Sedimentologic and sequencestratigraphic characteristics of wave-dominated deltas
- 格式:pdf
- 大小:2.40 MB
- 文档页数:11
柴窝堡凹陷东南缘中—下二叠统沉积特征分析侯锡鹏;李淼;彭梦玲【摘要】近年来,柴窝堡凹陷的勘探显示出深层二叠系具有良好的油气勘探前景,但目前对于凹陷东南缘研究匮乏,沉积特征认识不清,沉积相类型存在较大的争议.通过对其东南缘剖面露头岩石相分析,建立不同地层分布的沉积相柱状剖面,研究地层横向上的可对比性,识别纵向中—下二叠统地层发育的沉积相类型:下二叠统发育冲积扇、扇三角洲沉积,中二叠统发育滨浅湖沉积,在此基础上提出适用于研究区的冲积扇—扇三角洲—滨浅湖相沉积体系,对该地区今后沉积的研究及野外勘探具有一定的指导意义.%In recent years,the Chaiwopu basin shows deep Permian has good oil and gas exploration prospect,but in the southeast mar-gin of the basin is fort nest sag with sedimentary facies and sedimentary characteristics of research in Permian is lack of systemic and there is a big controversy.Through to nest fort area for fine sedimentary characteristics of the southeast margin of multiple profile de-scription,and speculated that the sedimentary environment,identified there is a set of different sedimentary types of below-middle Per-mian:in the development of below Permian continental alluvial fan-fan delta deposit,the middle Permian shore shallow lake-half deep lacustrine facies.On this basis,the alluvial fan delta fan shore shallow lake depositional system suitable for the study area was put for-ward,which has certain guiding significance to the exploration of this area.【期刊名称】《中州煤炭》【年(卷),期】2018(040)004【总页数】4页(P100-103)【关键词】柴窝堡凹陷东南缘;中—下二叠统;岩石相分析;沉积体系【作者】侯锡鹏;李淼;彭梦玲【作者单位】山东科技大学地球科学与工程学院,山东青岛 266590;山东科技大学地球科学与工程学院,山东青岛 266590;山东科技大学地球科学与工程学院,山东青岛 266590【正文语种】中文【中图分类】P618.130 引言柴窝堡凹陷作为小型山间叠合凹陷,具备叠合盆地独特的地质特征,具有非常好的油气勘探潜力,其东南缘二叠纪时期,在准噶尔南缘冲断系统的作用下发育连续不断的褶皱,沉积环境在构造作用下非常复杂,受到钻井、露头、地震资料少的限制,目前针对柴窝堡凹陷东南缘沉积研究很少,沉积相类型识别不清晰,地层在横向上缺乏对比性,在纵向上缺少一套明确的沉积相模式,对该地区油气资源的勘探及有利区的寻找带来很大困扰,张健等[1]认为研究区底部为冲积扇相,上部为半深湖相,中部发育重力流浊积扇相;而德勒恰提等[2]则将沉积相类型划分为浊流相、辫状河三角洲和冲积扇沉积;也有人提出滨浅湖—湖湾相或者河流—扇三角洲相的观点[3-5]。
47卷 2期2007年4月4日微生物学报Acta Microbio logica Sinica 47(2):313~3184April 2007基金项目:国家 973项目 (2002AA001036);国家自然科学基金(50208006)*通讯作者。
Tel Fax:86 451 86282008;E mail:rnq@作者简介:赵阳国(1975-),男,山东人,博士,从事废水处理与微生物分子生态学研究。
E mail:yg.zhao@ 收稿日期:2006 07 31;接受日期:2006 09 22;修回日期:2006 11 13有机污染物对水体真细菌群落结构的影响赵阳国,任南琪*,王爱杰,万春黎(哈尔滨工业大学市政环境工程学院 哈尔滨 150090)摘 要:为了揭示有机污染物对环境真细菌组成和多样性的影响,应用末端限制性片段长度多态性(tRFLP)和16S rDNA 文库技术并结合水质分析方法,比较分析了松花江流域内受不同程度有机污染的4个水体及其沉积物中真细菌的群落结构。
tRFLP 分析表明各水体及底泥均呈现较为复杂的群落结构模式,不同底泥群落形成的末端限制性片段(TRF)图谱具有很高的相似性,但随着污染程度的加强,部分类群明显富集,而且在水样组和泥样组内,群落结构的相似性同水质相似性是一致的,主成分分析(PC A )显示水样和泥样中的真细菌TRF 形成不同的群。
16S rDNA 文库分析表明松花江哈尔滨段底泥中真细菌分布于10个门,Proteobacteria 门占优势,达群落总数的21 92%( Proteobacteria 亚门占10 96%),而有机染污物严重超标的生活污水排污道底泥中的微生物多样性较低,分布于7个门,Proteobacteria 门为优势群,占群落的47 37%( Proteobacteria 亚门占21 05%, ! Proteobacteria 亚门占15 79%)。
DOI: 10.1126/science.1257570, 763 (2014);346 Science et al.Bernhard Misof Phylogenomics resolves the timing and pattern of insect evolutionThis copy is for your personal, non-commercial use only.clicking here.colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to othershere.following the guidelines can be obtained by Permission to republish or repurpose articles or portions of articles): November 6, 2014 (this information is current as of The following resources related to this article are available online at/content/346/6210/763.full.html version of this article at:including high-resolution figures, can be found in the online Updated information and services, /content/suppl/2014/11/05/346.6210.763.DC1.html can be found at:Supporting Online Material /content/346/6210/763.full.html#ref-list-1, 58 of which can be accessed free:cites 161 articles This article/cgi/collection/evolution Evolutionsubject collections:This article appears in the following registered trademark of AAAS.is a Science 2014 by the American Association for the Advancement of Science; all rights reserved. The title Copyright American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the Science o n N o v e m b e r 6, 2014w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o m9.T.A.White et al .,PLOS Pathog.6,e1001249(2010).10.G.Hu,J.Liu,K.A.Taylor,K.H.Roux,J.Virol.85,2741–2750(2011).11.P.D.Kwong et al .,Nature 393,648–659(1998).12.M.Pancera et al .,Proc.Natl.Acad.Sci.U.S.A.107,1166–1171(2010).13.E.E.Tran et al .,PLOS Pathog.8,e1002797(2012).14.Y.Mao et al .,Nat.Struct.Mol.Biol.19,893–899(2012).15.A.Harris et al .,Proc.Natl.Acad.Sci.U.S.A.108,11440–11445(2011).16.C.G.Moscoso et al .,Proc.Natl.Acad.Sci.U.S.A.108,6091–6096(2011).17.S.R.Wu et al .,Proc.Natl.Acad.Sci.U.S.A.107,18844–18849(2010).18.R.Roy,S.Hohng,T.Ha,Nat.Methods 5,507–516(2008).19.Z.Zhou et al .,ACS Chem.Biol.2,337–346(2007).20.C.W.Lin,A.Y.Ting,J.Am.Chem.Soc.128,4542–4543(2006).21.Materials and Methods are available as supplementarymaterials on Science Online.22.Single-letter abbreviations for the amino acid residues are asfollows:A,Ala;C,Cys;D,Asp;E,Glu;F,Phe;G,Gly;H,His;I,Ile;K,Lys;L,Leu;M,Met;N,Asn;P,Pro;Q,Gln;R,Arg;S,Ser;T,Thr;V,Val;W,Trp;and Y,Tyr.23.Q.Zheng et al .,Chem.Soc.Rev.43,1044–1056(2014).24.N.G.Mukherjee,L.A.Lyon,J.M.Le Doux,Nanotechnology 20,065103(2009).25.K.Henzler-Wildman,D.Kern,Nature 450,964–972(2007).26.P.D.Kwong et al .,Nature 420,678–682(2002).27.U.Olshevsky et al .,J.Virol.64,5701–5707(1990).28.F.Qin,Biophys.J.86,1488–1501(2004).29.H.Haim et al .,PLOS Pathog.5,e1000360(2009).30.N.Sullivan et al .,J.Virol.72,4694–4703(1998).31.J.Arthos et al .,J.Biol.Chem.277,11456–11464(2002).32.A.L.DeVico,Curr.HIV Res.5,561–571(2007).33.T.Zhou et al .,Science 329,811–817(2010).34.L.M.Walker et al .,Science 326,285–289(2009).35.L.M.Walker et al .,Nature 477,466–470(2011).36.M.Pancera et al .,Nat.Struct.Mol.Biol.20,804–813(2013).37.J.-P.Julien et al .,Proc.Natl.Acad.Sci.U.S.A.110,4351–4356(2013).38.J.-P.Julien et al .,PLOS Pathog.9,e1003342(2013).39.P.D.Kwong,J.R.Mascola,G.J.Nabel,Nat.Rev.Immunol.13,693–701(2013).40.Z.Li et al .,Antimicrob.Agents Chemother.57,4172–4180(2013).41.J.B.Munro,K.Y.Sanbonmatsu,C.M.Spahn,S.C.Blanchard,Trends Biochem.Sci.34,390–400(2009).42.Subsequent to the submission of this manuscript,the structureof a trimeric prefusion HIV-1Env (43)was determined in complex with broadly neutralizing antibodies PGT122(35)and 35O22(44).To determine the conformational state these antibodies captured in the crystal lattice,we measured smFRET on labeled JR-FL virions in the presence of either PGT122or 35O22or both.These data indicated that PGT122strongly stabilized the ground state.In contrast,35O22had little effect on Env conformation.HIV-1Env complexed with both antibodies exhibited slight ground state stabilization.43.M.Pancera et al .,Nature 514,455–461(2014).44.J.Huang et al .,Nature 10.1038/nature13601(2014).45.J.S.McLellan et al .,Nature 480,336–343(2011).ACKNOWLEDGMENTSWe thank J.Jin,L.Agosto,T.Wang,R.B.Altman,and M.R.Wasserman for assistance;C.Walsh,J.Binely,A.Trkola,and M.Krystal for reagents;and members of the Structural Biology Section,Vaccine Research Center,for critically reading the manuscript.We thank I.Wilson and J.Sodroski for encouraging us to extend our approach to a R5-tropic Env.The data presented in this paper are tabulated in the main paper and in the supplementary materials.This work wassupported by NIH grants R21AI100696to W.M.and S.C.B;P0156550to W.M.,S.C.B.,and A.B.S.;and R01GM098859to S.C.B.;by the Irvington Fellows Program of the Cancer Research Institute to J.B.M;by a fellowship from the China Scholarship Council-Yale World Scholars to X.M.;by grants from the International AIDS Vaccine Initiative ’s (IAVI)Neutralizing Antibody Consortium to D.R.B.,W.C.K.,and P.D.K.;and by funding from the NIH Intramural Research Program (Vaccine Research Center)to P.D.K.IAVI's work is made possible by generous support from many donors including:the Bill &Melinda Gates Foundation and the U.S.Agency for International Development (USAID).This study is made possible by the generous support of the American people through USAID.The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the ernment.Reagents from the NIH are subject to nonrestrictive material transferagreements.Patent applications pertaining to this work are the U.S.and World Application US2009/006049and WO/2010/053583,Synthesis of JRC-II-191(A.B.S.,J.R.C.),U.S.Patent Application 13/202,351,Methods and Compositions for Altering Photopysical Properties of Fluorophores via Proximal Quenching (S.C.B.,Z.Z.);U.S.Patent Application 14/373,402Dye Compositions,Methods of Preparation,Conjugates Thereof,and Methods of Use (S.C.B.,Z.Z.);and International and US Patent Application PCT/US13/42249Reagents and Methods for Identifying Anti-HIV CompoundsSUPPLEMENTARY MATERIALS/content/346/6210/759/suppl/DC1Materials and Methods Figs.S1to S15Tables S1to S3References (46–56)4April 2014;accepted 15September 2014Published online 8October 2014;colonize and exploit terrestrial and freshwa-ter ecosystems.They have shaped Earth ’s biota,exhibiting coevolved relationships with many groups,from flowering plants to hu-mans.They were the first to master flight and establish social societies.However,many as-pects of insect evolution are still poorly under-stood (2).The oldest known fossil insects are from the Early Devonian [~412million years ago (Ma)],which has led to the hypothesis that in-sects originated in the Late Silurian with the earliest terrestrial ecosystems (3).MolecularEarly Ordovician origin (4),which implies that early diversification of insects occurred in marine or coastal environments.Because of the absence of insect fossils from the Cambrian to the Silurian,these conclusions remain highly controversial.Fur-thermore,the phylogenetic relationships among major clades of polyneopteran insect orders —including grasshoppers and crickets (Orthoptera),cockroaches (Blattodea),and termites (Isoptera)—have remained elusive,as has the phylogenetic position of the enigmatic Zoraptera.Even the closest extant relatives of Holometabola (e.g.,SCIENCE 7NOVEMBER 2014•VOL 346ISSUE 6210763RESEARCH |REPORTSbeetles,moths and butterflies,flies,sawflies,wasps,ants,and bees)are unknown.Thus,in order to understand the origins of physiological and mor-phological innovations in insects (e.g.,wings andmetamorphosis),it is important to reliably re-construct the tempo and mode of insect diversifi-cation.We therefore conducted a phylogenomic study on 1478single-copy nuclear genes obtained from genomes and transcriptomes representing key taxa from all extant insect orders and other arthropods (144taxa)and estimated divergence dates with a validated set of 37fossils (5).Phylogenomic analyses of transcriptome and genome sequence data (6)can be compromised by sparsely populated data matrices,gene paral-ogy,sequence misalignment,and deviations from the underlying assumptions of applied evolution-ary models,which may result in biased statistical confidence in phylogenetic relationships and tem-poral inferences.We addressed these obstacles by removing confounding factors in our analysis (5)(fig.S2).We sequenced more than 2.5gigabases (Gb)of cDNA from each of 103insect species,which represented all extant insect orders (5).Addition-ally,we included published transcript sequence data that met our standards (table S2)and offi-cial gene sets of 14arthropods with sequenced draft genomes (5),of which 12served as refer-ences during orthology prediction of transcripts (tables S2and S4).Comparative analysis of the reference species'official gene sets identified 1478single-copy nuclear genes present in all these species (tables S3and S4).Functional annotation of these genes revealed that many serve basic cellular functions (tables S14and S15and figs.S4to S6).A graph-based approach using the best reciprocal genome-and transcriptome-wide hit criterion identified,on average,98%of these genes in the 103de novo sequenced transcriptomes,but only 79%and 62%in