4.蛋白质的三维结构
- 格式:ppt
- 大小:8.01 MB
- 文档页数:118
第四章蛋白质的三维结构稳定蛋白质三维结构的作用力一、多肽主链折叠的空间限制从理论上讲,一个多肽主链能有无限多种构象。
从理论上讲个多肽主链能有无限多种构象但是,只有一种或很少几种天然构象,且相当稳定。
但是只有种或很少几种天然构象且相当稳定因为:天然蛋白质主链上的单键并不能自由旋转1、肽链的二面角★只有α碳原子连接的两个键(C α—N 和C α-C )是单键,能自由旋转。
★扭角:环绕C α—N 键旋转的角度为Φ,环绕C α—C 键旋转的角度称Ψ。
可旋转±180度,一般呈顺时针旋转。
旋转受H.O 基的限制多肽主链的构象可以用每个C 的对原子以及R 基的限制。
多肽主链的构象可以用每个a-C 的一对扭角来描述。
★当Φ(Ψ)旋转键两侧的主链呈顺式时,规定Φ(Ψ)=0°★从Cα沿键轴方向看,顺时针旋转的Φ(Ψ)角为正值,反之为负值。
2、拉氏构象图:可允许的Φ和Ψ值Φ和Ψ同时为0的构象实际不存在二面角(Φ、Ψ)所决定的构象能否存在,主要取决于两个相邻肽单位中非键合原子间的接近有无阻碍。
个相邻肽单位中非键合原间的接有Cα上的R基的大小与带电性影响Φ和Ψ◆拉氏构象图:Ramachandran根据蛋白质中非键合原子间的最小接触距离(范德华距离),确定了哪些成对二面角(Φ、Ψ)所规定的两个相邻肽单位的构象是允许的,哪些是不允许的,并且以Φ为横坐标,以Ψ为纵坐标,在坐标图上标出,该坐坐标以为纵坐标在坐标图上标出该坐标图称拉氏构象图。
⑴实线封闭区域一般允许区,非键合原子间的距离大于一般允许距离,此区域内任何二面角确定的构象都是允许的,且构象稳定。
的且构象稳定⑵虚线封闭区域是最大允许区,非键合原子间的距离介于最小允许距离和般允许距离之间,立体化学允许,但许距离和一般允许距离之间,立体化学允许,但构象不够稳定。
⑶虚线外区域是不允许区,该区域内任何二面角确定的肽链构象,都是不允许的,此构象中非键合原子间距离象都是不允许的此构象中非键合原子间距离小于最小允许距离,斥力大,构象极不稳定。
Chapter 04 The Three Dimensional Structure of Proteins第四章蛋白质的三维结构1. Properties of the Peptide Bond(肽键的性质)InX-ray studies of crystalline peptides, Linus Pauling and Robert Corey found that the C—N bond in the peptide link is intermediate in length (1.32 A) between a typical C—N single bond (1.49 Å) and a C=N double bond (1.27 Å). They also found that the peptide bond planar (all four atoms attached to the C—N group are located in the same plane) and that the two α-C atoms attached to the C—N are always trans to other (on opposite sides of the peptide bond): 在晶体肽X-射线衍射研究中,Linus Pauling 和 Rbert Corey发现,在肽键中C-N键的键长介于典型的C-N单键(1.49 Å)和C=N双键(1.27 Å)之间。
他们还发现,肽键是平面的(与C-N相连的所有四个原子在同一个平面内),与C-N相连的两个α-C 原子总是互为反式的(在肽键的相对面)(a) What does the length of the C—N bond in the peptide linkage indicate about its strength and its bond order (i.e., whether it is single, double, or triple)? 肽键中C-N键的键长说明其强度和键级(单、双或三键)的什么情况?(b) What do the observations of Pauling and Corey tell us about, the ease of rotation about the C—N peptide bond? Linus Pauling 和 Rbert Corey的观察告诉我们C—N肽键转动的什么情况?2. Structural and Functional Relationships in Fibrous Proteins(纤维状蛋白结构与功能的关系) William Astbury discovered that the X-ray pattern of wool shows a repeating structural unit spaced about 5.2 Å along the direction of the wool fiber. When he steamed and stretched the wool, the x-ray pattern showed a new repeating structural unit at a spacing of 7.0 Å. Steaming and stretching the wool and then letting it shrink gave an x-ray pattern consistent with the original spacing of about 5.2 Å. Although these observations provided important clues to the molecular structure of wool, Astbury was unable to interpret them at the time. William Astbury 发现,羊毛的X-射线衍射谱表明在羊毛的纤维方向有间距大约5.2 Å的重复结构单位。
名词解释蛋白质的三维结构蛋白质是生物体内最基本的组分之一,也是生命活动的关键参与者。
其在细胞和组织中发挥着重要的结构和功能作用。
蛋白质的功能与其特定的三维结构密切相关。
本文将解释蛋白质的三维结构,并介绍其重要性与研究方法。
蛋白质的三维结构是指其在空间中特定的立体构型。
根据其结构,蛋白质可以分为四个层次:一级结构、二级结构、三级结构和四级结构。
一级结构是蛋白质最基本的线性序列,由氨基酸组成。
氨基酸的种类和排列顺序决定了蛋白质的功能和特性。
人体内常见的氨基酸有20种,它们通过共价键连接在一起,形成聚合物链。
蛋白质的一级结构可以通过基因信息推测得出,这个推测的过程叫做基因翻译。
二级结构是蛋白质的局部空间构型,主要有α-螺旋和β-折叠两种形式。
α-螺旋是一种呈螺旋状的结构,在其内部,氨基酸残基通过氢键相互连接而形成稳定的结构。
β-折叠是一种平面折叠状的结构,氨基酸残基通过氢键连接在一起,形成折叠的β片。
这些二级结构的形成受到许多因素的影响,如氨基酸的性质、溶剂环境等。
三级结构是蛋白质的整体立体构型。
蛋白质的三级结构由多个二级结构组合而成,通过各种化学键和相互作用保持稳定。
这些化学键和相互作用包括疏水相互作用、电荷相互作用、氢键和二硫键等。
疏水效应是蛋白质三级结构形成的重要因素之一,由于氨基酸的侧链具有不同的亲水性,可以促使蛋白质分子折叠为稳定的立体构型。
四级结构是由多个蛋白质亚单位组成的复合物。
如血红蛋白由四个亚单位组成。
亚单位之间通过非共价键连接在一起,形成一个功能完整的蛋白质结构。
蛋白质的三维结构对于其功能的发挥至关重要。
在特定的立体构型下,蛋白质具备特定的功能。
例如,抗体分子通过其特殊的三维结构与外来抗原结合并清除体内病原体;酶分子通过其特定的三维结构催化生物化学反应,促进代谢过程。
如果蛋白质的三维结构发生改变,其结构和功能都会受到影响,甚至导致疾病的发生。
研究蛋白质的三维结构对于理解生命的本质和疾病的发生机制具有重要意义。