BC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣60°﹣48°=72°,∵FE是BC的中垂线,∴FB=FC,∴∠FCB=∠DBC=24°,∴∠ACF=∠ACB﹣∠FCB=72°﹣24°=48°,故答案为:48°.18.(3分)如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件AC=BD或BC=AD 或∠DAB=∠CBA或∠CAB=∠DBA.(只需写出符合条件一种情况)【解答】解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.19.(3分)观察给定的分式;,猜想并探索规律,第n个分式是.【解答】解:∵,=,=,=,=,∴第n个分式是:.故答案为:.三.解答题:一定要细心,你能行!(共63分)20.(10分)计算:(1)(a+6)(a﹣2)﹣a(a+3);(2).【解答】解:(1)原式=a2+4a﹣12﹣a2﹣3a=a﹣12;(2)原式=•=.21.(10分)因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.22.(10分)解方程与化简(1)解方程:;(2)当x=﹣2,求分式:的值.【解答】解:(1)2x=x﹣2+1x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣1.(2)原式=•==﹣当x=﹣2时,原式=.23.(10分)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?【解答】解:(1)设乙进货价是每个x元,则甲进货价为每个(x+10)元.由题意得:=,解得x=15,经检验x=15是原方程的根.则x+10=25,答:甲进货价为25元,乙进货价15元;(2)设进甲种文具a件,则乙种文具(100﹣a)件.由题意得:,解得55<a<58,所以整数a=56,57,则100﹣a=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.24.(11分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE.(2)连接OA,BC,试判断直线OA,BC的关系,并说明理由.【解答】解:(1)证明:∵CD⊥AB于D,BE⊥AC于E,∴∠ADC=∠AEB=90°,在△ADC与△AEB中,,∴△ACD≌△ABE,∴AD=AE;(2)直线OA垂直平分BC,理由如下:如图,连接AO,BC,延长AO交BC于F,在Rt△ADO与Rt△AEO中,,∴Rt△ADO≌Rt△AEO,∴OD=OE,∵CD⊥AB于D,BE⊥AC于E,∴AO平分∠BAC,∵AB=AC,∴AO⊥BC.25.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°。
临沂市蒙阴县八年级下学期期末考试数学试题一、细心择一择。
你一定很准(下列各小题的四个选项中,有虽只有一个是符合题意的,把你认为符合题意的答案涂在答题卡上,每小题3分,共36分) 1.计算44212-++m m 的结果是( ) A .2+mB .2-mC .21+m D .21-m 2.数据10,10,x ,8的众数与平均数相同,那么这组数的中位数是( )A .10B .8C .12D .43.已知平行四边形ABCD 的周长为50cm ,△ABC 的周长为35cm ,则对角线AC 的长为( )A .5cmB .10cmC .15cmD .20cm4.如图1,有两块全等的含30º角的三角板拼成形状不同的平行四边形,最多可以拼成( )A .1个B .2个C .3个D .4个5.如图2,正方形网格中,每个小正方形的边长为l ,则网格上的三角形ABC 中,边长为无理数的边数为( )A .0B .1C .2D .36.如图3.在平行四边形ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于G 、H ,试判断下列结论:①△ABE ≌△CDF ;②AG=GH=HC ;③E BG 21EG =;④ΔAGE ΔABE S S =其中正确的结论是( )A .1个B .2个C .3个D .4个7.Rt △ABC 的两边长分别是3和4,若一个正方形的边长是△ABC 的第三边,则这个正方形的面积是( )A .25B .7C .12D .25或78.菱形、矩形、正方形都具有的性质是( )A .对角线相等且互相平分B .对角线相等且互相垂直平分C .对角线互相平分D .四条边相等,四个角相等9.已知如图4,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,则DN+MN 的最小值为( )A .9B .10C .11D .1210.一组对边平行,并且对角线互相垂直且相等的四边形是( ) A .菱形或矩形B .正方形或等腰梯形C .矩形或等腰梯形D .菱形或直角梯形11.如图5,A 、C 是函数xy 1=的图象上的任意两点,过A 作y 轴的垂线,垂足为B ,过C 作y 轴的垂线,垂足为D ,记Rt △AOB 的面积为S 1,Rt △COD 的面积为S 2,则( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1和S 2的大小关系不能确定12.若13+a 表示一个整数,则整数a 可以值有( ) A .1个B .2个C .3个D .4个二、仔细填一填,你一定很行(每题3分,共24分)13.如果反比例函数的图象经过点(1, -2),那么这个反比例函数的解析式为 。
山东省2016-2017学年八年级下学期期末考试数学试卷(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.)1x 的取值范围是 A.3x 2≥ B. 3x 2> C. 2x 3≥ D. 2x 3> 2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.1 5.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是A.平行四边形B. 菱形C.正方形D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米 10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2第4题图第10题图 B D计算选手的最终演讲成绩。
山东省2016-2017学年八年级下学期期末考试数学试卷一、选择题(每小题3分,共42分)将唯一正确答案的代号字母填在下面的方格内1.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x≥2 B.x>2 C.x≠2 D.2.(3分)(2013•莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,103.(3分)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个4.(3分)下列计算中,正确的是()A.B.C.D.5.(3分)如图,在▱ABCD中,延长CD至点E,延长AD至点F,连结EF,如果∠B=110°,那么∠E+∠F=()A.110°B.70°C.50°D.30°6.(3分)函数的自变量x的取值范围为()A.x≥2且x≠8 B.x>2 C.x≥2 D.x≠87.(3分)下列命题中,真命题是()A.两条对角线垂直且相等的四边形是正方形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是矩形D.同一底上两个角相等的四边形是等腰梯形8.