the previously published transcriptomes of in-and out-group taxa,respec-tively (tables S12and S13).After transcripts had been assigned and aligned to the 1478single-copy nuclear-encoded genes,we checked for highly divergent,putatively misaligned transcripts.Of the 196,027aligned transcripts,2033(1%)were classified as highly divergent.Of these,716were satisfactorily re-aligned with an automated refinement.How-ever,alignments of 1317transcripts could not be improved,and these transcripts were excluded from our analyses (supplementary data file S5,/10.5061/dryad.3c0f1).Nonrandom distribution of missing data among taxa can inflate statistical support for incorrect tree topologies (7).Because we detected a non-random distribution of missing data,we only considered data blocks if they contained infor-mation from at least one representative of each of the 39predefined taxonomic groups of un-disputed monophyly (table S6).In this represent-ative data set,the extent of missing data was still between 5and 97.7%in pairwise sequence com-parisons,with high percentages primarily because of the data scarcity in some previously published out-group taxa (table S19and figs.S7to S10).We inferred maximum-likelihood phylogenetic trees (Fig.1)with both nucleotide (second-codon positions only and applying a site-specific rate model)and amino acid –sequence data (applying a protein domain –based partitioning scheme to improve the biological realism of the applied evolutionary models)from the representative data set (5)(figs.S21,S22,and S23,A and D).Trees from both data sets were fully congruent.The absence of taxa that cannot be robustly placed on the tree (rogue taxa)in the amino acid –sequence data set and the presence of a few rogue taxa that did not bias tree inference in the nucleotide sequence data set (5)indicated a suf-ficiently representative taxonomic sampling.To detect confounding signal derived from nonrandom data coverage,we randomized ami-no acids within taxa,while preserving the dis-tribution of data coverage in the representative data set (5).This approach revealed no evidence of biased node support that could be attributed to nonrandom data coverage (5)(figs.S11and S12and table S20).Phylogenomic data may violate the assumption of time-reversible evolu-tionary processes,irrespective of what partition scheme one applies,which could lead to in-correct tree estimates and biased node support.Because sections in the amino acid –sequence alignments of the representative data set violat-ing these assumptions were present,we tested whether the observed compositional heteroge-neity across taxa biased node support but found no evidence for this (5)(fig.S20).We next dis-carded data strongly violating the assumption of time-reversible evolutionary processes (tables S21and S22,data files S6to S8,and figs.S13to S19).Results from phylogenetic analysis of this filtered data set (5)were fully congruent with those obtained from analyzing the unfiltered representative data set.The nucleotide sequence data of the representative data set containing also first and third codon positions strongly violated the assumption of time-reversible evolutionary processes,but still supported largely congruent topologies (fig.S23,B to D).In summary,our phylogenetic inferences are unlikely to be biased by any of the above-mentioned confounding factors.Our phylogenomic study suggests an Early Ordovician origin of insects (Hexapoda)at ~479Ma [confidence interval (CI),509to 452Ma]and a radiation of ectognathous insects in the Early Silurian ~441Ma (CI 465to 421Ma)(Figs.1and 2).These estimates imply that insects colonized land at roughly the same time as plants (8),in agreement with divergence date estimates on the basis of other molecular data (4).The early diversification pattern of insects has remained unclear (2,7,9).We received support for a monophyly of insects,including Collembola and Protura as closest relatives (10),and Diplura as closest extant relatives of bristletails (Archae-ognatha),silverfish (Zygentoma),and winged in-sects (Pterygota)(Fig.1).Furthermore,our analyses corroborate Remipedia,cave-dwelling crustaceans,as the closest extant relatives of insects (11,12).A close phylogenetic relationship of bristletails to a clade uniting silverfish and winged insects (Dicondylia)is generally accepted.However,the monophyly of silverfish has been questioned,with the relict Tricholepidion gertschi considered more distantly related to winged insects than7647NOVEMBER 2014•VOL 346ISSUE 6210 SCIENCE1Zoologisches Forschungsmuseum Alexander Koenig (ZFMK)/Zentrum für Molekulare Biodiversitätsforschung (ZMB),Bonn,Germany.2China National GeneBank,BGI-Shenzhen,China.3BGI-Shenzhen,China.4Australian National Insect Collection,Commonwealth Scientific and Industrial Research Organization (Australia)(CSIRO),National Research Collections Australia,Canberra,ACT,Australia.5Abteilung Arthropoda,Zoologisches Forschungsmuseum Alexander Koenig (ZFMK),Bonn,Germany.6Department of Entomology,Rutgers University,New Brunswick,NJ 08854,USA.7Department of Biological Sciences,Rutgers University,Newark,NJ 08854,USA.8Scientific Computing,Heidelberg Institute for Theoretical Studies (HITS),Heidelberg,Germany.9Institut für Spezielle Zoologie undEvolutionsbiologie mit Phyletischem Museum Jena,FSU Jena,Germany.10Steinmann-Institut,Bereich Paläontologie,Universität Bonn,Germany.112.Zoologische Abteilung(Insekten),Naturhistorisches Museum Wien,Vienna,Austria.12Department of Integrative Zoology,Universität Wien,Vienna,Austria.13Institut für Spezifische Prophylaxe und Tropenmedizin,Medizinische Parasitologie,Medizinische Universität Wien (MUW),Vienna,Austria.14Manaaki Whenua Landcare Research,Auckland,New Zealand.15Center for Advanced Modeling,Emergency Medicine Department,Johns Hopkins University,Baltimore,MD 21209,USA.16Biozentrum Grindel und Zoologisches Museum,Universität Hamburg,Hamburg,Germany.17Evolutionary Morphology Laboratory,Graduate School of Science and Engineering,EhimeUniversity,Japan.18Sugadaira Montane Research Center/Hexapod Comparative Embryology Laboratory,University of Tsukuba,Japan.19Land and Water Flagship,CSIRO,Canberra,ACT,Australia.20Florida Museum of Natural History,University of Florida,Gainesville,FL 32611,USA.21Entomology,Staatliches Museum für Naturkunde Stuttgart (SMNS),Germany.22Ecology Evolution and Genetics,Research School of Biology,Australian National University,Canberra,ACT,Australia.23National Evolutionary Synthesis Center,Durham,NC 27705,USA.24Department of Biological Sciences,Macquarie University,Sydney,Australia.25Department für Botanik und Biodiversitätsforschung,Universität Wien,Vienna,Austria.26Natural History Museum of Crete,University of Crete,Post Office Box 2208,Gr-71409,Iraklio,and Biology Department,University of Crete,Iraklio,Crete,Greece.27Department of Biological Sciences and Feinstone Center for Genomic Research,University of Memphis,Memphis,TN 38152,USA.28Centro Universitario de Ciencias Biólogicas y Agropecuarias,Centro de Estudios en Zoología,Universidad de Guadalajara,Zapopan,Jalisco,México.29Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities,Garching,Germany.30Institute of Evolutionary Biology and Ecology,Zoology and Evolutionary Biology,University of Bonn,Bonn,Germany.31Department of Life Sciences,The Natural History Museum London,London,UK.32Abteilung Entomologie,Biozentrum Grindel und Zoologisches Museum,Universität Hamburg,Hamburg,Germany.33Fakultät für Informatik,Karlsruher Institut für Technologie,Karlsruhe,Germany.34California Academy of Sciences,San Francisco,CA 94118,USA.35Department of Entomology,College of Natural Resources and Environment,South ChinaAgricultural University,China.36Yokosuka City Museum,Yokosuka,Kanagawa,Japan.37Department of Entomology,North Carolina State University,Raleigh,NC 27695,USA.38Systematic Entomology,Hokkaido University,Sapporo,Japan.39Department of Biology,University of Copenhagen,Copenhagen,Denmark.40Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders,King Abdulaziz University,Jeddah,Saudi Arabia.41MacauUniversity of Science and Technology,Avenida Wai Long,Taipa,Macau,China.42Department of Medicine,University of Hong Kong,Hong Kong.43Department of Ecology,Evolution,and Natural Resources,Rutgers University,New Brunswick,NJ 08854,USA.*Major contributors.†Corresponding author.E-mail:xinzhou@ (X.Z.),b.misof.zfmk@uni-bonn.de (B.M.),kjer@ (K.M.K),wangj@ (J.W.)RESEARCH |REPORTSRESEARCH|REPORTSrelationships.maximum-likelihoodoptimized and sampledare labeled indicateorigin of events.SCIENCE 7NOVEMBER2014•VOL346ISSUE6210765estimates.correspondrange estimatesare Additionally,separatelybarsthe inferredcommon course,bewithRESEARCH|REPORTSother silverfish (13).We find that silverfish are monophyletic,consistent with recently published morphological studies (14),and estimate that Tricholepidion diverged from other silverfish in the Late Triassic (~214Ma)(Figs.1and 2).This result implies parallel and independent loss of the ligamentous head endoskeleton,abdominal styli,and coxal vesicles in winged insects and silverfish (5).The diversification of insects is undoubtedly related to the evolution of flight.Fossil winged insects exist from the Late Mississippian (~324Ma)(15),which implies a pre-Carboniferous origin of insect flight.The description of †Rhyniognatha (~412Ma)from a mandible,potentially indicative of a winged insect,suggested an Early Devonian to Late Silurian origin of winged insects (3).Our results corroborate an origin of winged insect lineages during this time period (16)(Figs.1and 2),which implies that the ability to fly emerged after the establishment of complex terrestrial ecosystems.Ephemeroptera and Odonata are,according to our analyses,derived from a common ancestor.However,node support is low for Palaeoptera (Ephemeroptera +Odonata)and for a sister group relationship of Palaeoptera to modern winged in-sects (Neoptera),which indicates that additional evidence,including extensive taxon sampling and the analysis of genomic meta-characters (17),will be necessary to corroborate these relationships.We find strong support for the monophyly of Polyneoptera,a group that comprises earwigs,stone-flies,grasshoppers,crickets,katydids (Orthoptera),Embioptera,Phasmatodea,Mantophasmatodea,Grylloblattodea,cockroaches,mantids,termites,and Zoraptera (18–20).We estimated the origin of the polyneopteran lineages at ~302Ma (CI 377to 231Ma)in the Pennsylvanian (Figs.1and 2),con-sistent with the idea that at least part of the rich Carboniferous neopteran insect fauna was of poly-neopteran origin.Finally,our analyses suggest that the major diversity within living cockroaches,man-tids,termites,and stick insects evolved after the Permian mass extinction.Given that the oldest known fossil hemipterans date to the Middle Pennsylvanian (~310Ma)(21),it had been thought that the stylet marks on liv-erworts from the Late Devonian (~380Ma)(22)could not have been of hemipteran origin.Our study indicates that true bugs (Hemiptera)and their sister lineage,thrips (Thysanoptera),all of which possess piercing-sucking mouthparts,orig-inated ~373Ma (CI 401to 346Ma),which gives support to the possibility of a hemipteroid origin of Early Paleozoic stylet marks.True bugs,thrips,bark lice (Psocoptera),and true lice (Phthiraptera)(together called Acercaria)were thought to be the closest extant relatives of Holometabola (Acercaria +Holometabola =Eumetabola)(10).However,convincing morpho-logical features and fossil intermediates support-ing a monophyly of Acercaria are lacking (13).We recovered bark and true lice (Psocodea)as likely closest extant relatives