1.3.2正切函数的图象与性质
- 格式:ppt
- 大小:717.50 KB
- 文档页数:17
1.3.2 余弦函数、正切函数的图象与性质(一)新知初探 1.余弦曲线余弦函数y =cos x ,x ∈R 的图象叫余弦曲线.2.余弦函数图象的画法(1)要得到y =cos x 的图象,只需把y =sin x 的图象向左平移π2个单位长度便可,这是由于cos x =sin ⎝⎛⎭⎫x +π2. (2)用“五点法”:画余弦函数y =cos x 在[0,2π]上的图象时,所取的五个关键点分别为 ,⎝⎛⎭⎫π2,0, ,⎝⎛⎭⎫3π2,0, .3.余弦函数的性质 点睛 函数y =A cos(ωx +φ)(x ∈R )(A ,ω,φ为常数,且A ≠0,ω>0)的最小正周期为T =2πω.小试身手1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)函数y =cos x 的图象与y 轴只有一个交点.( ) (2)将余弦曲线向右平移π2个单位就得到正弦曲线.( )(3)函数y =sin x ,x ∈⎣⎡⎦⎤π2,5π2的图象与函数y =cos x ,x ∈[0,2π]的图象的形状完全一致.( ) (4)在区间[0,2π]上,函数y =cos x 仅当x =0时取得最大值1.( ) 2.函数y =-cos x ,x ∈[0,2π]的图象与y =cos x ,x ∈[0,2π]的图象( ) A .关于x 轴对称 B .关于原点对称 C .关于原点和x 轴对称D .关于y 轴对称3.下列函数中,周期为π2的是( )A .y =sin xB .y =sin 2xC .y =cos x2 D .y =cos 4x4.函数y =3+2cos x 的最大值为________. 课堂讲练题型一 函数y =A cos(ωx +φ)的图象典例 (1)要得到函数y =3cos ⎝⎛⎭⎫2x -π4的图象,可以将函数y =3cos ⎝⎛⎭⎫2x -3π4的图象沿x 轴( )A .向左平移π2个单位B .向左平移π个单位C .向左平移π4个单位D .向右平移π个单位(2)用“五点法”作函数y =1-cos x (0≤x ≤2π)的简图. 类题通法“五点法”画函数图象的三个步骤作形如y =A cos(ωx +φ)+b ,x ∈[0,2π]的图象时,可用“五点法”作图,其步骤是:①列表,取x =0,π2,π,3π2,2π;②描点;③用光滑曲线连成图.这是一种基本作图方法,应该熟练掌握. 活学活用1.已知函数f (x )=A cos(ωx +θ)的图象如图所示,f ⎝⎛⎭⎫π2=-23, 则f ⎝⎛⎭⎫-π6=( )A .-23B .-12C .23D .122.画出函数y =3-2cos x ,x ∈[0,2π]的简图.题型二 余弦函数的性质典例 (1)函数y =cos ⎝⎛⎭⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( ) A .10 B .11 C .12D .13(2)函数y =3cos ⎝⎛⎭⎫π4-x 的单调递增区间为________. 类题通法1.求三角函数的周期,通常有三种方法 (1)定义法.(2)公式法.对y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,且A ≠0,ω≠0),T =2π|ω|.(3)观察法(图象法). 2.有关函数奇偶性的结论(1)奇函数的图象关于原点成中心对称图形; 偶函数的图象关于y 轴成轴对称图形.(2)对于奇函数,当x =0属于定义域时必有f (0)=0.对于偶函数,任意属于定义域的x 都有f (|x |)=f (x ). 活学活用1.已知函数f (x )=sin ⎝⎛⎭⎫πx -π2-1,则下列命题正确的是( ) A .f (x )是周期为1的奇函数 B .f (x )是周期为2的偶函数 C .f (x )是周期为1的非奇非偶函数 D .f (x )是周期为2的非奇非偶函数 2.比较大小:cos 158π________cos 149π.题型三 正、余弦函数的最值 题点一:形如y =a sin x 或y =a cos x 型1.若y =a cos x +b 的最大值为3,最小值为1,则ab =________.题点二:形如y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 型2.求函数y =3-4cos ⎝⎛⎭⎫2x +π3,x ∈⎣⎡⎦⎤-π3,π6的最大、最小值及相应的x 值.题点三:形如y =A sin 2x +B sin x +C 或y =A cos 2x +B cos x +C 型 3.求函数y =3-4sin x -4cos 2x 的值域. 