一元一次不等式小结与复习
- 格式:doc
- 大小:66.50 KB
- 文档页数:4
《一元一次不等式与一元一次不等式组回顾与思考》教学设计教学目标1.知识与技能目标:①不等式的基本性质;②解一元一次不等式以及在数轴上表示不等式的解集;③利用一元一次不等式解决实际问题;④一元一次不等式与一次函数;⑤一元一次不等式组及其应用.2.过程与方法目标:通过回顾本章内容,培养学生归纳总结能力,以及用数学知识解决实际问题的能力.3.情感与态度目标:利用不等式及不等式组的知识去解决实际问题,让学生体会数学与自然及人类社会的密切联系,了解数学的价值,增进学生对数学的理解和学好数学的信心. 教学重点:掌握本章所有知识.教学难点:利用本章知识解决实际问题.课前准备:1.教师准备:课件2.学生准备:复习本章的相关知识.课时安排:一课时教学过程一、创设问题情境,引入新课[师]我们已经学完了本章的全部内容,这节课大家一起来进行回顾.二、建立本章的知识框架图首先,大家来简要概括一下本章的知识点有哪些?学生回忆回答:由现实生活中的不等关系推导出不等式的意义,并能根据条件列出不等式;类比等式的性质,推导不等式的有关性质以及等式性质与不等式性质的异同;根据不等式的性质求解不等式,并能利用不等式解决实际问题;一元一次不等式与一次函数;一元一次不等式组及其应用.[师]很好.这位同学对本章知识掌握得如此熟悉,下面我们分别详细地回顾总结本章的主要知识点.(一)不等式1、不等式的定义一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.符号“>”表示:大于.符号“<”表示:小于.符号“≥”表示:①不大于;②小于或等于.符号“≤”表示:①不大于;②小于或等于.练一练:用适当的符号表示下列关系:(1)a的2倍比8小(2)y的3倍与1的和大于3(3)x除以2的商加2至多为5(4)a与b两数和的平方不大于2(5)x与y的差为非正数(6)a与4的和不小于2学生自主完成.2、不等式的基本性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变. 不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. 练一练:1.设a>b,用“<”或“>”填空:(1)a-3 b-3 (2) a2b2(3)-4a -4b2.单项选择:(1)由x>y 得ax>ay的条件是()A.a>0B.a<0C.a≥0D.a≤0(2)由x>y得ax≤ay的条件是()A.a>0B.a<0C.a≥0D.a≤0(3)由a>b得am2>bm2 的条件是()A.m>0B.m<0C.m≠0D.m是任意有理数学生自主完成.3、不等式的解集:(1)不等式的解:能使不等式成立的未知数的值,叫做不等式的解.(2)不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集提出问题:不等式的解与不等式的解集是一回事吗?学生回忆回答,归纳下表:(3)解不等式:A、实质:就是利用不等式的基本性质.把不等式化为“x>a或x≥a或x<a或x≤a”的形式.B、用数轴表示不等式解集:大向右,小向左,注意空实心请同学们注意:有“=”用实心点,没有“=”用空心圈.练一练:1、x<5是不等式3x-5<2x的解集,则下列说法正确的有()个.①5是不等式3x-5<2x的一个解;②0是不等式3x-5 <2x的一个解;③x<4也是不等式3x-5<2x的解集;④所有小于4的数都是不等式3x-5<2x的解.A.1个;B.2个;C.3个;D.4个.2、如图,表示的是不等式的解集,其中错误的是( )学生自主完成.(二)一元一次不等式1、一元一次不等式的定义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.2、解一元一次不等式步骤:请同学们注意:在系数化为1的这一步中,要特别注意不等式的两边都乘以(或除以)一个负数时,不等号的方向必须改变方向.3、应用一元一次不等式解决实际问题的步骤:(1)审题:分析题目中已知什么求什么?明确各量之间的关系,包括题目中的等量关系与不等量关系.(2)设适当未知数,并用未知数表示相关的量.(3)列出不等式.(4)解不等式.(5)检验并写出符合题意的答案.练一练:1.解不等式2x−23≥54x−5,并把它的解集在数轴上表示出来.2.高速公路施工需要爆破,根据现场实际情况,操作人员点燃导火线后,要在炸药爆破前跑到400米外的安全区域,已知导火索燃烧速度是1.2厘米/秒,人跑步的速度是5米/秒,问导火索至少需要多长?学生自主完成.4、一元一次不等式与一次函数:练一练:1.