(3分)若ab>0,mn<0,则一次函数的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)如图,在梯形ABCD中,AB∥DC,DE∥CB,若CD=4,△ADE周长为18,那么梯形ABCD的周长为()A.22 B.26 C.38 D.3010.(3分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1)B.(,1)C.(1,)D.(,2)11.(3分)在下列各图象中,y不是x函数的是()A.B.C.D.12.(3分)已知点(﹣6,y1),(8,y2)都在直线y=﹣x﹣6上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较13.(3分)雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利润45元.当M型号的时装为多少套时,能使该厂所获利润最大()A.40 B.44 C.66 D.8014.(3分)在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.二、填空题(共5小题,每小题3分,共15分)答案直接填在题中横线上15.(3分)如果,那么xy的值为_________.16.(3分)一组数据0,﹣1,6,1,﹣1,这组数据的方差是_________.17.(3分)(2008•广安)在平面直角坐标系中,将直线y=2x﹣1向上平移动4个单位长度后,所得直线的解析式为_________.18.(3分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y 轴交点交于点D,则点C的坐标为_________,点D的坐标为_________.19.(3分)如图,在菱形ABCD中,AB=13cm,BC边上的高AH=5cm,那么对角线AC 的长为_________cm.三、解答题(共58分)20.(8分)计算(1)﹣÷(2×);(2).21.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.22.某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:五项成绩素质考评得分(单位:分)班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班10 10 6 10 7乙班10 8 8 9 8丙班9 10 9 6 9根据统计表中的信息解答下列问题:(1)请你补全五项成绩考评分析表中的数据:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10乙班8.6 8丙班9 9(2)参照表中的数据,你推荐哪个班为区级先进班集体?并说明理由;_________(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照按3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为市级先进班集体?23.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c 元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)月份用水量(m3)收费(元)9 5 7.510 9 27(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y于x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?24.小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是_________km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(10分)(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.26.(12分)如图,已知点A(2,0)、B(﹣1,1),点P是直线y=﹣x+4上任意一点.(1)当点P在什么位置时,△PAB的周长最小?求出点P的坐标及周长的最小值;(2)在(1)的条件下,求出△PAB的面积.参考答案1-10、ADBDB ACBBB 11-14、CABA15、-616、6.817、y=2x+318、(﹣1,0);(0,)19、20、(1)(2)2+21、证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,在△AOE与△COF中,,∴△AOE≌△COF(SAS);(2)由(1)得△AOE≌△COF,∴∠OAE=∠OCF,∴AE∥CF,∵AH∥CG,∴四边形AGCH是平行四边形;∵AC平分∠HAG,∴∠HAC=∠GAC,∵AH∥CG,∴∠HAC=∠GCA,∴∠GAC=∠GCA,∴CG=AG;∴▱AGCH是菱形.22、解:(1)丙班的平均数为=8.6(分);甲班成绩为6,7,10,10,10,中位数为10(分);乙班的众数为8分,填表如下:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10 10乙班8.6 8 8丙班8.6 9 9(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;故答案为:甲班;(3)根据题意得:丙班的平均分为9×+10×+9×+6×+9×=8.9(分),补全条形统计图,如图所示:∵8.5<8.7<8.9,∴依照这个成绩,应推荐丙班为市级先进班集体.23、解:(1)由题意5a=7.5,解得a=1.5;6a+(9﹣6)c=27,解得c=6.(2)依照题意,当x≤6时,y=1.5x;当x≥6时,y=6×1.5+6×(x﹣6),y=9+6(x﹣6)=6x﹣27,(x>6)(3)将x=8代入y=6x﹣27(x>6)得y=6×8﹣27=21(元).24、解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得,所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=52.8km/h;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2,=33.5km,∵汽车每行驶100km耗油10L,25、(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∴AB=AC=×60=30cm.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE即60﹣4t=4t解得:t=∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°)∴小丽驾车从甲地到乙地共耗油:33.5×=3.35升.26、解:(1)作出点A关于直线y=﹣x+4的对称点C,连结BC交直线于点P,∴PA=PC,AD=CD,则PB+PA=PB+PC=BC,由直线y=﹣x+4得与x轴上的交点D为(4,0)、与y轴的交点为E为(0,4),∴OD=OE=4,则∠ODE=45°,则∠ADC=90°,∴AD=CD=2,∴点C的坐标是(4,2),设直线BC的解析式为y=kx+b,则有,解得:k=,b=,即直线BC的解析式为:y=x+.由方程组得:,即P的坐标是(,),由勾股定理得BC=、AB=,∴△PAB的周长是.(2)由直线BC的解析式y=x+得:点F的坐标是(﹣6,0),∴S△PAB=S△PAF﹣S△BAF=×AE×(﹣1)=.。
