蛋白质的三维结构
- 格式:ppt
- 大小:6.52 MB
- 文档页数:69
第5章蛋白质的三维结构§1.8 蛋白质的三维结构蛋白质三维结构由氨基酸序列决定,且符合热力学能量最低要求,与溶剂和环境有关。
①主链基团之间形成氢键。
②暴露在溶剂中(水)的疏水基团最少。
③多肽链与环境水(必须水)形成氢键。
(一)研究蛋白质构象的方法(1)X-射线衍射法:是目前最明确揭示蛋白质大多数原子空间位置的方法,为研究蛋白质三维结构最主要的方法。
步骤为:蛋白质分离、提纯→单晶培养→晶体学初步鉴定→衍生数据收集→结晶解析→结构精修→结构表达。
(2)其他方法:NMR、紫外差光谱、荧光和荧光偏振、圆二色性、二维结晶三维重构。
(二)稳定蛋白质三维结构的作用力(1)弱相互作用(或称非共价键,或次级键)1. 氢键2. 疏水作用(熵效应)3. 范德华力4. 离子键(盐键)(2)共价二硫键(三)酰胺平面和二面角(1)酰胺平面(肽平面):肽键上的四个原子和相连的Cα1和Cα2所在的平面。
(2)两面角:每个氨基酸有三个键参与多肽主链,一个肽键具有双键性质不易旋转,另两个键一个为Cα1与羰基形成的单键,可自由旋转,角度称为ψ,另一个为NH与Cα2形成的单键也可自由旋转,角度称为φ,ψ和φ称为二面角或构象角,原则上可取-1800~+1800之间任意值(实际受立体化学和热力学因素所限制),肽链构象可用两面角ψ和φ来描述,由ψ和φ值可确定多肽主链构象。
(四)二级结构多肽链折叠的规则方式,是能量平衡和熵效应的结果。
主链折叠由氢键维持(主要),疏水基团在分子内,亲水基团在分子表面。
常见的二级结构元件:α-螺旋,β-折叠片,β-转角和无规卷曲。
(1)α-helix:蛋白质含量最丰富的二级结构。
肽链主链围绕中心轴盘绕成螺旋状紧密卷曲的棒状结构,称为α-螺旋。
1.两面角ψ和φ分别在-570和-470附近(φ:从Cα向N看,顺时针旋转为正,逆时针为负;ψ:从Cα向羰基看,顺时针为正,逆时针为负。
)2.每圈螺旋含约3.6个氨基酸残基,由H键封闭的环中原子数为13,此种α-螺旋又称3.613-螺旋,每周螺距为0.54nm,R基均在螺旋外侧。
蛋白质3d结构
蛋白质3D结构是指蛋白质分子的三维空间结构。
蛋白质是生命体内的重要分子,其功能与结构密切相关。
了解蛋白质的3D结构可以帮助我们更好地理解其功能和生物学行为。
在生物学研究中,通过X射线晶体学、核磁共振等技术可以得到蛋白质的3D结构。
蛋白质的结构可以分为四个层次:一级结构是由氨基酸的线性序列组成,二级结构是由α-螺旋或β-折叠等形成的空间结构,三级结构是由多个二级结构组成的整体结构,四级结构是由多个蛋白质分子组成的复合物结构。
蛋白质的3D结构研究对于药物研发、疾病诊断和治疗等方面具有重要意义。
- 1 -。
第五章蛋白质的三维结构提要每一种蛋白质至少都有一种构像在生理条件下是稳定的,并具有生物活性,这种构像称为蛋白质的天然构像。
研究蛋白质构像的主要方法是X射线晶体结构分析。
此外紫外差光谱、荧光和荧光偏振、圆二色性、核磁共振和重氢交换等被用于研究溶液中的蛋白质构像。
稳定蛋白质构像的作用有氢键、范德华力、疏水相互作用和离子键。
此外二硫键在稳定某些蛋白质的构像种也起重要作用。
多肽链折叠成特定的构像受到空间上的许多限制。
就其主链而言,由于肽链是由多个相邻的肽平面构成的,主链上只有α-碳的二平面角Φ和Ψ能自由旋转,但也受到很大限制。
某些Φ和Ψ值是立体化学所允许的,其他值则不被允许。
并因此提出了拉氏构像,它表明蛋白质主链构象在图上所占的位置是很有限的(7.7%-20.3%)。
蛋白质主链的折叠形成由氢键维系的重复性结构称为二级结构。
最常见的二级结构元件有α螺旋、β转角等。
α螺旋是蛋白质中最典型、含量最丰富的二级结构。
α螺旋结构中每个肽平面上的羰氧和酰氨氢都参与氢键的形成,因此这种构象是相当稳定的。
氢键大体上与螺旋轴平行,每圈螺旋占3.6个氨基酸残基,每个残基绕轴旋转100°,螺距为0.54nm。
α-角蛋白是毛、发、甲、蹄中的纤维状蛋白质,它几乎完全由α螺旋构成的多肽链构成。
β折叠片中肽链主链处于较伸展的曲折(锯齿)形式,肽链之间或一条肽链的肽段之间借助氢键彼此连接成片状结构,故称为β折叠片,每条肽链或肽段称为β折叠股或β股。
肽链的走向可以有平行和反平行两种形式。
平行折叠片构象的伸展程度略小于反平行折叠片,它们的重复周期分别为0.65nm和0.70nm。
大多数β折叠股和β折叠片都有右手扭曲的倾向,以缓解侧链之间的空间应力(steric strain)。
蚕丝心蛋白几乎完全由扭曲的反平行β折叠片构成。
胶原蛋白是动物结缔组织中最丰富的结构蛋白,有若干原胶原分子组成。
原胶原是一种右手超螺旋结构,称三股螺旋。
弹性蛋白是结缔组织中另一主要的结构蛋白质。