of Holometabola (5),which suggests that both groups started to diverge in the Devonian-Mississippian ~362Ma (CI 390to 334Ma)(Figs.1and 2).However,this result did not receive support in all statistical tests and,therefore,should be further investigated in future studies that embrace additional types of characters (17).We estimated that the radiation of parasitic lice occurred ~53Ma (CI 67to 46Ma),which implies that they diversified well after the emer-gence of their avian and mammalian hosts in the Late Cretaceous –Early Eocene and contradicts the hypothesis that parasitic lice originated on fea-thered theropod dinosaurs ~130Ma (23).Within Holometabola,our study recovered phylogenetic relationships fully congruent with those suggested in recent studies (2,24,25).Although we estimated the origin of stem lineages of many holometabolous insect orders in the Late Carboniferous,we dated the spectacular diver-sifications within Hymenoptera,Diptera,and Lepidoptera to the Early Cretaceous,contem-porary with the radiation of flowering plants (21,26).The almost linear increase in interordinal insect diversity suggests that the process of di-versification of extant insects may not have been severely affected by the Permian and Cretaceous biodiversity crises (Fig.2).With this study,we have provided a robust phylogenetic backbone tree and reliable time estimates of insect evolution.These data and analyses establish a framework for future com-parative analyses on insects,their genomes,and their morphology.REFERENCES AND NOTES1.The term “insects ”is used here in a broad sense andsynonymous to Hexapoda (including the ancestrally wingless Protura,Collembola,and Diplura).2.M.D.Trautwein,B.M.Wiegmann,R.Beutel,K.M.Kjer,D.K.Yeates,Annu.Rev.Entomol.57,449–468(2012).3.M.S.Engel,D.A.Grimaldi,Nature 427,627–630(2004).4.O.Rota-Stabelli et al.,Curr.Biol.23,392–398(2013).5.Materials and methods are available as supplementarymaterial on Science Online.6.Transcriptome refers to the sequencing of all of the mRNAs ofan individual or many individuals present at the time of preservation.7. E.Dell ’Ampio et al .,Mol.Biol.Evol.31,239–249(2014).8. bandeira,Arthro Syst.Phylo.64,53–94(2006).9.K.Meusemann et al .,Mol.Biol.Evol.27,2451–2464(2010).10.W.Hennig,Die Stammesgeschichte der Insekten(Kramer,Frankfurt am Main,1969).11.With the notable exception of Cephalocarida,for which RNA-sequencing data were unavailable to us.12.B.M.von Reumont et al .,Mol.Biol.Evol.29,1031–1045(2012).13.N.P.Kristensen,Annu.Rev.Entomol.26,135–157(1981).14.A.Blanke,M.Koch,B.Wipfler,F.Wilde,B.Misof,Front.Zool.11,16(2014).15.J.Prokop,A.Nel,I.Hoch,Geobios 38,383–387(2005).16.These estimates are robust whether or not †Rhyniognatha(Pragian stage,~412Ma)is used as a calibration point.17.O.Niehuis et al .,Curr.Biol.22,1309–1313(2012).18.H.Letsch,S.Simon,Syst.Entomol.38,783–793(2013).19.K.Ishiwata,G.Sasaki,J.Ogawa,T.Miyata,Z.-H.Su,Mol.Phylogenet.Evol.58,169–180(2011).20.K.Yoshizawa,Syst.Entomol.36,377–394(2011).21.A.Nel et al .,Nature 503,257–261(2013).bandeira,S.L.Tremblay,K.E.Bartowski,L.VanAllerHernick,New Phytol.202,247–258(2014).23.V.S.Smith et al .,Biol.Lett.7,782–785(2011).24.R.G.Beutel et al .,Cladistics 27,341–355(2011).25.B.M.Wiegmann et al .,BMC Biol.7,34(2009).26.J.A.Doyle,Annu.Rev.Earth Planet.Sci.40,301–326(2012).ACKNOWLEDGMENTSThe data reported in this paper are tabulated in the supplementary materials and archived at National Center for BiotechnologyInformation,NIH,under the Umbrella BioProject ID PRJNA183205(“The 1KITE project:evolution of insects ”).Supplementary files are archived at the Dryad Digital Repository /10.5061/dryad.3c0f1.Funding support:China National GeneBank and BGI-Shenzhen,China;German Research Foundation (NI 1387/1-1;MI 649/6,MI 649/10,RE 345/1-2,BE1789/8-1,BE 1789/10-1,STA 860/4,Heisenberg grant WA 1496/8-1);Austria Science Fund FWF;NSF (DEB 0816865);Ministry of Education,Culture,Sports,Science and Technology of Japan Grant-in-Aid forYoung Scientists (B 22770090);Japan Society for the Promotion of Science (P14071);Deutsches Elektronen-Synchrotron (I-20120065);Paul Scherrer Institute (20110069);SchlingerEndowment to CSIRO Ecosystem Sciences;Heidelberg Institute for Theoretical Studies;University of Memphis-FedEx Institute ofTechnology;and Rutgers University.The authors declare no conflicts of interest.SUPPLEMENTARY MATERIALS/content/346/6210/763/suppl/DC1Materials and Methods Supplementary Text Figs.S1to S27Tables S1to S26Data File Captions S1to S14References (27–187)17June 2014;accepted 23September 201410.1126/science.1257570SCIENCE 7NOVEMBER 2014•VOL 346ISSUE 6210767RESEARCH |REPORTS。
期刊全称JCR期刊简称ISSN所属小类所属小类(中文)小类分区所属大类大类复分APPLIED CLAYAPPL CLAY SC0169-1317MATERIALS S材料科学:综合3地学N PHYSICS AND PHYS CHEM M0342-1791MATERIALS S材料科学:综合4地学N GEOSYNTHET GEOSYNTH IN1072-6349MATERIALS S材料科学:综合4地学N IEEE Journal of IEEE J-STARS1939-1404IMAGING SCIE成像科学与照相3地学N PHOTOGRAMMPHOTOGRAMM0099-1112IMAGING SCIE成像科学与照相3地学N Geocarto Intern GEOCARTO IN1010-6049IMAGING SCIE成像科学与照相4地学N Photogrammetri PHOTOGRAMM1432-8364IMAGING SCIE成像科学与照相4地学N PHOTOGRAMMPHOTOGRAMM0031-868X IMAGING SCIE成像科学与照相3地学N Annual Review ANNU REV MA1941-1405GEOCHEMIST地球化学与地球1地学N EARTH AND P EARTH PLANE0012-821X GEOCHEMIST地球化学与地球2地学N Geochemical Pe GEOCHEM PE2223-7755GEOCHEMIST地球化学与地球1地学N GEOCHIMICA G EOCHIM COS0016-7037GEOCHEMIST地球化学与地球2地学N JOURNAL OF PJ PETROL0022-3530GEOCHEMIST地球化学与地球1地学N REVIEWS OF GREV GEOPHYS8755-1209GEOCHEMIST地球化学与地球1地学N CHEMICAL GECHEM GEOL0009-2541GEOCHEMIST地球化学与地球2地学N CONTRIBUTIOCONTRIB MIN0010-7999GEOCHEMIST地球化学与地球2地学N Elements ELEMENTS1811-5209GEOCHEMIST地球化学与地球2地学N GEOCHEMIST GEOCHEM GE1525-2027GEOCHEMIST地球化学与地球2地学N GEOPHYSICALGEOPHYS J IN0956-540X GEOCHEMIST地球化学与地球3地学N GEOSTANDARGEOSTAND G1639-4488GEOCHEMIST地球化学与地球3地学N JOURNAL OF GJ GEODESY0949-7714GEOCHEMIST地球化学与地球2地学N JOURNAL OF GJ GEODYN0264-3707GEOCHEMIST地球化学与地球3地学N LITHOS LITHOS0024-4937GEOCHEMIST地球化学与地球2地学N ORGANIC GEOORG GEOCHE0146-6380GEOCHEMIST地球化学与地球3地学N REVIEWS IN MREV MINERAL1529-6466GEOCHEMIST地球化学与地球2地学N SEISMOLOGICSEISMOL RES 0895-0695GEOCHEMIST地球化学与地球3地学N SURVEYS IN GSURV GEOPHY0169-3298GEOCHEMIST地球化学与地球2地学N TECTONICSTECTONICS0278-7407GEOCHEMIST地球化学与地球2地学N TECTONOPHY TECTONOPHY0040-1951GEOCHEMIST地球化学与地球3地学N AMERICAN M A M MINERAL0003-004X GEOCHEMIST地球化学与地球3地学N APPLIED GEO APPL GEOCHE0883-2927GEOCHEMIST地球化学与地球3地学N AQUATIC GEOAQUAT GEOC1380-6165GEOCHEMIST地球化学与地球4地学N BULLETIN OF B SEISMOL SO0037-1106GEOCHEMIST地球化学与地球3地学N DYNAMICS OFDYNAM ATMO0377-0265GEOCHEMIST地球化学与地球4地学NGEOCHEMICA GEOCHEM T1467-4866GEOCHEMIST地球化学与地球3地学N3地学N GEOFLUIDSGEOFLUIDS1468-8115GEOCHEMIST地球化学与地球4地学N GEOPHYSICS G EOPHYSICS0016-8033GEOCHEMIST地球化学与地球4地学N J ATMOS SOL-1364-6826GEOCHEMIST地球化学与地球JOURNAL OF A3地学N J GEOCHEM E0375-6742GEOCHEMIST地球化学与地球JOURNAL OF G3地学N Lithosphere LITHOSPHERE1941-8264GEOCHEMIST地球化学与地球3地学N MINERALIUM M INER DEPOS0026-4598GEOCHEMIST地球化学与地球4地学N MINERALOGYMINER PETRO0930-0708GEOCHEMIST地球化学与地球4地学N NONLINEAR P NONLINEAR P1023-5809GEOCHEMIST地球化学与地球0033-4553GEOCHEMIST地球化学与地球4地学N PURE AND AP PURE APPL GE4地学N RADIOCARBO RADIOCARBO0033-8222GEOCHEMIST地球化学与地球4地学N Solid Earth SOLID EARTH1869-9510GEOCHEMIST地球化学与地球4地学N Acta Geodaetica ACTA GEOD G2213-5812GEOCHEMIST地球化学与地球4地学N Acta Geodynam ACTA GEODY1214-9705GEOCHEMIST地球化学与地球4地学N1895-6572GEOCHEMIST地球化学与地球Acta Geophysic ACTA GEOPHY4地学N ANNALS OF G ANN GEOPHY1593-5213GEOCHEMIST地球化学与地球1672-7975GEOCHEMIST地球化学与地球4地学N Applied Geophy APPL GEOPHY1982-2170GEOCHEMIST地球化学与地球4地学N Boletim de Cien B CIENC GEOD4地学N Bollettino di Ge B GEOFIS TEO0006-6729GEOCHEMIST地球化学与地球4地学N0009-2819GEOCHEMIST地球化学与地球CHEM ERDE-GCHEMIE DER E4地学N CHINESE J GE0001-5733GEOCHEMIST地球化学与地球CHINESE JOUR4地学N0812-3985GEOCHEMIST地球化学与地球EXPLOR GEOPExploration Geo4地学N0016-7029GEOCHEMIST地球化学与地球GEOCHEMIST GEOCHEM INT4地学N GEOCHEMICA GEOCHEM J0016-7002GEOCHEMIST地球化学与地球GEOCHEMIST GEOCHEM-EX1467-7873GEOCHEMIST地球化学与地球4地学N4地学N Geofisica Intern GEOFIS INT0016-7169GEOCHEMIST地球化学与地球4地学N Geofizika GEOFIZIKA0352-3659GEOCHEMIST地球化学与地球4地学N0016-7932GEOCHEMIST地球化学与地球GEOMAGN AEGEOMAGNETI4地学N0016-8025GEOCHEMIST地球化学与地球GEOPHYSICALGEOPHYS PRO4地学N GEOTECTONI GEOTECTONI0016-8521GEOCHEMIST地球化学与地球4地学N IZV-PHYS SOL1069-3513GEOCHEMIST地球化学与地球IZVESTIYA-PH4地学N1793-4311GEOCHEMIST地球化学与地球Journal of Earth J EARTHQ TSU4地学N1083-1363GEOCHEMIST地球化学与地球J ENVIRON ENJOURNAL OF E0963-0651GEOCHEMIST地球化学与地球4地学N J SEISM EXPLOJOURNAL OF S4地学N J SEISMOL1383-4649GEOCHEMIST地球化学与地球JOURNAL OF S4地学N Journal of VolcaJ VOLCANOL 0742-0463GEOCHEMIST地球化学与地球LITHOLOGY A4地学N LITHOL MINE0024-4902GEOCHEMIST地球化学与地球4地学N MAR GEOD0149-0419GEOCHEMIST地球化学与地球MARINE GEOD4地学N MAR GEOPHY0025-3235GEOCHEMIST地球化学与地球MARINE GEOPNEAR SURF G1569-4445GEOCHEMIST地球化学与地球4地学N Near Surface Ge4地学N PERIOD MINE0369-8963GEOCHEMIST地球化学与地球Periodico di Min1529-9074GEOCHEMIST地球化学与地球4地学N Petrophysics PETROPHYSIC0039-3169GEOCHEMIST地球化学与地球4地学N STUDIA GEOP STUD GEOPHY0012-8252GEOSCIENCESEARTH-SCIEN EARTH-SCI RE地球科学综合1地学N0016-7606GEOSCIENCESGEOLOGICAL GEOL SOC AM地球科学综合1地学N1991-959X GEOSCIENCESGeoscientific M G EOSCI MODE地球科学综合1地学N1342-937X GEOSCIENCESGONDWANA RGONDWANA R地球科学综合1地学N NAT GEOSCI1752-0894GEOSCIENCESNature Geoscien地球科学综合1地学N PRECAMBRIA PRECAMBRIA0301-9268GEOSCIENCES地球科学综合1地学N QUATERNARY0277-3791GEOSCIENCESQUATERNARY地球科学综合1地学N AM J SCI0002-9599GEOSCIENCESAMERICAN JO地球科学综合2地学N BULLETIN OF B VOLCANOL0258-8900GEOSCIENCES地球科学综合3地学N BASIN RESEA B ASIN RES0950-091X GEOSCIENCES地球科学综合2地学N Climate of the P CLIM PAST1814-9324GEOSCIENCES地球科学综合2地学N Cryosphere CRYOSPHERE1994-0416GEOSCIENCES地球科学综合2地学N0197-9337GEOSCIENCESEARTH SURF PEARTH SURFA地球科学综合2地学N2190-4979GEOSCIENCESEarth System D E ARTH SYST D地球科学综合2地学N0169-555X GEOSCIENCESGEOMORPHOLGEOMORPHOL地球科学综合2地学N GEOPHYS RES0094-8276GEOSCIENCESGEOPHYSICAL地球科学综合2地学N HOLOCENE HOLOCENE0959-6836GEOSCIENCES地球科学综合2地学N1027-5606GEOSCIENCESHYDROLOGY HYDROL EART地球科学综合2地学N J GEOL SOC L0016-7649GEOSCIENCESJOURNAL OF T地球科学综合2地学N0148-0227GEOSCIENCESJ GEOPHYS REJOURNAL OF G地球科学综合2地学N J GLACIOL0022-1430GEOSCIENCESJOURNAL OF G地球科学综合2地学N J HYDROL0022-1694GEOSCIENCESJOURNAL OF H地球科学综合2地学N JOURNAL OF Q0267-8179GEOSCIENCESJ QUATERNAR地球科学综合2地学N PALAEOGEOG0031-0182GEOSCIENCESPALAEOGEOG地球科学综合2地学N PALEOCEANO PALEOCEANO0883-8305GEOSCIENCES地球科学综合2地学N PROGRESS IN PROG PHYS G0309-1333GEOSCIENCES地球科学综合2地学N Quaternary Geo QUAT GEOCH1871-1014GEOSCIENCES地球科学综合2地学N ADV GEOPHY0065-2687GEOSCIENCESADVANCES IN地球科学综合4地学N ANNALES GEOANN GEOPHY0992-7689GEOSCIENCES地球科学综合3地学N0260-3055GEOSCIENCESANNALS OF G ANN GLACIOL地球科学综合3地学N ANTARCTIC S ANTARCT SCI0954-1020GEOSCIENCES地球科学综合3地学N1075-2196GEOSCIENCESArchaeological ARCHAEOL PR地球科学综合3地学N BOREAS BOREAS0300-9483GEOSCIENCES地球科学综合3地学N COMPUT GEO0098-3004GEOSCIENCESCOMPUTERS &地球科学综合3地学N CR GEOSCI1631-0713GEOSCIENCESCOMPTES REN地球科学综合3地学N Earth Interactio EARTH INTER1087-3562GEOSCIENCES地球科学综合3地学N ENG GEOL0013-7952GEOSCIENCESENGINEERING地球科学综合4地学N Geoheritage GEOHERITAG1867-2477GEOSCIENCES地球科学综合3地学N GEOLOGICAL GEOL J0072-1050GEOSCIENCES地球科学综合3地学N GEOLOGICAL GEOL MAG0016-7568GEOSCIENCES地球科学综合3地学N0276-0460GEOSCIENCESGEO-MARINE GEO-MAR LET地球科学综合3地学N Geosphere GEOSPHERE1553-040X GEOSCIENCES地球科学综合3地学N GEOTEXTILES0266-1144GEOSCIENCESGEOTEXT GEO地球科学综合3地学N HYDROGEOL 1431-2174GEOSCIENCESHYDROGEOLO地球科学综合3地学N INTERNATION1437-3254GEOSCIENCESINT J EARTH S地球科学综合3地学N INT J SPELEOL0392-6672GEOSCIENCESINTERNATION地球科学综合3地学N0305-4403GEOSCIENCESJ ARCHAEOL SJOURNAL OF A地球科学综合3地学N J ASIAN EART1367-9120GEOSCIENCESJOURNAL OF A地球科学综合3地学N J MARINE SYS0924-7963GEOSCIENCESJOURNAL OF M地球科学综合3地学N J PALEOLIMN0921-2728GEOSCIENCESJOURNAL OF P地球科学综合3地学N J S AM EARTH0895-9811GEOSCIENCESJOURNAL OF S地球科学综合3地学N0191-8141GEOSCIENCESJ STRUCT GEOJOURNAL OF S地球科学综合3地学N J VOLCANOL 0377-0273GEOSCIENCESJOURNAL OF V地球科学综合3地学N Landslides LANDSLIDES1612-510X