2017-2018学年山东省临沂市蒙阴县八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)点P(﹣2,3)关于y轴对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)2.(3分)京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个3.(3分)要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣14.(3分)下列运算正确的是()A.x4+x4=x8B.x6÷x2=x3C.x•x4=x5D.(x2)3=x85.(3分)下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,96.(3分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.x2﹣1=(x+1)(x﹣1)C.x2﹣x+2=x(x﹣1)+2 D.x2+2x﹣1=(x﹣1)27.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组8.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或179.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a210.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°11.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个 B.3个 C.2个 D.1个12.(3分)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣二.填空题:你能填得又对又快吗?(把答案填在答题卡上,每小题3分,共21分)13.(3分)计算:(﹣3a2b3)2=.14.(3分)计算: +=.15.(3分)若关于x的分式方程无解,则m的值是.16.(3分)如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.17.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF=.18.(3分)如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件.(只需写出符合条件一种情况)19.(3分)观察给定的分式;,猜想并探索规律,第n个分式是.三.解答题:一定要细心,你能行!(共63分)20.(10分)计算:(1)(a+6)(a﹣2)﹣a(a+3);(2).21.(10分)因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.22.(10分)解方程与化简(1)解方程:;(2)当x=﹣2,求分式:的值.23.(10分)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?24.(11分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE.(2)连接OA,BC,试判断直线OA,BC的关系,并说明理由.25.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.2017-2018学年山东省临沂市蒙阴县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)点P(﹣2,3)关于y轴对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【解答】解:点P(﹣2,3)关于y轴对称的点的坐标是:(2,3).故选:A.2.(3分)京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:由图可得,第1,3,4个图形是轴对称图形,共3个.故选C.3.(3分)要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.4.(3分)下列运算正确的是()A.x4+x4=x8B.x6÷x2=x3C.x•x4=x5D.(x2)3=x8【解答】解:A、合并同类项,系数相加字母和字母的指数不变,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、幂的乘方,底数不变指数相乘,故选:C.5.(3分)下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9【解答】解:A、3+3>3,符合三角形的三边关系定理,故本选项错误;B,3+4>5,3+5>4,5+4>3,符合三角形的三边关系定理,故本选项错误;C、5+6>10,5+10>6,6+10>5,符合三角形的三边关系定理,故本选项错误;D、4+5=9,不符合三角形的三边关系定理,故本选项正确;故选D.6.(3分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.x2﹣1=(x+1)(x﹣1)C.x2﹣x+2=x(x﹣1)+2D.x2+2x﹣1=(x﹣1)2【解答】解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;B、x2﹣1=(x+1)(x﹣1),故本选项正确;C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.故选B.7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.8.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.9.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【解答】解:==﹣ab.故选:B.10.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.11.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个 B.3个 C.2个 D.1个【解答】解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选B.12.(3分)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣【解答】解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.二.填空题:你能填得又对又快吗?(把答案填在答题卡上,每小题3分,共21分)13.(3分)计算:(﹣3a2b3)2=9a4b6.【解答】解:(﹣3a2b3)2=(﹣3)2(a2)2(b3)2=9a4b6,故答案为:9a4b6.14.(3分)计算: +=.【解答】解:原式=+==.故答案为:.15.(3分)若关于x的分式方程无解,则m的值是3.【解答】解:去分母,得m﹣3=x﹣1,x=m﹣2.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=3,即m的值为3.故答案为3.16.(3分)如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为70.【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.17.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF=48°.【解答】解:∵BD平分∠ABC,∠ABD=24°,∴∠ABC=2∠ABD=48°,∠D BC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣60°﹣48°=72°,∵FE是BC的中垂线,∴FB=FC,∴∠FCB=∠DBC=24°,∴∠ACF=∠ACB﹣∠FCB=72°﹣24°=48°,故答案为:48°.18.