类题通法三角函数最值问题的三种常见类型及求解方法(1)形如y =a sin x (或y =a cos x )型,可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论.(2)形如y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )型,可先由定义域求得ωx +φ的范围,然后求得sin(ωx +φ)(或cos(ωx +φ))的范围,最后求得最值.(3)形如y =a sin2x +b sin x +c (a ≠0)型,可利用换元思想,设t =sin x ,转化为二次函数y =at 2+bt +c 求最值.t 的范围需要根据定义域来确定.参考答案新知初探2.(2)(0,1) (π,-1) (2π,1)3.[-1,1] 1 -1 偶函数 [(2k -1)π,2k π]小试身手1.【答案】(1)√ (2)√ (3)√ (4)× 2.【答案】A 3.【答案】D 4.【答案】5 课堂讲练题型一 函数y =A cos(ωx +φ)的图象 典例 (1)【答案】C 【解析】∵y =3cos ⎝⎛⎭⎫2x -3π4 =3cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4-π4, ∴将函数y =3cos ⎝⎛⎭⎫2x -3π4图象上所有点向左平移π4个单位,便可得到函数y =3cos ⎝⎛⎭⎫2x -π4的图象,故选C. (2)解:列表:活学活用 1.【答案】A【解析】由题图知,T =2⎝⎛⎭⎫11π12-7π12=2π3, ∴f ⎝⎛⎭⎫-π6=f ⎝⎛⎭⎫-π6+2π3=f ⎝⎛⎭⎫π2=-23. 2.解:按五个关键点列表,描点画出图象(如图).题型二 余弦函数的性质典例 【答案】 (1)D (2)⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ) 【解析】 (1)∵T =2πk 4=8πk ≤2,∴k ≥4π,又k ∈Z ,∴正整数k 的最小值为13. (2)y =3cos ⎝⎛⎭⎫π4-x =3cos ⎝⎛⎭⎫x -π4. 令-π+2k π≤x -π4≤2k π(k ∈Z ),则-3π4+2k π≤x ≤π4+2k π(k ∈Z ).所以y =3cos ⎝⎛⎭⎫π4-x 的单调递增区间是⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ). 活学活用 1.【答案】B【解析】f (x )=sin ⎝⎛⎭⎫πx -π2-1=-cos πx -1,从而函数为偶函数,且T =2ππ=2. 2.【答案】>【解析】cos 15π8=cos ⎝⎛⎭⎫2π-π8=cos π8, cos 14π9=cos ⎝⎛⎭⎫2π-4π9=cos 4π9. ∵函数y =cos x 在[0,π]上单调递减, 且0<π8<4π9<π,∴cos π8>cos 4π9,∴cos 15π8>cos 14π9.题型三 正、余弦函数的最值 题点一:形如y =a sin x 或y =a cos x 型 1.【答案】±2【解析】当a >0时,⎩⎪⎨⎪⎧ a +b =3,-a +b =1,得⎩⎪⎨⎪⎧a =1,b =2.当a <0时,⎩⎪⎨⎪⎧ a +b =1,-a +b =3,得⎩⎪⎨⎪⎧a =-1,b =2.题点二:形如y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 型 2.解:因为x ∈⎣⎡⎦⎤-π3,π6, 所以2x +π3∈⎣⎡⎦⎤-π3,2π3, 从而-12≤cos ⎝⎛⎭⎫2x +π3≤1. 所以当cos ⎝⎛⎭⎫2x +π3=1,即2x +π3=0,x =-π6时,y min =3-4=-1. 当cos ⎝⎛⎭⎫2x +π3=-12,即2x +π3=2π3,x =π6时,y max =3-4×⎝⎛⎭⎫-12=5. 综上所述,当x =-π6时,y min =-1;当x =π6时,y max =5.题点三:形如y =A sin 2x +B sin x +C 或y =A cos 2x +B cos x +C 型 3.解:y =3-4sin x -4cos 2x =3-4sin x -4(1-sin 2x ) =4sin 2x -4sin x -1, 令t =sin x ,则-1≤t ≤1.∴y =4t 2-4t -1=4⎝⎛⎭⎫t -122-2(-1≤t ≤1). ∴当t =12时,y min =-2,当t =-1时,y max =7.即函数y =3-4sin x -4cos 2x 的值域为[-2,7].。