GEOSCIENCES地球科学综合3地学N MAR GEOL0025-3227GEOSCIENCESMARINE GEOL地球科学综合3地学N MARINE AND MAR PETROL 0264-8172GEOSCIENCES地球科学综合3地学N Mathematical G MATH GEOSC1874-8961GEOSCIENCES地球科学综合4地学N NATURAL HA N AT HAZARD1561-8633GEOSCIENCES地球科学综合3地学N PHOTOGRAMM0099-1112GEOSCIENCESPHOTOGRAMM地球科学综合3地学N POLAR RESEA POLAR RES0800-0395GEOSCIENCES地球科学综合3地学N1040-6182GEOSCIENCESQUATERN INTQUATERNARY地球科学综合3地学N QUATERNARY0033-5894GEOSCIENCESQUATERNARY地球科学综合3地学N TERRA NOVA T ERRA NOVA0954-4879GEOSCIENCES地球科学综合3地学N ACTA CARSOL0583-6050GEOSCIENCESACTA CARSOL地球科学综合4地学N ACTA GEOLO A CTA GEOL S1000-9515GEOSCIENCES地球科学综合4地学NActa Montanisti ACTA MONTA1335-1788GEOSCIENCES地球科学综合4地学N1866-7511GEOSCIENCESArabian Journal ARAB J GEOSC地球科学综合4地学N Archaeological ARCHAEOL A1866-9557GEOSCIENCES地球科学综合4地学N0003-813X GEOSCIENCESARCHAEOMETARCHAEOMET地球科学综合4地学N0812-0099GEOSCIENCESAUSTRALIAN AUST J EARTH地球科学综合4地学N Austrian Journa AUSTRIAN J E2072-7151GEOSCIENCES地球科学综合4地学N0011-6297GEOSCIENCESBULLETIN OF B GEOL SOC D地球科学综合4地学N BULLETIN OF B GEOSCI1214-1119GEOSCIENCES地球科学综合4地学N BULLETIN DE B SOC GEOL F0037-9409GEOSCIENCES地球科学综合4地学N0008-3674GEOSCIENCESCAN GEOTECHCANADIAN GE地球科学综合4地学N CAN J EARTH 0008-4077GEOSCIENCESCANADIAN JO地球科学综合4地学N Central Europea CENT EUR J G2081-9900GEOSCIENCES地球科学综合4地学N0009-8604GEOSCIENCESCLAYS AND C CLAY CLAY M地球科学综合4地学N CLAY MINER0009-8558GEOSCIENCESCLAY MINERA地球科学综合4地学N COMPUT GEO0266-352X GEOSCIENCESCOMPUTERS A地球科学综合4地学N COMPUTATIO COMPUTAT G1420-0597GEOSCIENCES地球科学综合4地学N DOKLADY EA DOKL EARTH 1028-334X GEOSCIENCES地球科学综合4地学N Earth and Envir EARTH ENV S1755-6910GEOSCIENCES地球科学综合4地学N EARTH SCIEN EARTH SCI HI0736-623X GEOSCIENCES地球科学综合4地学N EARTH SCI IN1865-0473GEOSCIENCESEarth Science In地球科学综合4地学N EARTH SCI RE1794-6190GEOSCIENCESEarth Sciences R地球科学综合4地学N ENVIRON ENG1078-7275GEOSCIENCESENVIRONMEN地球科学综合4地学N EPISODES EPISODES0705-3797GEOSCIENCES地球科学综合4地学N ERDE ERDE0013-9998GEOSCIENCES地球科学综合4地学N1736-4728GEOSCIENCESEstonian Journa EST J EARTH S地球科学综合4地学N2095-0195GEOSCIENCESFrontiers of Ear FRONT EARTH地球科学综合4地学N GEOARABIA GEOARABIA1025-6059GEOSCIENCES地球科学综合4地学N GEOARCHAEO0883-6353GEOSCIENCESGEOARCHAEO地球科学综合4地学N1010-6049GEOSCIENCESGeocarto Intern GEOCARTO IN地球科学综合4地学N1733-8387GEOSCIENCESGEOCHRONOMGEOCHRONOM地球科学综合4地学N0985-3111GEOSCIENCESGEODINAMIC GEODIN ACTA地球科学综合4地学N1335-0552GEOSCIENCESGEOLOGICA CGEOL CARPAT地球科学综合4地学N GEOL CROAT1330-030X GEOSCIENCESGEOLOGIA CR地球科学综合4地学N Geomatics Natu GEOMAT NAT1947-5705GEOSCIENCES地球科学综合4地学N1266-5304GEOSCIENCESGeomorphologieGEOMORPHOL地球科学综合4地学N GEOSCIENCE GEOSCI CAN0315-0941GEOSCIENCES地球科学综合4地学NGEOSCI J1226-4806GEOSCIENCESGEOSCIENCES地球科学综合4地学N1072-6349GEOSCIENCESGEOSYNTHET GEOSYNTH IN地球科学综合4地学N ISLAND ARC ISL ARC1038-4871GEOSCIENCES地球科学综合4地学N Italian Journal o ITAL J GEOSC2038-1719GEOSCIENCES地球科学综合4地学N J AFR EARTH 1464-343X GEOSCIENCESJOURNAL OF A地球科学综合4地学N JOURNAL OF AJ APPL GEOPH0926-9851GEOSCIENCES地球科学综合4地学N J CAVE KARST1090-6924GEOSCIENCESJOURNAL OF C地球科学综合4地学N0749-0208GEOSCIENCESJ COASTAL REJOURNAL OF C地球科学综合4地学N1674-487X GEOSCIENCESJournal of Earth J EARTH SCI-C地球科学综合4地学N Journal of Earth J EARTH SYST0253-4126GEOSCIENCES地球科学综合4地学N J GEOL SOC IN0016-7622GEOSCIENCESJOURNAL OF T地球科学综合4地学N J GEOSCI-CZE1802-6222GEOSCIENCESJournal of Geosc地球科学综合4地学N0141-6421GEOSCIENCESJ PETROL GEOJOURNAL OF P地球科学综合4地学N Jokull JOKULL0449-0576GEOSCIENCES地球科学综合4地学N0016-7746GEOSCIENCESNETH J GEOSCNETHERLAND地球科学综合4地学N0028-8306GEOSCIENCESNEW ZEALAN NEW ZEAL J G地球科学综合4地学N NORWEGIAN NORW J GEOL0029-196X GEOSCIENCES地球科学综合4地学N PETROL GEOS1354-0793GEOSCIENCESPETROLEUM G地球科学综合4地学N PETROLOGY PETROLOGY+0869-5911GEOSCIENCES地球科学综合4地学N0031-868X GEOSCIENCESPHOTOGRAMMPHOTOGRAMM地球科学综合4地学N PHYSICS AND PHYS CHEM E1474-7065GEOSCIENCES地球科学综合4地学N PHYSICAL GE PHYS GEOGR0272-3646GEOSCIENCES地球科学综合4地学N POLISH POLAR0138-0338GEOSCIENCESPOL POLAR RE地球科学综合4地学N QUARTERLY J Q J ENG GEOL1470-9236GEOSCIENCES地球科学综合4地学N QUATERNAIR QUATERNAIR1142-2904GEOSCIENCES地球科学综合4地学N REV MEX CIE1026-8774GEOSCIENCESREVISTA MEX地球科学综合4地学N1068-7971GEOSCIENCESRussian GeologyRUSS GEOL GE地球科学综合4地学N1819-7140GEOSCIENCESRussian Journal RUSS J PAC GE地球科学综合4地学N SCI CHINA EA1674-7313GEOSCIENCESScience China-E地球科学综合4地学N SURVEY REVI SURV REV0039-6265GEOSCIENCES地球科学综合4地学N Swiss Journal of SWISS J GEOS1661-8726GEOSCIENCES地球科学综合4地学N TERRESTRIAL TERR ATMOS 1017-0839GEOSCIENCES地球科学综合4地学N1300-0985GEOSCIENCESTURKISH JOURTURK J EARTH地球科学综合4地学N Z DTSCH GES 1860-1804GEOSCIENCESZeitschrift der D地球科学综合4地学N ZEITSCHRIFT Z GEOMORPH0372-8854GEOSCIENCES地球科学综合4地学N GEOLOGY GEOLOGY0091-7613GEOLOGY地质学1地学NINTERNATION0020-6814GEOLOGY地质学2地学N INT GEOL REVJ GEOL0022-1376GEOLOGY地质学2地学N JOURNAL OF G0263-4929GEOLOGY地质学1地学N J METAMORPHJOURNAL OF MORE GEOL RE0169-1368GEOLOGY地质学2地学N ORE GEOLOGYPERMAFROST PERMAFROST1045-6740GEOLOGY地质学2地学N SEDIMENTOL SEDIMENTOL0037-0746GEOLOGY地质学2地学N CRETACEOUS CRETACEOUS0195-6671GEOLOGY地质学3地学N FACIES FACIES0172-9179GEOLOGY地质学3地学N GEOFLUIDSGEOFLUIDS1468-8115GEOLOGY地质学3地学N GEOL ACTA1695-6133GEOLOGY地质学3地学N GEOLOGICA AJ SEDIMENT R1527-1404GEOLOGY地质学3地学N JOURNAL OF SLithosphere LITHOSPHERE1941-8264GEOLOGY地质学2地学N0078-0421GEOLOGY地质学2地学N NEWSLETTER NEWSL STRATPALAIOS PALAIOS0883-1351GEOLOGY地质学3地学N0037-0738GEOLOGY地质学3地学N SEDIMENTAR SEDIMENT GEACTA GEOLO A CTA GEOL P0001-5709GEOLOGY地质学4地学N ACTA PETROL1000-0569GEOLOGY地质学4地学N ACTA PETROLANDEAN GEO0718-7106GEOLOGY地质学3地学N Andean Geology0208-9068GEOLOGY地质学4地学N ANNALES SOCANN SOC GEOATLANTIC GE ATL GEOL0843-5561GEOLOGY地质学4地学N BULLETIN OF B GEOL SOC F0367-5211GEOLOGY地质学4地学N Baltica BALTICA0067-3064GEOLOGY地质学4地学N0891-2556GEOLOGY地质学4地学N CARBONATES CARBONATE E1634-0744GEOLOGY地质学4地学N CARNETS DE CARNETS GEOESTUDIOS GE ESTUD GEOL-0367-0449GEOLOGY地质学4地学N0435-3676GEOLOGY地质学3地学N GEOGRAFISKAGEOGR ANN AGEOL BELG1374-8505GEOLOGY地质学4地学N GEOLOGICA BGEOLOGY OF GEOL ORE DE1075-7015GEOLOGY地质学4地学N GEOLOGICAL GEOL Q1641-7291GEOLOGY地质学4地学N GEOLOGICAL GEOL SURV D1604-8156GEOLOGY地质学4地学N GFF GFF1103-5897GEOLOGY地质学4地学N HIMALAYAN HIMAL GEOL0971-8966GEOLOGY地质学4地学N JOURNAL OF I J IBER GEOL1698-6180GEOLOGY地质学4地学N LITHOL MINE0024-4902GEOLOGY地质学4地学N LITHOLOGY A0028-8306GEOLOGY地质学4地学N NEW ZEALAN NEW ZEAL J GOFIOLITI OFIOLITI0391-2612GEOLOGY地质学3地学NPROCEEDINGSP GEOLOGIST0016-7878GEOLOGY地质学4地学NP YORKS GEO0044-0604GEOLOGY地质学4地学N PROCEEDINGS1344-1698GEOLOGY地质学4地学N RESOURCE GERESOUR GEOLRIVISTA ITAL RIV ITAL PAL0035-6883GEOLOGY地质学4地学NSCOT J GEOL0036-9276GEOLOGY地质学4地学N SCOTTISH JOUSTRATIGR GE0869-5938GEOLOGY地质学4地学N STRATIGRAPH1547-139X GEOLOGY地质学4地学N Stratigraphy STRATIGRAPHARCHAEOMET0003-813X CHEMISTRY, AARCHAEOMET分析化学4地学N J ATMOS OCE0739-0572ENGINEERINGJOURNAL OF A工程:大洋2地学N APPLIED OCE APPL OCEAN 0141-1187ENGINEERING工程:大洋3地学N ENG GEOL0013-7952ENGINEERINGENGINEERING工程:地质2地学N2049-825X ENGINEERINGGeotechnique L GEOTECH LET工程:地质2地学N0266-1144ENGINEERINGGEOTEXTILESGEOTEXT GEO工程:地质1地学N Landslides LANDSLIDES1612-510X ENGINEERING工程:地质1地学N1854-0171ENGINEERINGACTA GEOTECActa Geotechnic工程:地质4地学N0008-3674ENGINEERINGCANADIAN GECAN GEOTECH工程:地质4地学N COMPUT GEO0266-352X ENGINEERINGCOMPUTERS A工程:地质3地学N2092-7614ENGINEERINGEARTHQ STRUEarthquakes and工程:地质3地学N1078-7275ENGINEERINGENVIRON ENGENVIRONMEN工程:地质4地学N1072-6349ENGINEERINGGEOSYNTHET GEOSYNTH IN工程:地质4地学N1532-3641ENGINEERINGInternational Jo INT J GEOMEC工程:地质3地学N1083-1363ENGINEERINGJ ENVIRON ENJOURNAL OF E工程:地质4地学N QUARTERLY J Q J ENG GEOL1470-9236ENGINEERING工程:地质4地学N2地学N IEEE Journal of IEEE J-STARS1939-1404ENGINEERING工程:电子与电ENVIRONMEN1078-7275ENGINEERINGENVIRON ENG工程:环境4地学N Petroleum Scien PETROL SCI1672-5107ENGINEERING工程:石油3地学N Petrophysics PETROPHYSIC1529-9074ENGINEERING工程:石油4地学N J HYDROL0022-1694ENGINEERINGJOURNAL OF H工程:土木1地学N2092-7614ENGINEERINGEarthquakes andEARTHQ STRU工程:土木3地学N SURVEY REVI SURV REV0039-6265ENGINEERING工程:土木4地学N J SYST PALAE1477-2019PALEONTOLO古生物学2地学N JOURNAL OF SPALAEOGEOG0031-0182PALEONTOLO古生物学2地学N PALAEOGEOGPALEOBIOLOG0094-8373PALEONTOLO古生物学1地学N PALEOBIOLOGPALEOCEANO PALEOCEANO0883-8305PALEONTOLO古生物学1地学N0567-7920PALEONTOLO古生物学3地学N ACTA PALAEOACTA PALAEOCRETACEOUS CRETACEOUS0195-6671PALEONTOLO古生物学2地学NFACIES FACIES0172-9179PALEONTOLO古生物学3地学N J FORAMIN RE0096-1191PALEONTOLO古生物学2地学N JOURNAL OF F0272-4634PALEONTOLO古生物学2地学N JOURNAL OF VJ VERTEBR PALETHAIA LETHAIA0024-1164PALEONTOLO古生物学2地学N0377-8398PALEONTOLO古生物学2地学N MAR MICROPAMARINE MICRPALAEONTOL PALAEONTOL0031-0239PALEONTOLO古生物学3地学N PALAIOS PALAIOS0883-1351PALEONTOLO古生物学2地学N0034-6667PALEONTOLO古生物学3地学N REVIEW OF PAREV PALAEOBALCHERINGA ALCHERINGA0311-5518PALEONTOLO古生物学4地学N AMEGHINIAN AMEGHINIAN0002-7014PALEONTOLO古生物学4地学N0753-3969PALEONTOLO古生物学4地学N ANNALES DE ANN PALEONTBULLETIN OF B GEOSCI1214-1119PALEONTOLO古生物学3地学N0375-7633PALEONTOLO古生物学4地学N BOLLETTINO B SOC PALEONCARNETS DE CARNETS GEO1634-0744PALEONTOLO古生物学4地学N CR PALEVOL1631-0683PALEONTOLO古生物学4地学N COMPTES RENEarth and Envir EARTH ENV S1755-6910PALEONTOLO古生物学4地学N0016-6995PALEONTOLO古生物学4地学N GEOBIOS GEOBIOS-LYO1733-8387PALEONTOLO古生物学3地学N GEOCHRONOMGEOCHRONOMGEODIVERSIT GEODIVERSIT1280-9659PALEONTOLO古生物学4地学N GFF GFF1103-5897PALEONTOLO古生物学4地学N J PALAEONTO0552-9360PALEONTOLO古生物学4地学N JOURNAL OF TJ PALEONTOL0022-3360PALEONTOLO古生物学3地学N JOURNAL OF PNEUES JAHRB NEUES JAHRB0077-7749PALEONTOLO古生物学4地学N P GEOLOGIST0016-7878PALEONTOLO古生物学3地学N PROCEEDINGS0375-0442PALEONTOLO古生物学3地学N PALAEONTOGPALAEONTOGPALAEONTOG0375-0299PALEONTOLO古生物学4地学N PALAEONTOGPALAEONTOL PALAEONTOL1935-3952PALEONTOLO古生物学3地学N PALAEONTOL0031-0220PALEONTOLO古生物学3地学N PalaeontologischPALEONTOLO PALEONTOL J0031-0301PALEONTOLO古生物学4地学N PALYNOLOGY0191-6122PALEONTOLO古生物学4地学N PALYNOLOGYRIVISTA ITAL RIV ITAL PAL0035-6883PALEONTOLO古生物学4地学N SPEC PAP PAL0038-6804PALEONTOLO古生物学3地学N SPECIAL PAPESTRATIGRAPHSTRATIGR GE0869-5938PALEONTOLO古生物学4地学N1547-139X PALEONTOLO古生物学3地学N Stratigraphy STRATIGRAPHAnnual Review ANNU REV MA1941-1405OCEANOGRAP海洋学1地学N0967-0637OCEANOGRAPDEEP-SEA RESDEEP-SEA RES海洋学2地学NJOURNAL OF P0022-3670OCEANOGRAPJ PHYS OCEAN海洋学2地学N0024-3590OCEANOGRAPLIMNOL OCEALIMNOLOGY A海洋学2地学N OCEAN MODE OCEAN MODE1463-5003OCEANOGRAP海洋学2地学N OCEANOGRAP1042-8275OCEANOGRAPOCEANOGRAP海洋学2地学N PALEOCEANO PALEOCEANO0883-8305OCEANOGRAP海洋学2地学N0079-6611OCEANOGRAPPROGRESS IN PROG OCEANO海洋学1地学N ATMOSPHERE ATMOS OCEA0705-5900OCEANOGRAP海洋学4地学N0278-4343OCEANOGRAPCONTINENTA CONT SHELF R海洋学3地学N0967-0645OCEANOGRAPDEEP-SEA RESDEEP-SEA RES海洋学2地学N0377-0265OCEANOGRAPDYNAM ATMODYNAMICS OF海洋学4地学N0272-7714OCEANOGRAPESTUARINE C ESTUAR COAS海洋学3地学N0276-0460OCEANOGRAPGEO-MARINE GEO-MAR LET海洋学3地学N J MARINE SYS0924-7963OCEANOGRAPJOURNAL OF M海洋学3地学N J SEA RES1385-1101OCEANOGRAPJOURNAL OF S海洋学3地学N1541-5856OCEANOGRAPLIMNOL OCEALIMNOLOGY A海洋学3地学N MAR GEOL0025-3227OCEANOGRAPMARINE GEOL海洋学3地学N OCEAN DYNA OCEAN DYNA1616-7341OCEANOGRAP海洋学3地学N Ocean Science OCEAN SCI1812-0784OCEANOGRAP海洋学3地学N POLAR RESEA POLAR RES0800-0395OCEANOGRAP海洋学3地学N TELLUS A0280-6495OCEANOGRAPTELLUS SERIE海洋学2地学N ACTA OCEAN ACTA OCEAN0253-505X OCEANOGRAP海洋学4地学N APPLIED OCE APPL OCEAN 0141-1187OCEANOGRAP海洋学4地学N1836-716X OCEANOGRAPAustralian Mete AUST METEOR海洋学4地学N BULLETIN OF B MAR SCI0007-4977OCEANOGRAP海洋学4地学N BRAZ J OCEAN1679-8759OCEANOGRAPBRAZILIAN JO海洋学4地学N0254-4059OCEANOGRAPCHIN J OCEANCHINESE JOUR海洋学4地学N HELGOLAND HELGOLAND 1438-387X OCEANOGRAP海洋学4地学N Indian Journal o INDIAN J GEO0379-5136OCEANOGRAP海洋学4地学N IZV ATMOS O0001-4338OCEANOGRAPIZVESTIYA AT海洋学4地学N J MAR RES0022-2402OCEANOGRAPJOURNAL OF M海洋学4地学N1672-5182OCEANOGRAPJournal of OceanJ OCEAN U CH海洋学4地学N J OCEANOGR0916-8370OCEANOGRAPJOURNAL OF O海洋学4地学N1755-876X OCEANOGRAPJ OPER OCEANJournal of Opera海洋学4地学N MAR GEOD0149-0419OCEANOGRAPMARINE GEOD海洋学4地学N MAR GEOPHY0025-3235OCEANOGRAPMARINE GEOP海洋学4地学N OCEANOLOGI OCEANOL HY1730-413X OCEANOGRAP海洋学4地学NOCEANOLOGI OCEANOLOGI0078-3234OCEANOGRAP海洋学4地学N0001-4370OCEANOGRAPOCEANOLOGYOCEANOLOGY海洋学4地学N TERRESTRIAL TERR ATMOS 1017-0839OCEANOGRAP海洋学4地学N1地学N Annual Review ANNU REV MA1941-1405MARINE & FR海洋与淡水生物3地学N