(3分)如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件AC=BD或BC=AD 或∠DAB=∠CBA或∠CAB=∠DBA.(只需写出符合条件一种情况)【解答】解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.19.(3分)观察给定的分式;,猜想并探索规律,第n个分式是.【解答】解:∵,=,=,=,=,∴第n个分式是:.故答案为:.三.解答题:一定要细心,你能行!(共63分)20.(10分)计算:(1)(a+6)(a﹣2)﹣a(a+3);(2).【解答】解:(1)原式=a2+4a﹣12﹣a2﹣3a=a﹣12;(2)原式=•=.21.(10分)因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.22.(10分)解方程与化简(1)解方程:;(2)当x=﹣2,求分式:的值.【解答】解:(1)2x=x﹣2+1x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣1.(2)原式=•==﹣当x=﹣2时,原式=.23.(10分)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?【解答】解:(1)设乙进货价是每个x元,则甲进货价为每个(x+10)元.由题意得:=,解得x=15,经检验x=15是原方程的根.则x+10=25,答:甲进货价为25元,乙进货价15元;(2)设进甲种文具a件,则乙种文具(100﹣a)件.由题意得:,解得55<a<58,所以整数a=56,57,则100﹣a=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.24.(11分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE.(2)连接OA,BC,试判断直线OA,BC的关系,并说明理由.【解答】解:(1)证明:∵CD⊥AB于D,BE⊥AC于E,∴∠ADC=∠AEB=90°,在△ADC与△AEB中,,∴△ACD≌△ABE,∴AD=AE;(2)直线OA垂直平分BC,理由如下:如图,连接AO,BC,延长AO交BC于F,在Rt△ADO与Rt△AEO中,,∴Rt△ADO≌Rt△AEO,∴OD=OE,∵CD⊥AB于D,BE⊥AC于E,∴AO平分∠BAC,∵AB=AC,∴AO⊥BC.25.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°。
2016-2017学年山东省临沂市河东区八年级(下)期末考试数学试卷一、选择题:本大题共12小题,每小题3分,共36分.1.下列各图能表示y是x的函数是()2.下列各式中正确的是()A.=±4 B.=2 C.=3 D.=3.在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.众数D.中位数4.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.4,5,6 B.2,3,4 C.11,12,13 D.8,15,176.将一次函数y=﹣2x+4的图象平移得到图象的函数关系式为y=﹣2x,则移动方法为()A.向上平移4个单位B.向下平移4个单位C.向左平移4个单位D.向右平移4个单位7.如图,在▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB 的长为()A.3cm B.6cm C.9cm D.12cm8.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=﹣x+3B.y=-2x+3 C.y=2x﹣3 D.y=-x-39.如图,在数轴上点A表示的数为a,则a的值为()A.B.﹣ C.1﹣D.﹣1+10.如图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家3.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店1.5千米D.张强从早餐店回家的平均速度是3千米/小时11.如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中结论正确的个数是()A.3 B.4 C.1 D.212.将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k≠0)与正方形ABCD 有公共点,则k的取值范围是()A.k≤2 B.C.D.二、填空题:共8小题,每小题3分,共24分.13.如果有意义,那么字母x的取值范围是.14.点(﹣1,y1)、(2,y2)是直线y=2x+1上的两点,则y1y2(填“>”或“=”或“<”).15.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.16.已知两条线段的长分别为cm、cm,那么能与它们组成直角三角形的第三条线段的长是.17.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.18.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x<3时,y1<y2中.则正确的序号有.19.如图,矩形纸片ABCD中,AD=1,将纸片折叠,使顶点A与CD边上的点E重合,折痕FG分别与AD、AB交于点F、G,若DE=,则EF的长为.20.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.三、解答题:共6小题,共60分.21.(8分)计算:(2﹣)2+(+2)÷.22.(8分)某校为了备战2018体育中考,因此在八年级抽取了50名女学生进行“一分钟仰卧起坐”测试,测试的情况绘制成表格如下:个数162225282930353740424546人数2171819521112(1)通过计算算得出这50名女学生进行“一分钟仰卧起坐”的平均数是,请写出这50名女学生进行“一分钟仰卧起坐”的众数和中位数,它们分别是、.(2)学校根据测试数据规定八年级女学生“一分钟仰卧起坐”的合格标准为28次,已知该校五年级有女生250名,试估计该校五年级女生“一分钟仰卧起坐”的合格人数是多少?23.(10分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第一象限,斜靠在两条坐标轴上,且点A(0,2),点C(1,0),BE⊥x轴于点E,一次函数y=x+b经过点B,交y轴于点D.(1)求证:△AOC≌△CEB;(2)求△ABD的面积.24.(12分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).25.(10分)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?26.(12分)如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在AD、AF上,此时BD=CF,BD⊥CF成立.(1)如图②,i)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,线段BD与线段CF的数量关系是;直线BD与直线CF的位置关系是.ii)请利用图②证明上述结论.(2)如图③,当△ABC绕点A逆时针旋转45°时,延长DB交CF于点H,若AB=,AD=3时,求线段FC的长.。