张喜林制1.3.2 余弦函数、正切函数的图象与性质教材知识检索考点知识清单1.把正弦函数x y s i n =的图象 个单位就得到余弦函数的图象.用“五点法”作]2,0[,cos π∈=x x y 的图象,五点坐标为2.余弦函数的定义城是 ,值域是 ,周期是 ,奇偶性是 函数,单调增区间是 ,单调减区间是 3.一般地,函数,)(cos(R x x A y ∈+=ϕω其中ϕω、、A 为常数且)0,0>=/ωA 的周期为 4.正切函数x y tan =的定义域是 ,值域是 ,周期是 ,单调区间是 ,单调性是 函数,奇偶性是 函数.)tan(5ϕω+=⋅x A y 的最小正周期为要点核心解读1.余弦函数的图象),)(2sin(cos R x x x y ∈+==π由此可知,余弦函数x y cos =图象与正弦函数=y )2(π+x n 的图象形状相同.于是把正弦曲线向左平移2π个单位就可得到余弦函数的图象.余弦函数x y cos =的图象叫做余弦曲线.由图1-3 -2 -1可以看出,余弦曲线上有五个点起关键作用,这五个点是:⋅-)1,2()023(1)0,2).(1,0(ππππ、、)、、(我们可利用这5个点画出余弦函数的简图. 2.余弦函数的性质(1)余弦函数的定义域与值域.余弦函数的定义域为R ,值域从图象上可以看出是[ -1,1]. (2)余弦函数的周期性.①余弦函数的周期可参照诱导公式:x k x cos )2cos(=+π),(z k ∈因而周期是⋅=/∈)0(2k Z k k 且π 最小正周期是2π .②一般地,函数ϕωϕω、、A x A y <+=)cos(为常数且,0=/A )0>ω的最小正周期为⋅=ωπ2T(3)余弦函数的奇偶性,①由图象可以看出余弦曲线关于y 轴对称,因而是偶函数. ②也可由诱导公式x x cos )cos(=-知,余弦函数为偶函数, (4)余弦函数的单调性.由余弦曲线可以知道:余弦函数x y cos =在每一个闭区间)](2,)12[(z k k k ∈-ππ上,都从-1增大到1,是增函数,在每一个闭区间)]()12(,2[Z k k k ∈+ππ上,都从1减小到-1,是减函数,也就是说,余弦函数R x x y ∈=,cos 的单调区间是]2,)12[(ππk k -及).]()12(,2[Z k k k ∈+ππ3.正切函数的性质正切函数x y tan =有以下主要性质: (1)定义域:},2|{z k k x x ∈+=/ππ(2)值域:从图1-3 -2 -2的正切线可以看出,在区间)2,2(ππ-内,当x 小于,2π并且无限接近2π时,x tan 可无限地增大,且它的值可比指定的任何正数都大.我们把这种情况记作.tan +∞→x 读作x tan *趋向于正无穷大”;当戈大于,2π-并且无限接近2π-时,x tan 无限减小,且它的绝对值可比指定的任何正数都大,我们把这种情况,记作.tan -∞→x 读作x tan 趋向于负无穷大”.这就是说,tanx 可取任意实数值,没有最大值,也没有最小值.因此,函数x y tan =的值域是实数集R .(3)周期性:周期是π.(4)奇偶性:由,tan )tan(x x -=-知正切函数是奇函数,它的图象关于原点成中心对称. (5)单调性:正切函数在每一个开区间)2,2(ππππk k ++-)(z k ∈内都是增函数.4.正切函数的图象用单位圆上的正切线来作正切函数x y tan =在开区间)2,2(ππ-内的图象(如图1-3 -2 -3).由诱导公式,,2,,tan )tan(z k k x R x x x ∈+=/∈=+πππ且知道正切函数是周期函数,并且π是它的一个周期,又可证明π是它的最小正周期.根据正切函数的周期性,我们可把图象向左、向右连续平移,得出z k k k x x y ∈++-∈=),2,2(,tan ππππ的图象正切曲线(如图1-3 -2 -4),可以看出,正切曲线是由通过点))(0,2(z k k ∈+ππ且与y 轴相互平行的直线隔开的无穷多支曲线所组成的.典例分类剖析考点1图象及其应用命题规律(1)作图象并研究其性质.(2)借助图象解三角不等式.[例1] 画出函数x x y tan |tan |+=的图象,并指出定义域、值域、最小正周期和单调区间. [解析] 先根据绝对值定义去掉绝对值符号,再作图象,)(),2,[,tan 2],,2(,0tan |tan |z k k k x x k k x x x y ∈⎪⎪⎩⎪⎪⎨⎧+∈-∈=+=ππππππ故可作如图1-3 -2 -5所示的图象,由图象可知,定义域为R x x ∈|{且},,2z k k x ∈+=/ππ值域为),,0[+∞周期,π=T 单调增区间为+ππk k ,[).)(2z k ∈π1.