作函数y=x+3的图象,并观察图象,回答下列问题:(1)x取何值时,x+3>0?(2)x取何值时,x+3<0?(3)x取何值时,x+3>2?学生自主完成.师生共同总结:利用一个一次函数的图象求一元一次不等式的解集:关键是确定一次函数的图象与x轴的交点.2.作函数y1=x+1,y2=2x的图像,观察图像回答下列问题:(1)当x取何值时,y1=y2?(2)当x取何值时,y1>y2?(3)当x取何值时,y1<y2?学生自主完成.师生共同总结:利用两个一次函数的图象求一元一次不等式的解集:关键是确定两个一次函数图象的交点坐标.(三)一元一次不等式组1、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.2、一元一次不等式组的解集:一般地,一元一次不等式组中各个不等式解集的公共部分,叫这个一元一次不等式组的解集.3、一元一次不等式组的解法:①分别求出各个不等式的解集;②在同一数轴上表示出各个不等式的解集,找公共部分;③用不等式表示出解集.4、一元一次不等式组的解集的确定(a<b )5、列一元一次不等式组解应用题的一般步骤:(1)审:审题,分析题目中已知什么,求什么,明确各数量之间的关系.(2)设:设适当的未知数(3)找:找出题目中的所有不等关系(4)列:列不等式组(5)解:求出不等式组的解集(6)答:写出符合题意的答案练一练:2.某校在“五一”期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且有一辆不空也不满.求外出旅游的学生人数是多少?学生自主完成.四、本课小结五、课后作业P61页:复习题板书设计:一、简述本章的知识点二、详细回顾本章的主要知识点:1、不等式;不等式的基本性质;解不等式.2、一元一次不等式:解一元一次不等式步骤;应用一元一次不等式解决实际问题的步骤;一元一次不等式与一次函数.3、一元一次不等式组:一元一次不等式组的解法;一元一次不等式组的解集的确定;列一元一次不等式组解应用题的一般步骤.教学反思:本节课的教学时间显得比较紧张,原因是教学过程中对一些内容的选取不够精简.学生练习和思考的时间较少,对一些问题的考虑时间不足,学生存在的问题没有充分地暴露出来,这对今后的教学会有一定的影响。
《一元一次不等式》的教学反思范文〔精选6篇〕《一元一次不等式》的教学反思1 学习了实际问题与一元一次不等式后,我发如今学生学习起来比拟困惑,存在以下问题:1、找不出广泛应用题中的不等关系,要解广泛应用题时相等关系比拟明确,而在不等式中不等关系不是那样的明确,所以不少学生不太理解,因此列不出不等式,所以也不会解不等式的应用题。
2、一局部学生虽然能列出不等式,可是在解不等式时一直出现错误,特别是当不等工的两边都乘或除以一个负数时,学生一直记不住不等式的方向要改变,导致计算错误,这可能对不等式的性质没有真正理解吧。
3、不少应用题求出不等式的解集时往往都会根据题意,让求出不等式的整数解,到这时一局部学生往往不能准确的求出整数解,这可能是对不等式解集的取值范围不是太明白。
教后反思:在以后的教学中做注意的是,让学生纯熟掌握不等式的性质,并能真正理解,能准确无误的求出不等式的解集。
多进展不等式应用题的练习,让学生逐步理解和掌握找不等关系的方法,从而纯熟的掌握列不等式解应用题的。
要加强一些根底概念的掌握理解,对于整数,正整数以一些大于小于等的数学语言,要让学生准确理解,不能含模糊糊。
《一元一次不等式》的教学反思2 本节课通过多媒体呈现习题,节省了大量的时间,充分利用了珍贵的课堂45分钟。
通过学生自我训练、小组互帮和老师释疑,成功地解决了在新授过程中存在的局部遗留问题,到达了稳固一元一次不等式和一元一次不等式组的相关知识,尽管培养学生乐于探究的学习品质不是一朝一夕的事,但本节课在这方面也发挥了积极的作用;对知识的综合、迁移和应用等才能也起到了潜移默化的成效。
但在教学过程中我觉得还有如下遗憾:在课件中尽管有一个知识网络图,但学生在学习过程中对本章知识并没有可以形成知识体系,没有可以构建完好的知识网络图。
主要原因应该是:1、知识网络图不是由学生自我总结得出的。
2、没有和学生共同分析^p 知识构造图中各局部内容之间的关联。