2016-2017学年度下学期期末教学质量检测试题八年级数学一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1. 下列计算错误的是()A. B.C. D.【答案】A【解析】试题分析:结合选项分别进行二次根式的除法运算、乘法运算、加减运算,然后选择正确选项.A、=7,原式计算正确,故本选项错误;B、=,原式计算正确,故本选项错误;C、=,原式计算正确,故本选项错误;D、,原式计算错误,故本选项错误.故选:D.考点:二次根式的混合运算.2. 下列四组线段中,可以构成直角三角形的是()A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,,3【答案】B【解析】试题分析:根据勾股定理的逆定理,可知,可知不能构成直角三角形;由可知能够成直角三角形;由可知不能构成直角三角形;由可知不能构成直角三角形.故选:B点睛:此题主要考查了勾股定理的逆定理,解题时通过计算,可判断其是否为直角三角形. 3. 实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A. 4,5B. 5,4C. 4,4D. 5,5【答案】A【解析】试题分析:根据众数及中位数的定义,结合所给数据即可作出判断.将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4.考点:(1)、众数;(2)、中位数.4. 下列点不在正比例函数y=﹣2x的图象上的是()A. (5,﹣10)B. (0,0)C. (2,﹣1)D. (1,﹣2)【答案】C【解析】试题分析:根据代入法,把它们都代入y=-2x可知C中-1≠-2×2=-4,因此C不在正比例函数y=-2x 的图像上.故选:C5. 2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:(秒)根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A. 队员1B. 队员2C. 队员3D. 队员4【答案】B【解析】试题分析:根据平均数可知队员2和队员4的成绩好,然后根据队员2的方差最小,由方差越小,数据越稳定,可知队员2的成绩更适合参加比赛.故选:B6. 如图,平行四边形的对角线AC、BD相交于点O,若AC+BD=10,BC=4,则△BOC的周长为()A. 8B. 9C. 10D. 14【答案】B【解析】试题分析:直接利用平行四边形的性质结合已知得出BO+CO=5,进而求出答案.解:∵四边形ABCD是平行四边形,∴BO=BD,CO=AC,∵AC+BD=10,BC=4,∴BO+CO=5,∴△BOC的周长为:5+4=9.故选:B.【点评】此题主要考查了平行四边形的性质,正确得出平行四边形的对角线关系是解题关键.7. 如图是一次函数y=kx+b的图象,则k、b的符号是()A. k>0,b<0B. k<0,b>0C. k<0,b<0D. k>0,b>0【答案】D【解析】试题分析:根据一次函数的图像与性质,由图像向上斜,可知k>0,由与y轴的交点,可知b>0.故选:D点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.8. 若x≤0,则化简|1﹣x|﹣的结果是()A. 1﹣2xB. 2x﹣1C. ﹣1D. 1【答案】D【解析】试题分析:根据x≤0,可知-x≥0,因此可知1-x≥0,然后根据可求解为|1﹣x|﹣=1-x+x=1.故选:D9. 如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A. 16B. 15C. 14D. 13【答案】A【解析】试题分析:根据平行四边形的性质和角平分线的性质,可知四边形ABEF是菱形,然后根据菱形的对角线互相垂直平分,可知BF的一半为6,由勾股定理可求得AE=16.故选:A10. 一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A. 20 LB. 25 LC. 27LD. 30 L【答案】B【解析】试题分析:由图形可得点(4,20)和(12,30),然后设直线的解析式为y=kx+b,代入可得,解得,得到函数的解析式为y=x+15,代入x=8可得y=25.故选:B点睛:此题主要考察了一次函数的图像与性质,先利用待定系数法求出函数的解析式,然后代入可求解.11. 与直线的焦点在第四象限,则 m的取值范围是()A. m>-1B. m<1C. -1<m<1D. -1≤m≤1【答案】C【解析】试题分析:联立,解得,∵交点在第四象限,∴,解不等式①得,m>﹣1,解不等式②得,m<1,所以,m的取值范围是﹣1<m<1.故选C.考点:两条直线相交或平行问题.12. 如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t 之间的函数关系用图象描述大致是()A. B. C. D.【答案】D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.考点:等腰三角形的性质,线段的性质二、填空题(每小题3分,共18分)请将正确的答案填在横线上.13. 函数中,自变量x的取值范围是_________.【答案】x≥﹣2且x≠1【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解.解:根据题意得:x+2≥0,x-1≠0解得:x≥-2且x≠1.考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14. 将直线y=2x向下平移2个单位,所得直线的函数表达式是_______________.【答案】y=2x-2【解析】试题分析:根据一次函数的平移,上加下减,可知一次函数的表达式为y=2x-2.15. 的结果是_____________.【答案】2【解析】原式===故填: .16. 数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.【答案】5,3学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...故答案为:3.17. 如图,在平面直角坐标系中,矩形ABCO的边OC、OA,分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处,若OA=8,CF=4,则点E的坐标是________.【答案】(-10,3)【解析】试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE,设CE=x,则BE=8-x,然后根据折叠的性质,可得EF=8-x,根据勾股定理可得,解得x=3,则OF=6,所以OC=10,由此可得点E的坐标为(-10,3).故答案为:(-10,3)18. 两条平行线间的距离公式一般地;两条平行线间的距离公式如:求:两条平行线的距离.解:将两方程中的系数化成对应相等的形式,得因此,两条平行线的距离是____________.【答案】1【解析】试题分析:认真读题,可知A=3,B=4,C1=-10,C2=-5,代入距离公式为===1.三、解答题(本大题共7小题,共66分)19. 计算:-+【答案】-【解析】试题分析:根据绝对值、算术平方根和零指数幂的意义计算.试题解析:原式==.考点:实数的运算;零指数幂.20. 如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE = CF.(1)求证:△ADE≌ △CBF;(2)若∠DEB= 90°,求证四边形DEBF是矩形.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD是平行四边形是关键.(1)由在□ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在▱ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.