ESTUARINE C ESTUAR COAS0272-7714MARINE & FR海洋与淡水生物2地学N J MARINE SYS0924-7963MARINE & FR海洋与淡水生物JOURNAL OF M3地学N JOURNAL OF SJ SEA RES1385-1101MARINE & FR海洋与淡水生物4地学N BULLETIN OF B MAR SCI0007-4977MARINE & FR海洋与淡水生物4地学N1679-8759MARINE & FR海洋与淡水生物BRAZ J OCEANBRAZILIAN JO4地学N Fundamental an FUND APPL LI1863-9135MARINE & FR海洋与淡水生物4地学N HELGOLAND HELGOLAND 1438-387X MARINE & FR海洋与淡水生物LIMNOL OCEA0024-3590LIMNOLOGY湖沼学1地学N LIMNOLOGY AJ PALEOLIMN0921-2728LIMNOLOGY湖沼学2地学N JOURNAL OF P1541-5856LIMNOLOGY湖沼学3地学N LIMNOL OCEALIMNOLOGY AANNALES DE ANN LIMNOL-0003-4088LIMNOLOGY湖沼学4地学N0254-4059LIMNOLOGY湖沼学4地学N CHINESE JOURCHIN J OCEANFundamental an FUND APPL LI1863-9135LIMNOLOGY湖沼学4地学N J LIMNOL1129-5767LIMNOLOGY湖沼学4地学N JOURNAL OF LLIMNOLOGY LIMNOLOGY1439-8621LIMNOLOGY湖沼学4地学N ANTARCTIC S ANTARCT SCI0954-1020ENVIRONMEN环境科学4地学N CLIMATE RES CLIM RES0936-577X ENVIRONMEN环境科学3地学N INT J BIOMET0020-7128ENVIRONMENINTERNATION环境科学3地学N J PALEOLIMN0921-2728ENVIRONMENJOURNAL OF P环境科学3地学N ARCTIC ANTA1523-0430ENVIRONMENARCT ANTARC环境科学4地学N ARCTIC ARCTIC0004-0843ENVIRONMEN环境科学4地学N1010-6049ENVIRONMENGeocarto Intern GEOCARTO IN环境科学4地学N J ATMOS CHE0167-7764ENVIRONMENJOURNAL OF A环境科学4地学N JOURNAL OF C0749-0208ENVIRONMENJ COASTAL RE环境科学4地学N MT RES DEV0276-4741ENVIRONMENMOUNTAIN RE环境科学4地学N PHYSICAL GE PHYS GEOGR0272-3646ENVIRONMEN环境科学4地学N COMPUT GEO0098-3004COMPUTER SC3地学N COMPUTERS &计算机:跨学科4地学N COMPUT GEO0266-352X COMPUTER SCCOMPUTERS A计算机:跨学科3地学N COMPUTATIO COMPUTAT G1420-0597COMPUTER SC计算机:跨学科Earth Science InEARTH SCI IN1865-0473COMPUTER SC4地学N计算机:跨学科3地学N INT J GEOGR I1365-8816COMPUTER SCINTERNATION计算机:信息系3地学N GEOINFORMA GEOINFORMA1384-6175COMPUTER SC计算机:信息系JOURNAL OF SJ SYST PALAE1477-2019EVOLUTIONA进化生物学4地学N0094-8373EVOLUTIONA进化生物学4地学N PALEOBIOLOGPALEOBIOLOGEARTH SCIEN EARTH SCI HI0736-623X HISTORY & PH4地学N科学史与科学哲APPLIED CLAY0169-1317MINERALOGYAPPL CLAY SC矿物学3地学N CONTRIB MIN0010-7999MINERALOGYCONTRIBUTIO矿物学2地学N Elements ELEMENTS1811-5209MINERALOGY矿物学2地学N LITHOS LITHOS0024-4937MINERALOGY矿物学1地学N ORE GEOL RE0169-1368MINERALOGYORE GEOLOGY矿物学2地学N1529-6466MINERALOGYREV MINERALREVIEWS IN M矿物学2地学N AMERICAN M A M MINERAL0003-004X MINERALOGY矿物学3地学N MINERALIUM M INER DEPOS0026-4598MINERALOGY矿物学3地学N MINER PETRO0930-0708MINERALOGYMINERALOGY矿物学3地学N MINERAL MA0026-461X MINERALOGYMINERALOGIC矿物学3地学N0342-1791MINERALOGYPHYSICS AND PHYS CHEM M矿物学3地学N0008-4476MINERALOGYCANADIAN M C AN MINERAL矿物学4地学N0009-8604MINERALOGYCLAYS AND C CLAY CLAY M矿物学4地学N CLAY MINER0009-8558MINERALOGYCLAY MINERA矿物学4地学N0935-1221MINERALOGYEUROPEAN JO EUR J MINERA矿物学4地学N GEMS GEMOL0016-626X MINERALOGYGEMS & GEMO矿物学4地学N GEOLOGY OF GEOL ORE DE1075-7015MINERALOGY矿物学4地学N Journal of Mine J MINER PETR1345-6296MINERALOGY矿物学4地学N LITHOL MINE0024-4902MINERALOGYLITHOLOGY A矿物学4地学N0077-7757MINERALOGYNEUES JAHRB NEUES JB MIN矿物学4地学N Periodico di MinPERIOD MINE0369-8963MINERALOGY矿物学4地学N PETROLOGY PETROLOGY+0869-5911MINERALOGY矿物学4地学N1344-1698MINERALOGYRESOUR GEOLRESOURCE GE矿物学4地学N1地学N ORE GEOL RE0169-1368MINING & MINORE GEOLOGY矿业与矿物加工4地学N Acta Geodynam ACTA GEODY1214-9705MINING & MIN矿业与矿物加工4地学N Acta Montanisti ACTA MONTA1335-1788MINING & MIN矿业与矿物加工J APPL GEOPH0926-9851MINING & MINJOURNAL OF A3地学N矿业与矿物加工Petroleum Scien PETROL SCI1672-5107ENERGY & FU能源与燃料4地学N1地学N ATMOSPHERICATMOS CHEM1680-7316METEOROLOG气象与大气科学1地学N BULLETIN OF B AM METEOR0003-0007METEOROLOG气象与大气科学CLIMATE DYNCLIM DYNAM0930-7575METEOROLOG2地学N气象与大气科学2地学N Journal of Adva J ADV MODEL1942-2466METEOROLOG气象与大气科学2地学N J CLIMATE0894-8755METEOROLOGJOURNAL OF C气象与大气科学Atmospheric Me2地学N ATMOS MEAS1867-1381METEOROLOG气象与大气科学2地学N Climate of the P CLIM PAST1814-9324METEOROLOG气象与大气科学3地学N INT J CLIMAT0899-8418METEOROLOGINTERNATION气象与大气科学3地学N J ATMOS SCI0022-4928METEOROLOGJOURNAL OF T气象与大气科学2地学N1525-755X METEOROLOGJ HYDROMETEJOURNAL OF H气象与大气科学3地学N0027-0644METEOROLOGMON WEATHEMONTHLY WE气象与大气科学3地学N OCEAN MODE OCEAN MODE1463-5003METEOROLOG气象与大气科学2地学N0035-9009METEOROLOGQUARTERLY J Q J ROY METE气象与大气科学2地学N TELLUS B0280-6509METEOROLOGTELLUS SERIE气象与大气科学4地学N ANN GEOPHY0992-7689METEOROLOGANNALES GEO气象与大气科学4地学N ATMOSPHERE ATMOS OCEA0705-5900METEOROLOG气象与大气科学3地学N ATMOS RES0169-8095METEOROLOGATMOSPHERIC气象与大气科学1530-261X METEOROLOG4地学N Atmospheric Sc ATMOS SCI LE气象与大气科学0006-8314METEOROLOG3地学N BOUNDARY-L BOUND-LAY M气象与大气科学CLIMATE RES CLIM RES0936-577X METEOROLOG3地学N气象与大气科学4地学N0377-0265METEOROLOGDYNAMICS OFDYNAM ATMO气象与大气科学3地学N INT J BIOMET0020-7128METEOROLOGINTERNATION气象与大气科学3地学N Journal of Appli J APPL METEO1558-8424METEOROLOG气象与大气科学J ATMOS OCE0739-0572METEOROLOGJOURNAL OF A3地学N气象与大气科学4地学N J ATMOS SOL-1364-6826METEOROLOGJOURNAL OF A气象与大气科学NATURAL HA N AT HAZARD1561-8633METEOROLOG3地学N气象与大气科学4地学N NONLINEAR P NONLINEAR P1023-5809METEOROLOG气象与大气科学3地学N Ocean Science OCEAN SCI1812-0784METEOROLOG气象与大气科学3地学N TELLUS A0280-6495METEOROLOGTELLUS SERIE气象与大气科学4地学N0177-798X METEOROLOGTHEOR APPL CTHEORETICAL气象与大气科学WEATHER AN WEATHER FO0882-8156METEOROLOG3地学N气象与大气科学4地学N ACTA METEO0894-0525METEOROLOGActa Meteorolog气象与大气科学4地学N ADVANCES IN0256-1530METEOROLOGADV ATMOS S气象与大气科学4地学N Advances in Me ADV METEOR1687-9309METEOROLOG气象与大气科学1976-7633METEOROLOGAsia-Pacific Jou ASIA-PAC J AT4地学N气象与大气科学ATMOSFERA ATMOSFERA0187-6236METEOROLOG4地学N气象与大气科学4地学N Atmosphere ATMOSPHERE2073-4433METEOROLOG气象与大气科学4地学N1836-716X METEOROLOGAustralian Mete AUST METEOR气象与大气科学4地学N Geomatics Natu GEOMAT NAT1947-5705METEOROLOG气象与大气科学4地学N Idojaras IDOJARAS0324-6329METEOROLOG气象与大气科学4地学N IZVESTIYA ATIZV ATMOS O0001-4338METEOROLOG气象与大气科学JOURNAL OF AJ ATMOS CHE0167-7764METEOROLOG4地学N气象与大气科学4地学N0026-1165METEOROLOGJOURNAL OF TJ METEOROL S气象与大气科学1755-876X METEOROLOGJournal of Opera4地学N J OPER OCEAN气象与大气科学Journal of Tropi J TROP METEO1006-8775METEOROLOG4地学N气象与大气科学4地学N Mausam MAUSAM0252-9416METEOROLOG气象与大气科学METEOROLOGMETEOROL A1350-4827METEOROLOG4地学N气象与大气科学METEOROL A0177-7971METEOROLOG4地学N METEOROLOG气象与大气科学4地学N METEOROL Z0941-2948METEOROLOGMETEOROLOG气象与大气科学4地学N PHYSICS AND PHYS CHEM E1474-7065METEOROLOG气象与大气科学PHYSICAL GE PHYS GEOGR0272-3646METEOROLOG4地学N气象与大气科学4地学N1068-3739METEOROLOGRUSS METEORRussian Meteoro气象与大气科学4地学N SOLA SOLA1349-6476METEOROLOG气象与大气科学4地学N TERRESTRIAL TERR ATMOS 1017-0839METEOROLOG气象与大气科学Weather WEATHER0043-1656METEOROLOG4地学N气象与大气科学4地学N Weather Climat WEATHER CL1948-8327METEOROLOG气象与大气科学INT J BIOMET0020-7128PHYSIOLOGY生理学3地学N INTERNATIONPALEOBIOLOG0094-8373ECOLOGY生态学3地学N PALEOBIOLOGPOLAR RESEA POLAR RES0800-0395ECOLOGY生态学4地学N0138-0338ECOLOGY生态学4地学N POL POLAR REPOLISH POLAR3地学N0094-8373BIODIVERSITYPALEOBIOLOGPALEOBIOLOG生物多样性保护INT J BIOMET0020-7128BIOPHYSICS生物物理4地学N INTERNATIONMathematical G MATH GEOSC1874-8961MATHEMATIC3地学N数学跨学科应用1027-5606WATER RESOUHYDROLOGY HYDROL EART水资源1地学N JOURNAL OF HJ HYDROL0022-1694WATER RESOU水资源2地学N HYDROGEOL 1431-2174WATER RESOUHYDROGEOLO水资源3地学N NATURAL HA N AT HAZARD1561-8633WATER RESOU水资源3地学N Geomatics Natu GEOMAT NAT1947-5705WATER RESOU水资源4地学N PHYSICS AND PHYS CHEM E1474-7065WATER RESOU水资源4地学N ANN GEOPHY0992-7689ASTRONOMY 天文与天体物理4地学N ANNALES GEO0009-8604SOIL SCIENCE土壤科学4地学N CLAYS AND C CLAY CLAY M4地学N0003-813X CHEMISTRY, I无机化学与核化ARCHAEOMETARCHAEOMET0169-1317CHEMISTRY, PAPPLIED CLAYAPPL CLAY SC物理化学3地学N0009-8604CHEMISTRY, PCLAYS AND C CLAY CLAY M物理化学4地学N CLAY MINER0009-8558CHEMISTRY, PCLAY MINERA物理化学4地学N J GEODESY0949-7714REMOTE SENSJOURNAL OF G遥感2地学N IEEE Journal of IEEE J-STARS1939-1404REMOTE SENS遥感2地学N。
硬骨鱼类核糖体基因间隔区的序列特征分析司李真;时伟;杨敏;龚理;孔晓瑜【期刊名称】《热带海洋学报》【年(卷),期】2016(035)006【摘要】Eukaryotic ribosomal DNA (rDNA) consists of dozens or even tens of thousands of tandem repeat Units. Each repeat unit includes three coding genes (18S, 5.8S and 28S) and two internal transcribed spacers (internal transcribed spacer 1 and internal transcribed spacer 2). The two internal transcribed spacers (ITS1 and ITS2) are often used for phylogenetic study of genus or lower level. However, an increasing number of studies have been shown that not all repeat units are identical; some of them have obviously intraspecific variations, as a result, which raise a question whether it is a useful tool for phylogenetic reconstruction. Accordingly, sequence length and conservation ratio of the internal transcribed spacers from GeneBank database including 10 orders of teleost were analyzed in order to explore the features of ITS1 and ITS2. The results showed that lengths of ITS1 were from 272 to 918 bp. The conservation ratio had distinct differences among each taxon, which could be used as a potential marker to identify the relationships among most species. When the conservation ratio ranged from 89.51% to 100%, it indicated an intraspecific relationship, from 61.53% to 81.36% as an interspecific relationship. When the number varied from 32.47% to 55.87%, therelationship was defined as an intergeneric one; and it was an interfamily relationship for the data between 1.62% and 30.46%. However, there were also several exceptions, which would lead to inaccuracy phylogenetic relationship. By contrast, the lengths of ITS2 varied from 128 to 694 bp, and the conservation ratio among each taxon almost had a continuous value, suggesting that it was not suitable for identifying taxonomic category.%真核生物核糖体DNA (ribosomal DNA,简称rDNA)是由几十个甚至上万个高度串联重复序列组成的多基因家族,每个重复单元都包括编码区(18S、5.8S和28S)和非编码区(ITS1和ITS2)。
2020年第1期信息与电脑China Computer & Communication软件开发与应用基于base64编码实现信息隐写分析石春宏(江苏安全技术职业学院,江苏 徐州 221000)摘 要:笔者在介绍ascii 编码、base64编码、隐写术相关概念的基础上,通过深入分析base64编码原理,对base64编码过程中可以实现信息隐写的可能性进行分析,进而设计在进行base64编码过程中加入隐写内容方案,同时设计base64解码时获取隐写信息的方案,确保在加入隐写信息后,通过base64解码后和编码前的原内容一致,通过分析也能得到正确的隐写信息。
关键词:base64编码;隐写;ascii 编码中图分类号:TN911.2 文献标识码:A 文章编号:1003-9767(2020)01-118-02Research on Information Steganography Based on Base64 CodingShi Chunhong(Jiangsu College of Safety Technology, Xuzhou Jiangsu 221000, China)Abstract: Based on the introduction of the concepts of ASCII encoding, Base64 encoding and steganography, this paper analyzesthe possibility of Information Steganography in the process of Base64 encoding by deeply analyzing the principle of Base64 encoding, and then designs the scheme of adding steganography content in the process of Base64 encoding, and the scheme of obtaining steganography information when Base64 decoding, so as to ensure that steganography information is added After decoding by Base64,the original content is consistent with that before encoding, and correct steganography information can be obtained through analysis.Key words: base64 coding; steganography; ascii coding1 基本概念1.1 ascii 编码在计算机中的所有数据,无论是存储还是运算时,都采用二进制数的形式来表示,如像a-z 大小写字母、0-9数字以及一些常用的符号(例如!、$、&等),它们在计算机中存储时也都是采用二进制数来表示,为了用户之间相互能正常通信,就必须统一规定哪个二进制数字具体对应哪个符号,让人们遵守相同的编码规则,于是ISO (国际标准化组织)就出台了ASCII 编码,统一规定了上述字符用哪些二进制数来表示[1]。