不等式小结与复习一、复习引入:1.基本不等式、极值定理;2.简述不等式证明的几种常用方法:比较、综合、分析、换元、反证、放缩、构造二、讲解范例:例1若14<<-x ,求22222-+-x x x 的最值 解:])1(1)1([21]11)1[(2111)1(21222222--+---=-+-=-+-⋅=-+-x x x x x x x x x ∵14<<-x ∴0)1(>--x 0)1(1>--x 从而2])1(1)1([≥--+--x x 1])1(1)1([21-≤--+---x x 即1)2222(min 2-=-+-x x x 例2设+∈R x 且1222=+y x ,求21y x +的最大值解:∵0>x ∴212y x ⋅=+又2321)2()221(2222=++=++y x y x ,∴423)2321(212=⋅≤+y x 即 423)1(m a x 2=+y x 例3 已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 解:y x +yxb x ay b a y b x a y x y x +++=++=⋅+=))((1)( )(2b a yxb x ay b a +=⋅++≥当且仅当y xb x ay =即ba y x =时m in )()(b a y x +=+例4 已知x 2 = a 2 + b 2,y 2 =c 2 +d 2,且所有字母均为正,求证:xy ≥ac + bd证一:(分析法)∵a , b , c , d , x , y 都是正数∴要证:xy ≥ac + bd只需证:(xy )2≥(ac + bd )即 (a 2 + b 2)(c 2 + d 2)≥a 2c 2 + b 2d 2 + 2abcd展开得:a 2c 2 + b 2d 2 + a 2d 2 + b 2c 2≥a 2c 2 + b 2d 2 + 2abcd 即 a 2d 2 + b 2c 2≥2abcd由基本不等式,显然成立,∴xy ≥ac + bd 证二:(综合法)xy =222222222222d b d a c b c a d c b a +++=++≥ac bd ac d b abcd c a +=+=++22222)(2 例5 解关于x 的不等式 a x x a log log <解:原不等式等价于 x x aa l o g 1l o g < 即 0log )1)(log 1(log <-+x x x a a a ∴1log 01log <<-<x x a a 或 若a >1 , a x a x <<<<110或 若0<a <1 , 11<<>x a ax 或 例6 解关于x 的不等式 )22(223x x x x m --<-解:原不等式可化为02)1(224<+⋅+-m m x x ,即 0)2)(12(22<--m x x 当m >1时, m x <<221 ∴m x 2log 210<< 当m =1时, 0)12(22<-x ∴x ∈φ当0<m <1时, 122<<x m ∴0log 212<<x m 当m ≤0时, x <0 例7 解关于x 的不等式 )20(,1)(c o t 232πθθ≤<<-+-x x 解:当1cot >θ即θ∈(0,4π)时, 0232<-+-x x ∴x >2或x <1 当1cot =θ即θ=4π时, x ∈φ当)1,0(cot ∈θ即θ∈(4π,2π)时, 0232>-+-x x ∴1<x <2 例8 满足13-≥-x x 的x 的集合为A ;满足0)1(2≤++-a x a x 的x 的集合为B1︒ 若A ⊂B 求a 的取值范围;2︒ 若A ⊇B 求a 的取值范围;3︒ 若A ∩B 为仅含一个元素的集合,求a 的值解:A =[1,2] , B ={x |(x -a )(x -1)≤0}当a ≤1时, B =[a ,1] 当a >1时 B =[1,a ]当a >2时, A ⊂B当1≤a ≤2时, A ⊇B当a ≤1时, A ∩B 仅含一个元素例9 方程)0,10(,021cos 21sin 2π≤≤<<=-++x a a x x a 有相异两实根,求a 的取值范围解:原不等式可化为01cos cos 22=--x x a令 x t cos = 则]1,1[-∈t ,设12)(2--=t at t f 又∵a >0 ∴ ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧≥⇒-<>≥≥->⇒<<-≥-=≥=->+=∆1414110811411022)1(02)1(081a a a a a a a a f a f a 或 课后作业: 1选择题(1)不等式6x 2+5x <4的解集为( B ) A (-∞,-34)∪(21,+∞) B (- 34,21) C (- 21,43) D (-∞,-21)∪(34,+∞) (2)a >0,b >0,不等式a >x1>-b 的解集为( C ) A -b 1 <x <0或0<x <a 1 B - a 1<x <b1 C x <-b 1或x >a 1 D - a 1<x <0或0<x <b1 (3)不等式11+x (x -1)(x -2)2(x -3)<0的解集是( B ) A (-1,1)∪(2,3) B ∞,-1)∪(1,3) C (-∞,-1)∪(2,3) D(4)若a >0,且不等式ax 2+bx +c <0无解,则左边的二次三项式的判别式(C ) A Δ<0 B Δ=0 C Δ≤0 D >0(5)A={x |x 2+(p +2)x +1=0,x ∈R },且R *∩A=∅,则有( B ) A p >-2 B p ≥0 C -4<p <0 D p >-4 (6)θ在第二象限,cos θ=524+-m m ,sin θ=53-+m m ,则m 满足( D ) A m <-5或m >3 B 3<m <9 C m =0或m =8 D =8(7)已知不等式l o g a (x 2-x -2)>l o g a (-x 2+2x +3)在x =49时成立,则不等式的解集为( B ) A {x |1<x <2} B {x |2<x <25} C {x |1<x <25} D {x |2<x <5} (8)设0<b <21,下列不等式恒成立的是( C ) A b 3>b 21 B l o g b (1-b )>1 C cos(1+b )>cos(1-b ) D (1-b )n <b n,n ∈N (9)若不等式x 2-l o g a x <0在(0,21)内恒成立,则a 满足( A ) A 16≤a <1 B 16<a <1 C 0<a ≤161 D 0<a <161 (10)不等式112+<-x x 的解集是( A )A [0,1]B [0,+∞]C (1,+∞)D [-1,1] (11)不等式112)21(--<x x 的解集是( D )A B (1,2) C (2,+∞) D (1,+∞)2填空题(1)不等式1≤|x -2|≤7的解集是 :[-5,1]∪[3,9] (2)不等式x 1>a 的解集是 a =0时x >0;a >0时,0<x <a 1;a <0时,x <a1或x >0 (3)不等式lg|x -4|<-1的解集是 答案:{x |4<x <1041或1039<x <4} (4)若不等式43)1(22+++--x x a ax x <0的解为-1<x <5,则a = :4 3、求下列函数的最值:1︒ )(,42+∈+=R x xx y (min=24) 2︒)20(),2(a x x a x y <<-= (8max 2a =) 3︒若220<<x , 求)21(22x x y -=的最大值4︒若+∈R y x ,且12=+y x ,求y x 11+的最小值)223(+ 4、解下列不等式(1)解不等式|x 2-4x +2|≥2x (2)(x +4)(x +5)2>(3x -2)(x +5)2; (3)1)3()4)(1(2+---x x x x ≤0; (4)45820422+-+-x x x x ≥3 解:(1) 0<x ≤21或4177-≤x ≤4177+或x ≥4 (2)当x ≠-5时,(x +5)2>0,两边同除以(x +5)2得x +4>3x -2,即x <3且x ≠-5∴x ∈(-∞,-5)∪(-5,3)(3)当x ≠4时,原不等式⇔(x -1)(x -3)(x +1)≤0(x ≠-1) ⇔1≤x ≤3或x <-1,当x =4时,显然左边=0,不等式成立故原不等式的解集为{x |1≤x ≤3或x <-1或x =4}(4)原不等式可化为451820422+-+-x x x x -3≥00456522≥+-+-⇔x x x x 0)4)(1()3)(2(≥----⇔x x x x ∴x ∈(-∞,1)∪[2,3]∪(4,+∞)。
不等式小结与复习主讲:黄冈中学高级教师陈红明一周强化一、一周知识概述不等式是中学数学的基础和重要部分,它可以渗透到数学的其它内容中,在实际生活中有广泛的应用,是高考的重要内容。
在复习不等式时应注意等价转化思想、分类讨论的思想、函数与方程的思想以及化归思想在不等式中的应用,掌握通性通法。
提高应用意识,总结不等式的应用规律,才能提高解决问题的能力,在实际应用中,主要有构造不等式求解或构造函数求函数的最值等方法,求最值时要注意等号成立的条件,避免不必要的错误。