试题解析:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形ABCD是平行四边形,∵∠DEB=90°,∴四边形DEBF是矩形.故答案为:(1)利用SAS证明;(2)证明见解析.考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.21. 某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:该商场服装营业员的人数为,图①中m的值为;求统计的这组销售额数据的平均数、众数和中位数.【答案】(1)25; m=28;(2)平均数18.6万元;众数为21万元;中位数是18万元.【解析】试题分析:(Ⅰ)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28.(Ⅱ)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.试题解析:解:(Ⅰ)25,28.(Ⅱ)观察条形统计图,∵∴这组数据的平均数是18.6.∵在这组数据中,21 出现了8次,出现的次数最多,∴这组数据的众数是21.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.考点:条形统计图;扇形统计图;平均数;众数;中位数.22. 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产A种产品的生产件数为x,A、B两种产品所获总利润为y(元).(1)试写出y与x之间的函数关系式;(2)求出自变量x的取值范围;(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?【答案】(1)y=﹣500x+60000;.(2)整数x=30,31或32;(3)生产A种产品30件,B种产品20件时,总利润最大,最大利润是45000元.【解析】(1)由于用这两种原料生产A、B两种产品共50件,设生产A种产品x件,那么生产B种产品(50-x)件.由A产品每件获利700元,B产品每件获利1200元,根据总利润=700×A种产品数量+1200×B种产品数量即可得到y与x之间的函数关系式;(2)关系式为:A种产品需要甲种原料数量+B种产品需要甲种原料数量≤360;A种产品需要乙种原料数量+B种产品需要乙种原料数量≤290,把相关数值代入得到不等式组,解不等式组即可得到自变量x的取值范围;(3)根据(1)中所求的y与x之间的函数关系式,利用一次函数的增减性和(2)得到的取值范围即可求得最大利润.解答:解:(1)设生产A种产品x件,则生产B种产品(50-x)件,由题意得:y=700x+1200(50-x)=-500x+60000,即y与x之间的函数关系式为y=-500x+60000;(2)由题意得,解得30≤x≤32.∵x为整数,∴整数x=30,31或32;(3)∵y=-500x+60000,-500<0,∴y随x的增大而减小,∵x=30,31或32,∴当x=30时,y有最大值为-500×30+60000=45000.即生产A种产品30件,B种产品20件时,总利润最大,最大利润是45000元.“点睛”本题考查一次函数的应用,一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.23. 如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明FG=FE,即可得到四边形DEFG为菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.24. 如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.【答案】(1)y=﹣2x+6(2)①y=4x+12 ②24 ③S=6m-18.【解析】试题分析:(1)利用待定系数法可求函数的解析式;(2)①根据题意直接代入函数的解析式求出n,得到D点的坐标,然后由A、D点的坐标,由待定系数法求出AD的解析式;②构造三角形直接求面积;③由点M在直线y=-2x+6得到M的坐标,构造三角形,然后分类求解即可.试题解析:(1)∵直线y=﹣2x+a与y轴交于点C (0,6),∴a=6,∴该直线解析式为y=﹣2x+6.(2)①∵点D(﹣1,n)在直线BC上,∴n=﹣2×(﹣1)+6=8,∴点D(﹣1,8).设直线AD的解析式为y=kx+b,将点A(﹣3,0)、D(﹣1,8)代入y=kx+b中,得:,解得:,∴直线AD的解析式为y=4x+12.②令y=﹣2x+6中y=0,则﹣2x+6=0,解得:x=3,∴点B(3,0).∵A(﹣3,0)、D(﹣1,8),∴AB=6.S△ABD=AB•y D=×6×8=24③∵点M在直线y=-2x+6上,∴M(m,-2m+6),当m<3时,S=即;当m>3时,即S=6m-18.25. (1)如图,纸片□ABCD中,AD=5,S□ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.【答案】(1)C(2) ①四边形AFF'D是菱形②3【解析】试题分析:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为矩形,故选:C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:∵△AEF,将它平移至△DE′F′,∴AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.在Rt△AEF中,由勾股定理,得AF===5,∴AF=AD=5,∴四边形AFF′D是菱形;②连接AF′,DF,如图3:在Rt△DE′F中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF===,在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′===3.考点:①图形的剪拼;②平行四边形的性质;③菱形的判定与性质;④矩形的判定;⑤平移的性质.。
2016----2017学年第二学期八年级数学期末试卷 试卷分值:100 分 考试时间: 120分钟一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3 D.2(4)-=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( ) A .100B .110C .115D .1200PCA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.各个内角都相等多边形中,一个外角等于一个内角的12,这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:(每小题3分,共24分,把答案直接填在答题卷的横线上.) 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______. 14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______. 17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│3y -则x=_______,y=_______.三、解答题:(本大题共7个小题,共46分)19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.县学校姓名考号班级…………………………………………………..密……………………………………….封……………………………………………….线………………………………………………….CBAD火车站李庄C 1A 1ABB 1 CD20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