不知各位用的着否色谱图 chromatogram 色谱峰 chromatographic peak峰底 peak base峰高 h,peak height峰宽 W,peak width半高峰宽 Wh/2,peak width at half height峰面积 A,peak area拖尾峰 tailing area前伸峰 leading area假峰 ghost peak畸峰 distorted peak反峰 negative peak拐点 inflection point原点 origin斑点 spot区带 zone复班multiple spot区带脱尾 zone tailing基线 base line基线漂移 baseline drift基线噪声 N,baseline noise统计矩 moment一阶原点矩γ1,first origin moment二阶中心矩μ2,second central moment三阶中心矩μ3,third central moment液相色谱法 liquid chromatography,LC液液色谱法 liquid liquid chromatography,LLC液固色谱法liquid solid chromatography,LSC正相液相色谱法 normal phase liquidchromatography反相液相色谱法 reversed phase liquidchromatography,RPLC柱液相色谱法 liquid column chromatography高效液相色谱法 high performance liquidchromatography,HPLC尺寸排除色谱法 size exclusion chromatography,SEC凝胶过滤色谱法 gel filtration chromatography凝胶渗透色谱法 gel permeation chromatography,GPC亲和色谱法 affinity chromatography离子交换色谱法 ion exchange chromatography,IEC离子色谱法 ion chromatography离子抑制色谱法 ion suppression chromatography离子对色谱法 ion pair chromatography疏水作用色谱法 hydrophobic interactionchromatography制备液相色谱法 preparative liquid chromatography平面色谱法 planar chromatography纸色谱法paper chromatography薄层色谱法 thin layer chromatography,TLC高效薄层色谱法high performance thin layerchromatography,HPTLC浸渍薄层色谱法 impregnatedthin layerchromatography凝胶薄层色谱法 gel thin layer chromatography离子交换薄层色谱法 ion exchange thin layerchromatography制备薄层色谱法 preparative thin layerchromatography薄层棒色谱法 thin layer rod chromatography液相色谱仪 liquid chromatograph制备液相色谱仪 preparative liquid chromatograph凝胶渗透色谱仪 gel permeation chromatograph涂布器 spreader点样器 sample applicator色谱柱chromatographic column棒状色谱柱 monolith column monolith column微粒柱microparticle column填充毛细管柱 packed capillary column空心柱 open tubular column微径柱 microbore column混合柱 mixed column组合柱 coupled column预柱precolumn保护柱 guard column预饱和柱 presaturation column浓缩柱 concentrating column抑制柱 suppression column薄层板 thin layer plate浓缩区薄层板concentrating thin layer plate荧光薄层板 fluorescence thin layer plate反相薄层板 reversed phase thin layer plate梯度薄层板 gradient thin layer plate烧结板sintered plate展开室 development chamber 往复泵 reciprocating pump注射泵 syringe pump气动泵pneumatic pump蠕动泵 peristaltic pump检测器 detector微分检测器 differential detector积分检测器 integral detector总体性能检测器 bulk property detector溶质性能检测器 solute property detector(示差)折光率检测器 [differential] refractive indexdetector荧光检测器 fluorescence detector紫外可见光检测器 ultraviolet visible detector电化学检测器 electrochemical detector蒸发(激光)光散射检测器[laser] light scatteringdetector光密度计 densitometer薄层扫描仪 thin layer scanner柱后反应器 post-column reactor体积标记器 volume marker记录器 recorder积分仪 integrator馏分收集器 fraction collector工作站 work station固定相stationary phase固定液 stationary liquid载体 support柱填充剂 column packing化学键合相填充剂 chemically bonded phasepacking薄壳型填充剂 pellicular packing多孔型填充剂 porous packing吸附剂 adsorbent离子交换剂 ion exchanger基体 matrix载板 support plate粘合剂 binder流动相 mobile phase洗脱(淋洗)剂 eluant,eluent 展开剂 developer等水容剂 isohydric solvent改性剂 modifier显色剂 color [developing] agent死时间 t0,dead time保留时间 tR,retention time调整保留时间 t'R,adjusted retention time死体积 V0,dead volume保留体积 vR,retention volume调整保留体积v'R,adjusted retention volume柱外体积 Vext,extra-column volune粒间体积 V0,interstitial volume(多孔填充剂的)孔体积 VP,pore volume of porouspacking液相总体积 Vtol,total liquid volume洗脱体积 ve,elution volume流体力学体积 vh,hydrodynamic volume相对保留值 ri.s,relative retention value分离因子α,separation factor流动相迁移距离 dm,mobile phase migrationdistance流动相前沿mobile phase front溶质迁移距离 ds,solute migration distance比移值 Rf,Rf value高比移值 hRf,high Rf value相对比移值 Ri.s,relative Rf value保留常数值Rm,Rm value板效能 plate efficiency折合板高 hr,reduced plate height分离度R,resolution液相载荷量 liquid phase loading离子交换容量 ion exchange capacity 负载容量 loading capacity渗透极限 permeability limit排除极限 Vh,max,exclusion limit拖尾因子 T,tailing factor柱外效应 extra-column effect管壁效应wall effect间隔臂效应 spacer arm effect边缘效应 edge effect斑点定位法localization of spot放射自显影法 autoradiography原位定量 in situ quantitation生物自显影法 bioautography归一法 normalization method内标法 internal standard method外标法 external standard method叠加法 addition method普适校准(曲线、函数) calibration function or curve谱带扩展(加宽) band broadening(分离作用的)校准函数或校准曲线 universalcalibration function or curve [of separation]加宽校正 broadening correction加宽校正因子 broadeningcorrection factor溶剂强度参数ε0,solvent strength parameter洗脱序列eluotropic series洗脱(淋洗) elution等度洗脱 gradient elution梯度洗脱 gradient elution(再)循环洗脱 recycling elution线性溶剂强度洗脱 linear solvent strength gradient程序溶剂 programmed solvent程序压力 programmed pressure程序流速programmed flow展开 development上行展开 ascending development下行展开descending development双向展开 two dimensional development环形展开 circular development离心展开 centrifugal development向心展开 centripetal development径向展开 radial development多次展开 multiple development分步展开 stepwise development连续展开 continuous development梯度展开 gradient development匀浆填充 slurry packing停流进样 stop-flow injection阀进样 valve injection柱上富集on-column enrichment流出液 eluate柱上检测 on-column detection柱寿命 columnlife柱流失 column bleeding显谱 visualization活化 activation反冲 back flushing 脱气 degassing沟流 channeling过载 overloading。
朱海,郑梦泽,贾玮玮,等. 限制性内切酶Bsa I 的分离纯化与结晶及其硒代衍生物的制备[J]. 食品工业科技,2023,44(22):110−116. doi: 10.13386/j.issn1002-0306.2022110215ZHU Hai, ZHENG Mengze, JIA Weiwei, et al. Isolation, Purification and Crystallization of Restriction Enzyme Bsa I and Its Preparation of Seleno-derived Derivatives[J]. Science and Technology of Food Industry, 2023, 44(22): 110−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110215· 生物工程 ·限制性内切酶Bsa I 的分离纯化与结晶及其硒代衍生物的制备朱 海1,2,郑梦泽1,2,贾玮玮1,2,周 倩1,2,谈 帅1,2,刘子昂1,2,张传志3,王伟玲1,2,李婷婷1,2,*(1.江苏海洋大学,江苏省海洋药物活性分子筛选重点实验室,江苏连云港 222005;2.江苏省海洋生物产业技术协同创新中心,江苏连云港 222005;3.正大天晴药业集团股份有限公司,江苏连云港 222005)摘 要:目的:筛选并优化限制性内切酶Bsa I 的三维结构样品制备的方法。
方法:本课题采用大肠杆菌表达系统表达Bsa I 蛋白及其硒代衍生物。
首先构建重组表达载体pBAD-Bsa I ,转化到大肠杆菌( E. coli )ER2566中进行表达,并采用亲和层析和阴离子交换层析进行纯化。
然后利用质谱、圆二色谱的方法测试硒代蛋白衍生情况,并对其进行酶活测定。
高二英语生物分类单选题50题1. Which of the following belongs to the phylum Arthropoda?A. EarthwormB. StarfishC. ButterflyD. Sponge答案:C。
解析:节肢动物门(Arthropoda)的典型特征包括具有分节的附肢等。
蝴蝶(Butterfly)属于节肢动物门。
蚯蚓(Earthworm)属于环节动物门 Annelida)。
海星 Starfish)属于棘皮动物门Echinodermata)。
海绵 Sponge)属于多孔动物门 Porifera)。
2. The organism which is classified in the class Mammalia should have the following feature:A. Gills for breathingB. Feathers on the bodyC. Hair or fur and produce milk to feed their youngD. Scales on the body答案:C。
解析:哺乳纲(Mammalia)的生物具有毛发或皮毛并且能够产奶哺育幼崽。
用鳃呼吸(Gills for breathing)是鱼类等水生生物的特征,它们属于鱼纲等,不属于哺乳纲。
身上有羽毛(Feathers on the body)是鸟类的特征,鸟类属于鸟纲(Aves)。
身上有鳞片(Scales on the body)是爬行动物等的特征,爬行动物属于爬行纲(Reptilia)。
3. Which kingdom does the mushroom belong to?A. AnimaliaB. PlantaeC. FungiD. Protista答案:C。
解析:蘑菇属于真菌界(Fungi)。
动物界(Animalia)的生物具有能运动、异养等特点。
Sedimentologic and sequence-stratigraphic characteristics of wave-dominated deltasGary J.Hampson and John A.HowellINTRODUCTIONWave-dominated deltaic strata form prolific hydrocarbon plays in many mature basins across the world.Examples include the Jurassic Brent Group play in the North Sea,offshore United Kingdom and Norway(e.g.,Husmo et al.,2003);Eocene Jackson Group and Oligocene Frio Formation plays,Texas,onshore United States(e.g.,Fisher et al.,1970;Galloway and Morton, 1989);and Tertiary plays in the Niger Delta province,offshore Nigeria(e.g.,Evamy et al.,1978),the Baram Delta province, offshore Brunei(e.g.,Rijks,1981),and the Columbus Basin, offshore Trinidad and Tobago(e.g.,Sydow et al.,2003).Wave-dominated deltas also form key exploration targets in frontier basins(e.g.,Triassic Snadd Formation,Barents Sea,offshore Norway;Klausen et al.,2014,2016).The overall architecture of many wave-dominated deltaic reservoirs is determined by their sequence-stratigraphic frame-work together with their structural configuration.Sequence-stratigraphic frameworks contain elements such as shoreface–shelf parasequences bounded byflooding surfaces andfluvio-estuarine complexes thatfill incised coastal valleys developed at sequence boundaries.The internal facies distributions and stack-ing patterns of such elements are ordered,which aids pre-diction of reservoir character and behavior.Outcrop analogs of wave-dominated deltaic reservoirs display aspects of ordered stratigraphic architecture across a range of spatial scales that are equivalent to those observed in core,well-log,and seismic data and can therefore be used to support interpretation of their subsurface counterparts.AUTHORSGary J.Hampson~Department of Earth Science and Engineering,Imperial College London,South Kensington Campus,London SW72AZ,United Kingdom;g.j.hampson@ Gary Hampson is a reader in sedimentary geology in the Department of Earth Science and Engineering,Imperial College,London. He holds a B.A.degree in natural sciences from the University of Cambridge and a Ph.D. in sedimentology and sequence stratigraphy from the University of Liverpool.His research interests lie in the understanding of depositional systems and their preserved stratigraphy and in applying this knowledge to reservoir characterization.John A.Howell~School of Geosciences, University of Aberdeen,Meston Building, Aberdeen AB243UE,United Kingdom; john.howell@John Howell received his B.Sc.from the University of Wales(1988)and his Ph.D. from the University of Birmingham.He worked for10years at the University of Liverpool before moving to the University of Bergen in2002.He returned to the United Kingdom and took a position at the University of Aberdeen in2013.He wasa founder of Rocksource ASA,a small Norwegian exploration and production company where he worked as senior management for6years.His current research interests focus on the use of analog data for improved understanding of reservoirs.Copyright©2017.The American Association of Petroleum Geologists.All rights reserved. Manuscript received January16,2017;final acceptance January18,2017.DOI:10.1306/011817DIG17023AAPG Bulletin,v.101,no.4(April2017),pp.441–451441“TYPE”OUTCROP ANALOG:BLACKHAWK FORMATION,BOOK CLIFFS,UTAHThe Cretaceous Blackhawk Formation contains wave-dominated deltaic strata that are superbly exposed in the Book Cliffs of eastcentral Utah (Figure1A).The extensive,continuous exposures of the Book Cliffs outcrop belt have allowed the wave-dominated deltas and related deposits to be mapped for tens of kilometers(e.g.,Young,1955; Balsley,1980),and,consequently,these strata were the“birthplace”of high-resolution sequence stratigraphy using outcrop data(Van Wagoner et al.,1990).The Blackhawk Formation and related strata are commonly used as an analog for wave-dominated deltaic plays and reservoirs,because the Book Cliffs outcrops enable direct linkage of seismic-scale stratigraphic architecture to reservoir charac-terization at well-log and core scale(e.g.,Hodgetts and Howell,2000;Howell and Flint,2002;Jackson et al.,2009;Sech et al.,2009).Hampson and Howell (2017)present afield guide to the wave-dominated deltaic strata of the Blackhawk Formation,aspects of which are summarized below.Geologic ContextThe strata exposed in the Book Cliffs were deposited along the western margin of the Cretaceous Western Interior Seaway of North America(inset map in Figure1A).The seaway lay within a wide(~1500km [932mi]),shallow,intracratonic basin that formed because of short-wavelength,thrust-sheet loading in the Sevier orogenic belt at the western basin margin and long-wavelength dynamic subsidence generated by subduction of the Farallon oceanic plate beneath the North American craton(e.g.,Kauffman and Caldwell, 1993;Liu et al.,2014).The basinfill consists mainly of siliciclastic sediment that was eroded from the Sevier Orogen and transported eastward into the seaway. There it was deposited as a series of basinward-thinning (eastward-thinning)wedges of coastal-plain and shallow-marine strata that pass basinward into coeval offshore deposits(Young,1955).The Blackhawk Formation is part of one such basinward-thinning wedge,in combination with the Star Point Sandstone and the lower part of the Cas-tlegate Sandstone(Figure1B).The Star Point–Blackhawk–lower Castlegate wedge is of late Santonian to middle Campanian age and repre-sents a duration of5.0–6.0m.y.