(一)知识网络结构(二)不等式的性质1、实数的运算性质和大小顺序之间的关系;a-b>0a>b;a-b=0a=b;a-b<0a<b.2、不等式的基本性质(1)对称性:a>b b<a;(2)传递性:a>b,b>c a>c;(3)可加性:a>b,c∈R a+c>b+c;(4)可乘性:a>b,c>0ac>bc;a>b,c<0ac<bc.3、不等式的运算性质(1)加法:a>b,c>d a+c>b+d;(2)减法:a>b,c<d a-c>b-d;(3)乘法:a>b>0,c>d>0ac>bd;(4)除法:a>b>0,0<c<d;(5)乘方:a>b>0(n∈N*且n>1)(6)开方:a>b>0(n∈N*且n>1)(7)倒数:a>b,ab>0.(三)不等式的证明方法与主要依据1、证明不等式的方法:证明不等式的常用方法有:比较法、综合法、分析法.此外,在证明不等式中,有时还要运用综合分析法、放缩法、换元法、反证法.2、证明不等式的主要依据(1)a-b>0a>b;a-b<0a<b.(2)不等式的性质.(3)重要不等式及定理:①a2≥0(a∈R);②a2+b2≥2ab(a∈R,b∈R);③(a∈R+,b∈R+);④a3+b3+c3≥3abc(a,b,c∈R+);⑤(a,b,c∈R+);⑥|a|-|b|≤|a±b|≤|a|+|b|;⑦|a1+a2+…+an|≤|a1|+|a2|+…+|a n|;(注:搞清楚以上定理取“=”号的条件)⑧|x|<a(a>0)x2<a2-a<x<a;⑨|x|>a(a>0)x2>a2x<-a或x>a. (四)不等式的解法1、绝对值不等式、高次不等式的解法2、无理不等式通过以上表解,进一步熟悉不等式的性质、证明、解法.二、重难点知识选讲1、不等式的性质、重要不等式、绝对值不等式是整章的基本内容,是证明不等式和解不等式的知识基础,应熟练掌握和运用.例1、设,则在①a2>b2;②a+b>2;③ab<b2;④a2+b2>|a|+|b|这四个不等式中,恒成立的个数是()A.0B.1C.2D.3例2、已知正数x,y满足x+2y=1,求的最小值.2、不等式的证明不等式证明方法较多,具体问题具体分析是证明不等式的精髓,灵活地选用证明方法是证明不等式的技巧.巧妙地变形是证明不等式的关键,联系和联想是证明不等式的重要观点,提高思维能力是证明不等式的落脚点.例3、已知0<a<1,求证:≥9.3、不等式解法不等式的解法是化归与转化思想的充分运用,将超越不等式转化为代数不等式、无理不等式转化为有理不等式、高次或分式不等式转化为一元一次、二次不等式等,应注意转化过程的等价性.例4、解不等式:例5、解关于x的不等式(a∈R).4、不等式的应用问题例6、(全国高考试题)建造一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为______元.例7、(全国高考试题)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大的速度行驶?。
不等式复习小结【教学目标】1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小; 3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系; 4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题; 5.明确均值不等式及其成立条件,会灵活应用均值不等式证明或求解最值。
【教学重点】不等式性质的应用,一元二次不等式的解法,用二元一次不等式(组)表示平面区域,求线性目标函数在线性约束条件下的最优解,基本不等式的应用。
【教学难点】利用不等式加法法则及乘法法则解题,求目标函数的最优解,基本不等式的应用。
【教学过程】1.本章知识结构2.知识梳理(一)不等式与不等关系1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>, (4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:baab b a 110,<⇒>>(6)乘方法则:)1*(0>∈>⇒>>n N n b a b a nn且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a nn且2、应用不等式的性质比较两个实数的大小; 作差法3、应用不等式性质证明(二)一元二次不等式及其解法 一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格) 有两相异实根 有两相等实根(三)线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解2a b +≤1、如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab b a22a b +≤几何意义是“半径不小于半弦”3.典型例题1、用不等式表示不等关系例1、某电脑用户计划用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装软件,根据需要,软件至少买3片,磁盘至少买2盒,写出满足上述不等关系的不等式。