2016-2017学年山东省临沂市蒙阴县八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)下列计算错误的是()A.B.C. D.2.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,33.(3分)实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,54.(3分)下列点不在正比例函数y=﹣2x的图象上的是()A.(5,﹣10)B.(2,﹣1)C.(0,0) D.(1,﹣2)5.(3分)2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:(秒)根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员1 B.队员2 C.队员3 D.队员46.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,若AC+BD=10,BC=4,则△BOC的周长为()A.8 B.9 C.10 D.147.(3分)如图是一次函数y=kx+b的图象,则k、b的符号是()A.k>0,b<0 B.k<0,b>0 C.k<0,b<0 D.k>0,b>08.(3分)若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1 C.﹣1 D.19.(3分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.若BF=12,AB=10,则AE的长为()A.10 B.12 C.16 D.1810.(3分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20 L B.25 L C.27L D.30 L11.(3分)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是()A.m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤112.(3分)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A 匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.二、填空题(每小题3分,共18分)请将正确的答案填在横线上.13.(3分)函数y=中自变量x的取值范围是.14.(3分)将直线y=2x向下平移2个单位,所得直线的函数表达式是.15.(3分)计算:=.16.(3分)数据x1,x2,x3,x4的平均数是4,方差是3,则数据x1+1,x2+1,x3+1,x4+1的平均数和方差分别是.17.(3分)如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是.18.(3分)两条平行线间的距离公式一般地;两条平行线l1:Ax+By+C1=0和l2:Ax+By+C2=0间的距离公式是d=如:求:两条平行线x+3y﹣4=0和2x+6y﹣9=0的距离.解:将两方程中x,y的系数化成对应相等的形式,得2x+6y﹣8=0和2x+6y﹣9=0,因此,d=两条平行线l1:3x+4y=10和l2:6x+8y﹣10=0的距离是.三、解答题(本大题共7小题,共66分)19.(6分)计算:|﹣3|﹣+()0.20.(8分)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF.(2)若∠DEB=90°,求证:四边形DEBF是矩形.21.(9分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.22.(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产A种产品的生产件数为x,A、B两种产品所获总利润为y(元).(1)试写出y与x之间的函数关系式;(2)求出自变量x的取值范围;(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?23.(10分)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(12分)(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.2016-2017学年山东省临沂市蒙阴县八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)下列计算错误的是()A.B.C. D.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.2.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3【解答】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.3.(3分)实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,5【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4.故选A.4.(3分)下列点不在正比例函数y=﹣2x的图象上的是()A.(5,﹣10)B.(2,﹣1)C.(0,0) D.(1,﹣2)【解答】解:A、∵当x=5时,y=﹣10,∴此点在函数图象上,故本选项错误;B、∵当x=2时,y=﹣4≠﹣1,∴此点不在函数图象上,故本选项正确;C、∵当x=0时,y=0,∴此点在函数图象上,故本选项错误;D、∵当x=1时,y=﹣2,∴此点在函数图象上,故本选项错误.故选B.5.(3分)2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:(秒)根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员1 B.队员2 C.队员3 D.队员4【解答】解:因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.故选B.6.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,若AC+BD=10,BC=4,则△BOC的周长为()A.8 B.9 C.10 D.14【解答】解:∵四边形ABCD是平行四边形,∴BO=BD,CO=AC,∵AC+BD=10,BC=4,∴BO+CO=5,∴△BOC的周长为:5+4=9.故选:B.7.(3分)如图是一次函数y=kx+b的图象,则k、b的符号是()A.k>0,b<0 B.k<0,b>0 C.k<0,b<0 D.k>0,b>0【解答】解:∵一次函数y=kx+b的图象过一、二、三象限,∴k>0,∵图象与y轴的交点在y轴的正半轴,∴b>0.故选D.8.(3分)若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1 C.﹣1 D.1【解答】解:∵x≤0,∴1﹣x>0,|1﹣x|=1﹣x,=﹣x,∴|1﹣x|﹣=1﹣x﹣(﹣x)=1.故选D.9.(3分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.若BF=12,AB=10,则AE的长为()A.10 B.12 C.16 D.18【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA===8,∴AE=2OA=16;故选:C.10.(3分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20 L B.25 L C.27L D.30 L【解答】解:设当4≤x≤12时的直线方程为:y=kx+b(k≠0).