根据正切函数的图象,写出下列不等式的解集:;1tan )1(-≥x .12tan )2(-≤x考点2定义域问题 命题规律求含有x x tan cos 的函数的定义域. [例2] 求下列函数的定义域:;cos 21)1(x y -=;tan 11)2(x y += .tan 3)3(x y -=[解析] (1)要使函数有意义,则有,21cos ,0cos 21≤≥-x x 则其定义域为⋅∈+≤≤+},35232|{z k k x k x ππππ (2)要使函数x y tan 11+=有意义,则有⎪⎩⎪⎨⎧⋅∈+=/=/+)(2,0tan 1z k k x x ππ即,4ππ-=/k x 且⋅∈+=/)(2z k k x ππ 所以函数的定义域为,|{R x x ∈且⋅∈+=/-=/},2,4z k k x k x ππππ,3tan ,0tan 3)3(≤∴≥-x x⋅∈+≤<-∴)(32z k k x k ππππ∴ 其定义域为⋅∈+≤<-},32|{z k k x k x ππππ2.求下列函数的定义域:;cos 21)1(x y -=⋅-+=)tan 1lg(tan )2(x x y考点3单调性问题 命题规律(1)求单调区间.(2)比较大小.[例3] (1)求x y 2cos =的单调区间.(2)比较 138tan 与o 143tan 的大小. [解析] (1)函数x y 2cos =的单调递增区间、单调递减区间分别由下面的不等式确定⋅∈+≤≤∈≤≤-)(222),(222z k k x k z k k x k ππππππ⋅∈+≤≤∈≤≤-∴)(2),(2z k k x k z k k x k ππππππ∴ 函数x y 2c o s =的单调递增区间、单调递减区间分别为⋅∈+∈-)](2,[)](,2[z k k k z k k k N ππππππ,27014313890)2( <<<而x y tan =在,90( ∈x )270o 上是增函数,.143tan 138tan <∴[点拨] (1)形如)tan(ϕω+=x A y 或)cos(ϕω+=x A y (其中)0,0>=/ωA 的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把”“)0(>+ωϕωx 视为一个“整体”;)0(0<>A A ②时,所列不等式的方向与=y )(cos ).(tan R x x y R x x ∈=∈的单调区间对应的不等式的方向相同(反).如,函数)12cos(+-=x y 的递减区间可以由不等式)(2122z k k x k ∈≤+≤-πππ确定. 课本上研究x y cos =的单调区间为++ππππk k k 2[],2,2[⋅∈+)](22,z k k πππ(2)利用三角函数的单调性进行三角函数的大小比较,一般来说有以下两种情况:①比较同名三角函数值的大小,首先运用三角函数诱导公式将其转化为同一单调区间上的同名三角函数,运用单调性,由自变量的大小,确定函数值的大小.②比较不同名的三角函数的大小时,应先运用诱导公式化为同名三角函数,再利用三角函数的单调性,或数形结合或用三角函数图象作比较. 3.(1)求下列函数的单调区间:);46tan(3;cos 1x y x y -=-=π②①⋅∈=/+=),2)(22tan(z k k x x y ππ③ (2)比较下列各数的大小.⋅--)815cot(),76cot(,513tan ,56tanππππ 考点4周期性与奇偶性 命题规律(1)求给定函数的周期.(2)判断给定函数的奇偶性. [例4] (1)函数)0(cos=/=ab x aby 的周期为(2)函数x x x y cos 2tan +⋅=为____(填“奇”或“偶”)函数.[解析] .|2|||2)1(ππb aab T ==(2)函数定义域},42|{z k k x x ∈+=/ππ关于原点对称, 又)cos()2tan()(x x x x f -+-⋅-=-⋅=+⋅⋅=)(cos 2tan x f x x x∴ 此函数为偶函数. [答案] π|2|)1(ba(2)偶 4.(1)函数)33ta n(π+=ax y 的周期为,2π则a 的值为 (2)判断函数xxx y tan 1cos tan 2--=的奇偶性.(3)判断下列函数的奇偶性,并求它们的周期:;,2cos 3R x x y ∈=① .|tan |x y =②考点5值域与最值命题规律求含有x x tan cos ≡的函数式的值域或最值. [例5] (1)求1tan 4tan 2-+=x x y 的值域; (2)若)23tan(],3,6[x k y x -+=∈πππ的值总不大于零,求实数后的取值范围, [解析] (1)设,tan x t =则转化为关于t 的二次函数求最值(2)由0≤y 得),23tan(x k --≤π因此,只要求出)23tan(x -π的范围即可.