课题:一元一次不等式小结与思考(1)一.教学目标、重点难点:教学目标:理解不等式的性质,并能利用性质解一元一次不等式(组)教学重点:解一元一次不等式(组)教学难点:解一元一次不等式组突破难点的关键:利用数轴形象地帮助学生去找解集的公共部分,从而得出口诀,加深学生 对不等式的解集的理解二.内容分析与学生分析:引导学生利用数轴研究不等式,从而树立数形结合的思想。
针对学生的实际情况,瞄准学生的薄弱环节,通过讲例题,做习题,讲练结合,系统归纳,以达到查漏补缺的目的三.教学过程:1.复习内容问题1:回忆不等式的有关概念及性质已知a <b , 则下列式子中一定成立的是( )A ac <bcB c a <cb C 4—a <4—b D ac 2≤bc 2 问题2:解一元一次不等式(组)的步骤是什么?1.解不等式63431+--x x >1 并把它的解集在数轴上表示出来 设计意图:可让学生板书,师生共同纠错,从而指出易错点如下:① 去分母时漏乘② 缺乏整体思想,忘加括号③ 去括号时分配不到位,漏分配数或漏分配符号④ 两边同乘、除同一个负数时,忘改变不等号方向X-1>22.解不等式组 并把它的解集在数轴上表示出来,且找出它的X-3≤2 + x 21 整数解 设计意图: 通过数轴得出:同大取大,同小取小,大小小大取之间,大大小小则无 解,使学生进一步体会到数形结合方法的优势问题3: 掌握由不等式(组)带来的一些变式应用X <31.已知不等式组 无解,求a 的取值范围X >a设计意图: X ≤3 X ≤3可将不等式组改为 或 进行对比理解,通过一题多X >a X ≥a变的形式,让学生弄清楚什么时候要取等于号。
2x + y = 3m + 1 2.已知方程组 若x >y ,求m 的取值范围X – y = 2m – 1设计意图:参数问题是本章的一个难点,与方程式相结合有助于加深对方程式和不等式的认识。
3.已知3x-a >2的解集如图所示 求a 的值设计意图:体会由不等式向方程的转化过程。
说课稿《一元一次不等式与不等式组》复习课金兰中学一、中考分析:《一元一次不等式与不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节的内容,是中考的必考内容之一,中考将会以填空、选择或解答题的方式考查不等式与不等式组的基本性质、解集的概念和把解集在数轴上表示出来,不等式的应用题还是近年中考的热点内容,考查可能与日常生活相联系,也可能与其它章节内容,如方程、函数及几何内容相结合。
因此本节课熟练掌握与否直接影响到不等式组的解法以及不等式应用题的掌握。
本节课为复习课,因此可在学生“三基”(基本知识,基本技能,基本方法)巩固的条件下向纵深发展,使知识结构化,网络化。
二、复习目标:1、知识与技能目标。
会用不等式的基本性质变形不等式,从而求出不等式(组)的解集;会将不等式(组)的解集在数轴上表示出来;会利用不等式(组)的知识解决简单的实际问题。
2、情感、态度、价值观目标。
通过自主学习与合作交流,把课堂交给学生,让他们成为学习的主人。
三、复习的重点和难点:1、复习重点:一元一次不等式(组)的解法及简单应用。
2、复习难点:熟练、正确的解一元一次不等式(组),并解决简单的实际问题。
四、说复习方法本节课增加形象思维的操作,从中感悟到自我建构知识的乐趣。
同时又注意培养学生学习的自信心,学习兴趣。
通过手势、眼神、语言、表情等多种教学媒体,来激发学生参与的积极性。
1、指导——自主学习法。
新课程要求改变学生的学习方式,教师根据学生的最近发展区实施分层教学。
同时注重培养学生的主体性,让不同层次的学生完成难度不等的题目是该课题的特色之一。
2、讨论式教学法。
“就是把学生从智力的惰性中挽救出来,就是要使学生在某一件事情上把自己的知识显示出来,在智力活动中表现自己。
”道出了小组讨论的重要性和优越性。
我在本节课里让同一层次的学生分组讨论,并上黑板展示讨论成果,激发了学生的学习积极性。
3、多媒体辅助教学法。
新课程标准指出:……现代教育手段和技术将有效的改善教学方式,提高教学效益。
石槽二中导学案(第八单元第9课时)
学科:七年级下册课题:小结与复习
时间:------------------ 姓名:-----------------------
一.自学目标
1. 进一步认识不等式的意义,了解不等式的性质,并能进行简单的应用;
2. 进一步理解不等式(组)解集的意义,会解简单的一元一次不等式(组),并能运用一元一次不等式(组)解决简单的实际问题;
3. 进一步培养合作、归纳、解决问题的能力.