(Krystinik and DeJarnett,1995).Seismic-Scale CharacteristicsWave-dominated deltas and their contiguous strand plains form laterally extensive sandstone belts that are mapped for up to several tens of kilometers at outcrop in the Book Cliffs and contiguous Wasatch Plateau to define linear to gently curved,arcuate-to-cuspate paleoshoreline trends(e.g.,Hampson and Howell, 2005;Hampson,2010;Hampson et al.,2011;and references therein).Minor protrusions(typically up to several tens of square kilometers in area)from the nearly linear paleoshoreline trend are associated with facies characteristics that indicate the localized oc-currence offluvial influence,such as relatively steeply dipping(>5°)delta-front clinoforms containing gravity-flow sandstone beds(e.g.,Panther Tongue of the Star Point Sandstone;Hampson et al.,2011). Such protrusions indicatefluvial sediment input points to the paleoshorelines.Migration of the wave-dominated deltaic paleoshorelines in response to variations in relative sea level and/or sediment supp-ly is expressed by the development and stacking of sandstone-dominated,shoreface–shelf parasequences bounded byflooding surfaces that are marked by an increase in paleowater depth(Figure1B;e.g.,Van Wagoner et al.,1990).Trunk rivers that fed deltaic paleoshorelines responded to periods of relative sea-level fall by incising coastal valleys that were backfilled as estuaries during subsequent relative sea-level rise(e.g.,Howell and Flint,2003).The re-sulting large-scale stratigraphic architecture ex-hibits an ordered pattern(e.g.,Burgess,2016)in which parasequences are stacked into progradational parasequence sets(generally corresponding to lith-ostratigraphic members of the Blackhawk Forma-tion),some of which are capped byfluvio-estuarine incised valleyfills and all of which are bounded by majorflooding surfaces(Figure1B).Eight pro-gradational parasequence sets are stacked in an aggradational-to-progradational pattern in the Star Point–Blackhawk–lower Castlegate wedge(Figure 1B).The ordered nature of shallow-marine strati-graphic architecture in the Blackhawk Formation442Wave-Dominated Deltas:Sedimentologic and Sequence-Stratigraphic CharacteristicsFigure1.(A)Map of the Mesaverde Group outcrop belt,which contains the Blackhawk Formation and lower Castlegate Sandstone,in the Book Cliffs.A projected line of cross section along regional depositional dip through the Blackhawk Formation and lower Castlegate Sandstone(B)is located.Parts of the outcrop belt visited infield excursions1–5of Hampson and Howell(2017)are highlighted.The inset map(top left)shows a paleogeographic reconstruction of the late Cretaceous Western Interior Seaway(after Kauffman and Caldwell, 1993),highlighting the location of the Book Cliffs exposures.(B)Summary stratigraphic cross section oriented along depositional dip through the Blackhawk Formation and lower Castlegate Sandstone in the Book Cliffs(after Balsley,1980;Hampson and Howell,2005; Hampson,2010;Hampson et al.,2012;and references therein).The cross section is located in(B).The tops of the lower Castlegate Sandstone and Castlegate Sandstone are used as local datum surfaces.Shallow-marine parasequences are numbered in the Spring Canyon (SC4–7),Aberdeen(A1–4),Kenilworth(K1–5),Sunnyside(S1–3),Grassy(G1–4),and Desert(D1,2)members of the Blackhawk Formation and in the Castlegate Sandstone(C1–3).Documented sequence boundaries in the Book Cliffs are labeled using the terminology of Howell and Flint(2003).ASB=Aberdeen Sequence Boundary;CSB=Castlegate Sequence Boundary;DSB=Desert Sequence Boundary;KSB= Kenilworth Sequence Boundary;lGSB=lower Grassy Sequence Boundary;lSSB=lower Sunnyside Sequence Boundary;uGSB=upper Grassy Sequence Boundary;uSSB=upper Sunnyside Sequence Boundary.H AMPSON and H OWELL443has enabled the development of predictive sequence-stratigraphic models for wave-dominated deltas.However,multiple plausible controls have been proposed to give rise to this ordered stratigraphic pattern,which implies that it may be nonunique in origin (see discussion in Hampson,2016).Coastal-plain deposits in the Blackhawk Forma-tion exhibit much less stratigraphic organization than their coeval shallow-marine equivalents,implying that autogenic behaviors such as avulsion of fluvial and deltaic-distributary channels were prevalent,although major flooding surfaces in shallow-marine strata correspond to thick,laterally continuous coal seams in the lower coastal plain (Hampson et al.,2012;Flood and Hampson,2015).Shoreface –shelf parasequences can be traced into offshore shales of the Mancos Shale,where they are expressed as upward-coarsening successions of claystone and silt-stone (Macquaker et al.,2007).These shale para-sequences extend down depositional dip for distances of up to 300km (Hampson,2010),which is con-sistent with transport of large volumes of mud and silt down very gentle slopes ( 1°)by gravity flows that were kept in suspension because of agitation of the sea floor by storm waves.Offshore shales containturbidite channel fills and lobes that are interpreted to have been fed by river-derived hyperpycnal flows,perhaps enhanced by wave-supported gravity flows (Pattison et al.,2007;Hampson,2010).The turbidite systems are small and sandstone poor and occur at distinct stratigraphic levels that do not all correspond to sequence boundaries marked by in-cised valleys.Core-and Wire-Line-Log –Scale CharacteristicsFacies distributions within each shoreface –shelf para-sequence are also ordered and represent a regres-sive,upward-shallowing succession.A complete facies succession through a parasequence (e.g.,Spring Canyon 4[SC4]parasequence in Figure 2A)comprises five facies (e.g.,Van Wagoner et al.,1990;Kamola and Van Wagoner,1995).The basal part of the succession comprises intensely bioturbated shales that are interpreted to record offshore de-position.These shales are overlain by hummocky,cross-strati fied,fine-grained sandstone beds in-tercalated with thin shales,which are interpreted to record episodic transport and depositionofFigure 2.Photos illustrating the outcrop expression of parasequences and their constituent facies in the Spring Canyon (SC)Member,Blackhawk Formation,in the western Book Cliffs (Gentile Wash locality,Figure 1,visited as part of field excursion 2of Hampson and Howell,2017).(A)Progradational stacking of parasequences SC4–7.(B –E)Parasequence SC4contains an upward-shallowing facies succession that comprises,from base to top,(B)hummocky,cross-strati fied,fine-grained sandstone beds and interbedded shales of the distal lower shoreface;(C)amalgamated,hummocky,cross-strati fied,fine-grained sandstone beds of the proximal lower shoreface,with each bed top marked by bioturbated intervals (tape measures 1-m [3-ft]thickness);(D)trough cross-bedded,medium-grained sandstones of the upper shoreface;and (E)planar-parallel –laminated,fine-to-medium –grained sandstones of the foreshore.444Wave-Dominated Deltas:Sedimentologic and Sequence-Stratigraphic CharacteristicsFigure3.Outcrop expression of sequence-stratigraphic units and surfaces from proximal to distal locations in the outcrop belt.(A)Uninterpreted and(B)interpreted photographs of Mancos Shale,Blackhawk Formation,and Castlegate Sandstone in the central Book Cliffs(Tusher Canyon locality,Figure1,visited as part offield excursion4of Hampson and Howell,2017), illustrating tabular geometry and organized stacking patterns of shallow-marine parasequences that are separated by offshore shales aboveflooding surfaces.(C)Uninterpreted and(D)interpreted photographs of Mancos Shale,Blackhawk Formation,and Castlegate Sandstone in the eastcentral Book Cliffs(Blaze Canyon locality,Figure1,visited as part offield excursion4of Hampson and Howell,2017),illustrating deep,localized erosional relief at the base of incised valleys marking sequence boundaries that erode into underlying shallow-marine sandstones.CSB=Castlegate Sequence Boundary;DSB= Desert Sequence Boundary;FS=flooding surface;uGSB=upper Grassy Sequence Boundary.H AMPSON and H OWELL445sand by storms alternating with deposition of mud and silt from suspension during fair-weather periods (distal lower shoreface environment,Figure2B). Shale interbeds thin and decrease upward in abun-dance,such that hummocky,cross-stratified,fine-grained sandstone beds representing storm events are amalgamated(proximal lower shoreface, Figure2C).These sandstones are overlain by trough and tabular cross-bedded,medium-grained sandstones containing paleocurrents that are oriented subparallel to the regional paleoshoreline trend.The cross-bedded sandstones record migration of dunes in response to longshore currents,which were generated by the ob-lique approach of fair-weather waves to the shoreline (upper shoreface,Figure2D).The top of the facies succession consists of planar-parallel–laminated, medium-grained sandstones that are penetrated by roots.Planar-parallel lamination in this facies is at-tributed to high-energy,swash–backwash currents caused by breaking waves(foreshore,Figure2E). Individual beds and associated facies interfinger-ing in each parasequence define low-angle(<1°), paleoseaward-dipping clinoforms,which record the shoreface–shelf profile(e.g.,Hampson,2000;Sech et al.,2009).Clinoform distribution and subtle variations in bed amalgamation and facies charac-ter across clinoforms within parasequences record delta-lobe switching,local shoreline reorientation, and wave reworking during shoreline prograda-tion(e.g.,Sømme et al.,2008;Charvin et al., 2010).Overall,the facies architecture within each shoreface–shelf parasequence is relatively simple and predictable.Fluvio-estuarine channel complexes occur near the top of several progradational parasequence sets(e.g.,above interpreted sequence boundaries in Figures1B,3).These complexes have a multistory, multilateral character(e.g.,Figure3C,D),typically with a lower component comprising channelized, moderately sorted,medium-grained sandstone bodies that are densely stacked and amalgamated.The upper component of the complexes is more het-erolithic and largely consists of sets of inclined heterolithic strata that contain bidirectional pa-leocurrents and low-diversity trace fossil assem-blages indicative of brackish salinities(e.g.,Van Wagoner et al.,1991;Howell and Flint,2003).The lower and upper components of the complexes are interpreted asfluvial and estuarine,respectively,such that the vertical succession records overall trans-gression.Thefluvio-estuarine complexes are gen-erally interpreted as incised valleys(as indicated in Figure1B),although alternative mechanisms for their formation are possible.For example,estuaries may have developed during the transgressions that were associated with the formation of the majorflooding surfaces.The multistory character of such estuaries may be attributed to lateral confinement by coeval raised peat mires,which then underwent pronounced differential compaction during their lithification to coal.APPLICATIONS TO EXPLORATIONWave-dominated deltaic shorelines are attractive reservoir targets during exploration because of their high sandstone content,good reservoir quality,and continuity along depositional strike.Coeval delta-plain deposits contain channelized sandstone bodies that are less laterally extensive and less predictable in their distribution but may have higher reservoir quality.Interfingering of deltaic shorelines and delta-plain deposits with offshore shales across minor and majorflooding surfaces can provide top seals of local and regional extent.Updip,downdip,and lateral seals are potentially problematic in the absence of structural closure,although sandstone pinchouts into delta-plain and offshore shales provide stratigraphic-trapping potential that may be enhanced by com-paction(e.g.,Van Wagoner et al.,1990).Shelf-edge delta settings are commonly associated with growth faults that enable stacking of wave-dominated shoreline sandstones into thick,high-quality reservoir successions together with structural trapping config-urations associated with extensional faults and rollover anticlines(e.g.,Edwards,1981;Rijks,1981;Sydow et al.,2003).Delta-plain coals provide gas-prone source rocks that require lateral migration over short distances to charge shoreline and delta-plain sandstone reservoirs.Oil charge typically requires vertical mi-gration from deeper,older source rocks that are un-related