一单一正态总体均值μ的假设检验
- 格式:ppt
- 大小:1.19 MB
- 文档页数:38
上一段中, H0:μ=μ0 ; H1: μ≠μ0 的对立假设为H1:μ≠μ0 ,该假设称为双边对立假设。
2. 单边检验 H0: μ=μ0; H1: μ>μ0而现在要处理的对立假设为 H1: μ>μ0, 称为右边对立假设。
类似地,H0: μ=μ0; H1: μ<μ0 中的对立假设H1: μ<μ0,假设称为左边对立假设。
右边对立假设和左边对立假设统称为单边对立假设,其检验为单边检验。
例如:工厂生产的某产品的数量指标服从正态分布,均值为μ0 ;采用新技术或新配方后,产品质量指标还服从正态分布,但均值为µ。
我们想了解“µ是否显著地大于μ”,即产品的质量指标是否显著地增加了。
8.2.2 两个正态总体N(µ1, σ12) 和N(µ2, σ22)均值的比较在应用上,经常会遇到两个正态总体均值的比较问题。
例如:比较甲、乙两厂生产的某种产品的质量。
将两厂生产的产品的质量指标分别看成正态总体N(µ1, σ12) 和N(µ2, σ22)。
比较它们的产品质量指标的问题,就变为比较这两个正态总体的均值µ1和µ2的的问题。
上面,我们假定 σ12=σ22。
当然,这是个不得已而强加上去的条件,因为如果不加此条件,就无法使用简单易行的 t 检验。
在实用中,只要我们有理由认为σ12和σ22相差不是太大,往往就可使用上述方法。
通常是:如果方差比检验未被拒绝(见下节), 就认为σ12和σ22相差不是太大。
J 说明小结本讲首先介绍假设检验的基本概念;然后讨论正态总体均值的各种假设检验问题,给出了检验的拒绝域及相关例题。
假设检验一、基本思想与基本步骤(一)假设检验问题[例1.6-1]某厂生产某种化纤的纤度X服从正态分布N(μ,0.042),其中μ的设计值为1.40,每天都要对“μ=1.40”作例行检验,以观生产是否正常运行。
某天从生产线中随机抽取25根化纤,测得纤度值为:x1,x2,…,x25其纤度平均值=1.38,问当日生产是否正常。
几点评论:(1)这不是一个参数估计问题。
(2)这里要求对某个命题“μ=1.40”回答:是与否。
(3)这一类问题被称为(统计)假设检验问题。
(4)这类问题在质量管理中普遍存在。
(二)假设检验的基本步骤假设检验的基本思想是:根据所获样本,运用统计分析方法,对总体X的某种假设H0做出接受或拒绝的判断。
具体做法如下:1.建立假设H0:μ=1.40这是原假设,其意是:“与原设计一致”,“当日生产正常”等。
要使当日生产与1 40无差别是办不到的,若差异仅是由随机误差引起的,则可认为H0成立;若由其他特殊因素引起的,则认为差异显著,则应拒绝H0。
H1:μ≠1.40 这是备择假设,它是在原假设被拒绝时而应接受的假设。
在这里,备择假设还有两种设置形式,它们是:H12:μ<1.40,或H13:μ>1.40 备择假设的不同将会影响下面拒绝域的形式,今后称H0对H1的检验问题是双边假设检验问题H0对H12的检验问题是单边假设检验问题H0对H13的检验问题也是单边假设检验问题注:若假设是关于总体参数的某个命题,称为参数的假设检验问题,比如:H0:μ=μ0,H1:μ≠μ0,H0:σ2≤σ20,H1:σ2>σ20,H0:P≥P0,H1:P<P0,都是参数假设检验问题。
东莞德信诚精品培训课程(部分)(点击课程名称打开课程详细介绍)内审员系列培训课程查看详情TS16949五大工具与QC/QA/QE品质管理类查看详情 JIT东莞德信诚公开课培训计划>>> 培训报名表下载>>> /download/dgSignUp.doc2.选择检验统计量,给出拒绝的形式这个假设检验问题涉及正态均值μ。
单个正态总体参数的假设检验1.提出假设:首先,我们需要提出关于总体参数的假设。
在单个正态总体参数的情况下,我们通常对总体的均值(μ)或标准差(σ)进行假设。
2.确定显著性水平:显著性水平(α)是一个事先设定的临界值。
根据显著性水平,我们可以决定接受还是拒绝原假设。
3.构建统计量:接下来,我们需要构建一个适当的统计量来判断总体参数的假设。
在单个正态总体参数的情况下,通常使用t统计量或z统计量。
4.计算统计量的值:根据样本数据,计算所选统计量的值。
如果使用t统计量,则需要计算样本均值和标准差;如果使用z统计量,则只需计算样本均值。
5.确定拒绝域:拒绝域是根据显著性水平和统计量的分布确定的。
根据统计量的值和拒绝域的临界值,我们可以决定是否拒绝原假设。
6.做出决策:根据统计量的值和拒绝域,我们可以做出决策:接受原假设或拒绝原假设。
下面以一个具体的例子来说明单个正态总体参数的假设检验。
假设我们要检验一些公司员工的平均工资是否等于5000元。
我们从公司中随机抽取了50个员工的工资数据,假设工资数据服从正态分布。
现在我们要进行假设检验。
1.假设提出:原假设(H0):员工的平均工资等于5000元;备择假设(H1):员工的平均工资不等于5000元。
2.显著性水平:我们设定显著性水平为0.053.构建统计量:由于样本量较大(n=50),我们可以使用z统计量。
z统计量的计算方法为(样本均值-总体均值)/(总体标准差/根号n)。
4.计算统计量的值:假设我们计算出样本均值为4950元,总体标准差为100元。
5.确定拒绝域:由于显著性水平为0.05,我们需要找出z值对应的临界值。
在标准正态分布表中查找z=1.96对应的值,并根据原假设的双侧检验找出拒绝域的范围。
6.做出决策:根据统计量的值和拒绝域的范围,我们可以判断是否拒绝原假设。
如果统计量的值落在拒绝域之外,我们将拒绝原假设,即认为员工的平均工资不等于5000元。