自学重难点
重点:
一元一次不等式的解法
难点:
1. 一元一次不等式(组)解集的确定
2. 不等式的性质的运用
3. 一元一次不等式(组)的应用
二.自学指导:阅读课本40页至56页的内容,完成下列问题:
1. 用____表示____关系的式子,叫做____.
2. 能使不等式成立的____的值,叫做____,一个不等式的所有解组成的集合,就叫做这个不等式的___.不等式的解可以在___上直观地表示出来.
3. 不等式的性质1:不等式两边都___或___同一个__或___,不等号的方向___;不等式的性质2:不等式两边都___或___同一个
___,不等号的方向___;不等式的性质3:不等式两边都___或___
同一个___,不等号的方向___。
4. 只含有___未知数,且含未知数的式子是___,未知数的次数是_,
像这样的不等式叫做_______;两个或两个以上一元一次不等式合在一
起,就得到一个_______,不等式组中几个不等式的解集的_____,
叫做这个不等式组的___,我们可以借助___来得到不等式组的解集。
三.团结力量大
1. 已知x <y ,则1-2x __1-2y.
2. 若不等式a x >b 的解集是x <a
b ,则a 的取值范围是______.
3. 当x ___时,代数式-3x+4的值是非负数.
4. 若2
1x 12-m -8>5是一元一次不等式,则m=__. 5. 不等式组⎩
⎨⎧<-<-0122x x x 的整数解是_____. 6. 若a <b ,则不等式组⎩⎨⎧>-<-0
0b x a x 的解是_____.
7. 解下列不等式(组):
(1)3752+-x x ≥1-453-x (2)5≤2
53+x -1≤8
四.课堂小结,大胆质疑
1.你本节有什么收获?
2.你还有什么疑问?
五. 我行我秀
1. x 与y 的和的平方是一个非负数,用不等式表示为_____.
2. 设a 、b 是已知数,不等式ax+b <0(a <0)的解集是_____.
3. 代数式1-22-x 的值不小于3
31x +的值,则x 的取值范围是_____.
4. 不等式组⎩⎨⎧<-<-0
122x x x 的整数解为_____
5. 某自来水公司按如下标准收取水费:若每户每月用水不超过10立方米,
则每立方米收费1.5元;若每户每月用水超过10立方米,则超过的部分每立方
米收费2元. 小亮家某月的水费不少于25元,那么他家这个月的水量至少是多
少立方米?
六. 能力提升
1. 如果一元一次不等式组⎩⎨⎧>>a
x x 3的解集是x >3,则a 的取值范围是____.
2. 解下列不等式(组):
(1)∣2
3+x -1∣<5 (2)-5<2x+1<6
3. 现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨. 装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
七.预习指导
内容:课本58页至60页
课题:认识三角形
自学目标:
1. 了解三角形及三角形的顶点、边、内角、外角等概念
2. 了解三角形按角进行分类
3. 了解等腰三角形、等边三角形(正三角形)
4. 知道三角形的内角和及其简单应用。