∵图象过(4,20)、(12,30),∴,解得:,∴y=x+15 (4≤x≤12);把x=8代入解得:y=10+15=25,故选B11.(3分)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是()A.m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤1【解答】解:联立,解得,∵交点在第四象限,∴,解不等式①得,m>﹣1,解不等式②得,m<1,所以,m的取值范围是﹣1<m<1.故选C.12.(3分)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A 匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.【解答】解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.二、填空题(每小题3分,共18分)请将正确的答案填在横线上.13.(3分)函数y=中自变量x的取值范围是x≥﹣2且x≠1.【解答】解:由题意得,x+2≥0且x﹣1≠0,解得x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.14.(3分)将直线y=2x向下平移2个单位,所得直线的函数表达式是y=2x﹣2.【解答】解:由题意得:平移后的解析式为:y=2x﹣2=2x﹣2,即.所得直线的表达式是y=2x﹣2.故答案为:y=2x﹣2.15.(3分)计算:=.【解答】解:原式=2×5﹣3×3+=(10﹣9+1)=2;故答案是:2.16.(3分)数据x1,x2,x3,x4的平均数是4,方差是3,则数据x1+1,x2+1,x3+1,x4+1的平均数和方差分别是5,3.【解答】解:∵数据x1,x2,x3,x4的平均数是4,∴数据x1+1,x2+1,x3+1,x4+1的平均数为5,∵数据x1,x2,x3,x4的方差是3,∴数据x1+1,x2+1,x3+1,x4+1的方差为3.故答案为5,3.17.(3分)如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是(﹣10,3).【解答】解:设CE=a,则BE=8﹣a,由题意可得,EF=BE=8﹣a,∵∠ECF=90°,CF=4,∴a2+42=(8﹣a)2,解得,a=3,设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(﹣10,3),故答案为(﹣10,3).18.(3分)两条平行线间的距离公式一般地;两条平行线l1:Ax+By+C1=0和l2:Ax+By+C2=0间的距离公式是d=如:求:两条平行线x+3y﹣4=0和2x+6y﹣9=0的距离.解:将两方程中x,y的系数化成对应相等的形式,得2x+6y﹣8=0和2x+6y﹣9=0,因此,d=两条平行线l1:3x+4y=10和l2:6x+8y﹣10=0的距离是1.【解答】解:将两方程中x,y的系数化成对应相等的形式,得6x+8y﹣20=0和6x+8y﹣10=0,∴d==1.故答案为:1.三、解答题(本大题共7小题,共66分)19.(6分)计算:|﹣3|﹣+()0.【解答】解:原式=3﹣﹣4+1=﹣.20.(8分)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF.(2)若∠DEB=90°,求证:四边形DEBF是矩形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形DEBF是平行四边形,∵∠DEB=90°,∴四边形DEBF是矩形.21.(9分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为25,图①中m的值为28(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.【解答】解:(1)根据条形图2+5+7+8+3=25(人),m=100﹣20﹣32﹣12﹣8=28;故答案为:25,28.(2)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6,∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21,∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.22.(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产A种产品的生产件数为x,A、B两种产品所获总利润为y(元).(1)试写出y与x之间的函数关系式;(2)求出自变量x的取值范围;(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?【解答】解:(1)设生产A种产品x件,则生产B种产品(50﹣x)件,由题意得:y=700x+1200(50﹣x)=﹣500x+60000,即y与x之间的函数关系式为y=﹣500x+60000;(2)由题意得,解得30≤x≤32.∵x为整数,∴整数x=30,31或32;(3)∵y=﹣500x+60000,﹣500<0,∴y随x的增大而减小,∵x=30,31或32,∴当x=30时,y有最大值为﹣500×30+60000=45000.即生产A种产品30件,B种产品20件时,总利润最大,最大利润是45000元.23.(10分)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.【解答】(1)证明:由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)解:设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,FC2+EC2=EF2,即42+(8﹣x)2=x2,解得:x=5,CE=8﹣x=3,∴=.24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.【解答】解:(1)∵直线y=﹣2x+a与y轴交于点C (0,6),∴a=6,∴该直线解析式为y=﹣2x+6.(2)①∵点D(﹣1,n)在直线BC上,∴n=﹣2×(﹣1)+6=8,∴点D(﹣1,8).)设直线AD的解析式为y=kx+b,将点A(﹣3,0)、D(﹣1,8)代入y=kx+b中,得:,解得:,∴直线AD的解析式为y=4x+12.②令y=﹣2x+6中y=0,则﹣2x+6=0,解得:x=3,∴点B(3,0).∵A(﹣3,0)、D(﹣1,8),∴AB=6.S△ABD=AB•y D=×6×8=24.③∵点M在直线y=﹣2x+6上,∴M(m,﹣2m+6),则当m<3时,S=即S=﹣6m+18;当m>3时,即S=6m﹣18.25.(12分)(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为CA.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.【解答】(1)解:如图1中,∵四边形ABCD是平行四边形,∴AD=BC,∵BE=CE′,∴AD∥EE′,AD=EE′,∴四边形AEE′D是平行四边形,∵∠AEE′=90°,∴四边形AEE′D是矩形,故选C.(2)如图2中,①证明:∵AD=5,S□ABCD=15,∴AE=3.又∵在图2中,EF=4,∴在Rt△AEF中,AF═5.∴AF=AD=5,又∵AF∥DF',AF=DF,∴四边形AFF'D是平行四边形.∴四边形AFF'D是菱形.②解:连接AF',DF,在Rt△DE'F中,∵E'F=E'E﹣EF=5﹣4=1,DE'=3,∴DF ═=.在Rt△AEF'中,∵EF'=E'E+E'F'=5+4=9,AE=3,∴AF'═==3.。