to the delta.Many wave-dominated deltaic plays occur in mature basins,where they were generally discovered in large structural traps early in basin-exploration history.These plays have been prolific.For example, recoverable reserves of approximately15billion BOE446Wave-Dominated Deltas:Sedimentologic and Sequence-Stratigraphic Characteristicswere discovered in the Jurassic Brent Group play in the North Sea within20yr of the play beingfirst tested by the Brent Field discovery well in1971(Bowen, 1992).Following rapid discovery of giant accumula-tions hosted in large structural traps,exploration efforts in the Brent Group play shifted toward progressively smaller structures hosting satellite accumulations near existingfields and high-risk exploration targets such as downthrown fault traps.Stratigraphic traps have typically been regarded as poor exploration targets in the Brent Group play(e.g.,Went et al.,2013).Similar exploration histories are documented in other wave-dominated deltaic plays,with the addition of a shift in exploration focus toward lowstand deep-water slope and basin-floor plays beyond the paleoshelf edge in passive continental margin settings.In contrast to historical exploration in mature basins,the availability of modern three-dimensional seismic data in many frontier basins means that seismic-geomorphic characteristics androck-physics Figure4.Generic hierarchy of heterogeneities within wave-dominated deltaic and shoreface–shelf sandstone reser-voirs across a range of spatial scales(after Sech et al.,2009):(A) a parasequence set,(B)a single parasequence,(C)a package of beds bounded by clinoform dis-continuity surfaces(bedset),(D) hummocky cross-stratification, and(E)microscopic lamination. Thisfigure is oriented along de-positional dip and does not show along-strike variations in facies architecture.H AMPSON and H OWELL447analysis can potentially be used to identify wave-dominated deltaic and strand-plain shoreline sand-stones and major channelized sandstone bodies in delta-plain deposits as potential reservoir targets(e.g., Klausen et al.,2014,2016).Improved seismic im-aging of detailed stratigraphic relationships may pro-vide opportunities to deliberately search for subtle stratigraphic traps in wave-dominated deltaic plays. The Blackhawk Formation outcrops contain examples of such stratigraphic-trap configurations that are as-sociated with the updip pinchouts of shoreline sand-stones into coastal-plain shales(e.g.,Hampson et al., 2011),the downdip pinchouts of shoreline sandstones into offshore shales,and the occurrence of small turbidite channelfills and lobes encased in offshore shales within settings other than passive continental margins(e.g.,Pattison et al.,2007).The Book Cliffs exposures therefore provide data to develop and constrain new conceptual models for stratigraphic traps in addition to analogs of wave-dominated deltaic reservoirs and other petroleum-system elements.APPLICATIONS TO FIELD APPRAISAL AND DEVELOPMENTThe stacking and distribution of sequence-stratigraphic elements such as shoreface–shelf parasequences,flooding surfaces,fluvio-estuarine incised valleyfills, and sequence boundaries define the overall archi-tecture of many wave-dominated deltaic reservoirs. Each parasequence commonly forms aflow unit of sheetlike geometry that is bounded above and below by laterally extensive shale barriers alongflooding surfaces(cf.,Figure3A,B)(e.g.,Larue and Legarre, 2004;Cross et al.,2015).In paleolandward loca-tions,beyond the updip pinchout of offshore shales in each parasequence,flooding surfaces are expressed as sandstone-on-sandstone contacts(e.g.,Figure2A) that provide vertical connectivity between para-sequenceflow units.The predictable upward shal-lowing and distal-to-proximal distribution of facies within each shoreface–shelf parasequence(from distal lower shoreface,Figure2B,to proximal lower shoreface,Figure2C,to upper shoreface,Figure2D, to foreshore,Figure2E)define gross upward-increasing and paleolandward-increasing trends in grain size,sandstone content,porosity,and per-meability(e.g.,Larue and Legarre,2004).However,these overall trends are complicated by facies interfingering along clinoforms and clinoform-set boundaries(e.g.,Jennette and Riley,1996;Howell et al.,2008a;Sech et al.,2009).Subtle aspects of intraparasequence stratigraphy related to clinoforms may influence drainage patterns within para-sequenceflow units,although this is commonly not apparent until late infield life(e.g.,Jackson et al., 2009;Cross et al.,2015).The presence and impact of such clinoform barriers and baffles will be more pronounced where the shoreline was morefluvially influenced,resulting in deposition of thin,extensive shale beds along clinoforms(Howell et al.,2008b; Enge and Howell,2010).Incised valleyfills and other channelized bodies(e.g.,deltaic distributary chan-nels,tidal inlets developed during transgression) locally cut into and potentially through para-sequences and their bounding shales(cf.,Figure3C, D)(e.g.,Jennette and Riley,1996).Where such channelized bodies are sandstone dominated,they have the potential to enhance vertical connectivity between parasequenceflow units.However,fluvio-estuarine incised valleyfills tend to be lithologically heterogeneous,particularly where they comprise tidally influenced heterolithic deposits(e.g.,in-clined heterolithic strata in both valleyfills shown in Figure3C,D),such that sandstone connectiv-ity patterns may be complex and associated with tortuousflow paths.In summary,the sequence-stratigraphic framework of wave-dominated deltaic reservoirs defines the organization of large-scale sedimentologic heterogeneity within them(e.g., Figure4A,B).The occurrence of multiple para-sequenceflow units that are laterally extensive and thin in many wave-dominated deltaic reservoirs means that they are susceptible to compartmen-talization by sealing faults(e.g.,Ainsworth,2006; Reynolds,2017),which are common in growth-faulted,Tertiary wave-dominated deltaic plays(e.g., Edwards,1981;Rijks,1981;Sydow et al.,2003).As outlined above,the sequence-stratigraphic framework of wave-dominated deltaic reservoirs provides the template,in combination with their structural configuration,to predict(1)the internal geometrical configuration of the reservoir;(2)the reservoirflow-unit extent and connectivity;(3)the distribution of porosity,permeability,and capillary pressure–saturation properties withinflow units;and (4)the strength and direction of aquifer support(e.g.,448Wave-Dominated Deltas:Sedimentologic and Sequence-Stratigraphic CharacteristicsAinsworth,2005;Reynolds,2017).It is therefore clearly important to establish the sequence-stratigraphic framework duringfield appraisal and early develop-ment to optimize development planning and reservoir management.In structurally simplefields,the or-dered stratigraphic architecture of wave-dominated deltaic reservoirs can result in high recovery factors (e.g.,average of40%oil recovery factor for Brent Group reservoirs in the North Sea and up to68%in the Statfjord Field;Husmo et al.,2003).The Blackhawk Formation provides a“type”outcrop analog in which reservoir-scale stratigraphic architecture across a range of length scales can be observed and understood.Diagnostic characteristics of facies,facies successions,and stratigraphic surfaces and units(e.g.,Figure2),as potentially observed in subsurface core and wire-line log data,can be related directly to stratigraphic architectures at the scale of interwell volumes and over the extent of an entire reservoir(e.g.,Figure3).The Book Cliffs exposures therefore provide a well-documented,accessible example to support the subsurface interpretation of wave-dominated deltaic reservoirs.REFERENCES CITEDAinsworth,R.B.,2005,Sequence stratigraphic-based analysis of reservoir connectivity:Influence of depositional ar-chitecture—A case study from a marginal marine de-positional setting:Petroleum Geoscience,v.11,p.257–276, doi:10.1144/1354-079304-638.Ainsworth,R.B.,2006,Sequence stratigraphic-based analysis of reservoir connectivity:Influence of sealing faults—A case study from a marginal marine depositional setting: Petroleum Geoscience,v.12,p.127–141,doi:10.1144 /1354-079305-661.Balsley,J.K.,1980,Cretaceous wave-dominated delta sys-tems:Book Cliffs,east-central Utah:AAPG Continuing Education Course:Field Guide,163p.Bowen,J.M.,1992,Exploration of the Brent Province,inA. C.Morton,R.S.Haszeldine,M.R.Giles,andS.Brown,eds.,Geology of the Brent Group:Geological Society,London,Special Publications1992,v.61, p.3–14,doi:10.1144/GSL.SP.1992.061.01.02. Burgess,P.M.,2016,Identifying ordered strata:Evidence, methods,and meaning:Journal of Sedimentary Re-search,v.86,p.148–167,doi:10.2110/jsr.2016.10. Charvin,K.,G.J.Hampson,K.L.Gallagher,and bourdette,2010,Intra-parasequence architecture of an interpreted asymmetrical wave-dominated delta: Sedimentology,v.57,p.760–785,doi:10.1111/j.1365-3091.2009.01118.x.Cross,N.E.,Z.K.Williams,A.Jamankulov,C.E.Bostic, V.C.Gayadeen,H.J.Torreabla,and E.S.Drayton,2015, The dynamic behavior of shallow-marine reservoirs:In-sights from the Pliocene of offshore North Trinidad: AAPG Bulletin,v.99,no.3,p.555–583,doi:10.1306 /09181413165.Edwards,M.B.,1981,Upper Wilcox Rosita delta system of South Texas:Growth-faulted shelf-edge deltas:AAPG Bulletin,v.65,no.1,p.54–73.Enge,H.D.,and J.A.Howell,2010,Impact of deltaic cli-nothems on reservoir performance:Dynamic studies of reservoir analogs from the Ferron Sandstone Member and Panther Tongue,Utah:AAPG Bulletin,v.94,no.2, p.139–161,doi:10.1306/07060908112.Evamy,B.D.,J.Haremboure,P.Kamerling,W.A.Knaap,F.A.Molloy,and P.H.Rowlands,1978,Hydrocarbonhabitat of Tertiary Niger Delta:AAPG Bulletin,v.62, no.1,p.1–39.Fisher,W.L., C.V.Proctor Jr.,W. E.Galloway,and J.S.Nagle,1970,Depositional systems in the Jackson Group of Texas:Their relationship to oil,gas and ura-nium:Transactions—Gulf Coast Association of Geo-logical Societies,v.20,p.129–156.Flood,Y.S.,and G.J.Hampson,2015,Quantitative analysis of the dimensions and distribution of channelizedfluvial sandbodies within a large-scale outcrop data set:Upper Cretaceous Blackhawk Formation,Wasatch Plateau, central Utah,USA:Journal of Sedimentary Research, v.85,p.315–336,doi:10.2110/jsr.2015.25. Galloway,W.E.,and R.A.Morton,1989,Geometry,genesis and reservoir characteristics of shelf sandstone facies, Frio Formation(Oligocene),Texas Coastal Plain,in R.A.Morton and D.Nummedal,eds.,Shelf sedi-mentation,shelf sequences and related hydrocarbon accumulation:Gulf Coast Section SEPM Foundation 7th Annual Research Conference,Corpus Christi, Texas,December7–10,1986,p.89–115. Hampson,G.J.,2000,Discontinuity surfaces,clinoforms and facies architecture in a wave-dominated,shoreface-shelf parasequence:Journal of Sedimentary Research,v.70, p.325–340,doi:10.1306/2DC40914-0E47-11D7-8643000102C1865D.Hampson,G.J.,2010,Sediment dispersal and quantitative stratigraphic architecture across an ancient shelf:Sedi-mentology,v.57,p.96–141,doi:10.1111/j.1365-3091.2009.01093.x.Hampson,G.J.,2016,Towards a sequence stratigraphic solution set for autogenic processes and allogenic con-trols:Upper Cretaceous strata,Book Cliffs,Utah,USA: Journal of the Geological Society,v.173,no.5, p.817–836,doi:10.1144/jgs2015-136.Hampson,G.J.,M.R.Gani,H.Sahoo,A.Rittersbacher, N.Irfan,A.Ranson,T.O.Jewell,et al.,2012,Controls on large-scale patterns offluvial sandbody distribution in alluvial-to-coastal plain strata:Upper Cretaceous Black-hawk Formation,Wasatch Plateau,central Utah,USA: Sedimentology,v.59,p.2226–2258,doi:10.1111 /j.1365-3091.2012.01342.x.H AMPSON and H OWELL449。