[答案] (1)设,55)2(14,tan 221-≥-+=-+==t t t Jy x t λ1tan 4tan 2-+=∴x x y 的值域为).,5[+∞-(2)由,0)23tan(≤-+=x k y π得⋅-=--≤)32tan()23tan(ππx x k⋅∈-∴∈]3,0[32],3,6[ππππx x由正切函数的单调性得.3)32tan(0≤-≤πx∴ 要使)32tan(π-≤x k 恒成立,只要0≤k 即可,即k 的取值范围为].0,(-∞[点拨] (1)与二次函数有关的三角问题,常常使用“换元法”. (2)解决恒成立问题常常使用“分离常数法”,5.(1) 求函数1tan tan 1tan tan 22+++-=x x x x y 的最大值与最小值.(2)如果函数)0(cos 1>-=b x b a y 的最大值是,23最小值是,21-求函数bx a y 3sin 42-=的最大值.优化分层测训学业水平测试)252cos(1π+=⋅x y 的一条对称轴为( ). 0.=x A 4.π=x B 8.π=x C 83.π=x D 2.与函数)42tan(π+=x y 的图象不相交的一条直线是( ).2.π=x A 2.π-=x B 4.π=x C 8.π=x D3.下列点中,能成为函数R x x y ∈+=)(5tan(π且,103ππ+=/k x )z k ∈的一个对称中心的是( ). )0,0(⋅A )0,5.(πB )0,54.(πC )0,.(πD4.将x y cos =的图象向____平移____个单位得到=y )3cos(π-x 的图象.5.直线m m y <=为常数)与函数)0(tan >=ωωx y 的图象相交且相邻两交点间的距离为2π ,则=ω6.利用五点法作出下列函数的简图(只作一个周期长度):;cos 1)1(x y +=).62cos(3)2(π-=x y高考能力测试(测试时间:45分钟测试满分:100分) 一、选择题(5分x8 =40分) 1.要得到函数)621cos(π+=x y 的图象,可将x y cos =的图象( ). A .各点的横坐标伸长到原来的2倍,再向左平移6π个单位 B .各点的横坐标伸长到原来的2倍,再向左平移⋅3π个单位C .向左平移3π个单位,再将图象上各点的横坐标伸长到原来的2倍D .向左平移6π个单位,再将图象上各点的横坐标伸长到原来的2倍2.(2009年广东高考题)函数1)4(cos 22--=πx y 是( ).A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数 3.(2009年全国高考题)如果函数)2cos(3ϕ+=x y 的图象关于点)0,34(π中心对称,那么||ϕ的最小值为( ).6π⋅A 4π⋅B 3π⋅C 2π⋅D4.(2009年四川高考题)已知函数),)(2sin()(R x x x f ∈-=π下面结论错误的是( ).A .函数)(xf 的最小正周期为2π B .函数)(x f 在区间]2,0[π上是增函数C .函数)(x f 的图象关于直线0=x 对称D .函数)(x f 是奇函数5.(2009年江西高考题)函数x x x f cos )tan 31()(+=的最小正周期为( ).π2.A 23.πB π.C 2π⋅D 6.(2008年浙江高考题)在同一平面直角坐标系中,函数=y ])2,0[)(232cos(ππ∈+x x 的图象和直线21=y 的交点个数是( ).0.A 1.B 2.C 4.D )tan(sin 7x y =⋅的值域为( ).]4,4.[ππ-A ]22,22.[-B ]1tan ,1tan .[-c D .以上均不对 8.(2011年山东理)函数x xy sin 22-=的图象大致是( ).二、填空题(5分×4 =20分) 9.函数)42tan(π-=x y 的单调递增区间是10.已知函数)2tan()(φ+=x x f 的图象的一个对称中心为),0,3(π若,2||πϕ<则P 的值为11.给出下列命题:①函数x y sin =在第一、四象限都是增函数; ②函数)cos(ϕω+=x y 的最小正周期为;2ωπ③函数)2732sin(π+=x y 是偶函数; ④函数x y 2sin =的图象向左平移4π个单位,得到)42sin(.π+=x y 的图象,其中正确的命题的序号是12.(2010年福建高考题)已知函数>-=<ωπω)(6sin(3)x x f )0和1)2cos(2)(++=ϕx x g 的对称轴完全相同,,0[∈x ],2π则)(x f 的取值范围是 三、解答题(10分x4 =40分) 13.求下列函数的定义域:;)sin(cos )1(x y = .lgcos 36)2(2x x y +-=11 / 1114.已知函数b x a y += cos 的最大值为1,最小值为-3,求)3tan()(π+=ax b x f 的单调区间.15.(2010年广东高考题)已知函数,0)3sin()(><+=A x A x f ϕ)0),,(πϕ<<+∞-∞∈x 在12π=x 时取得最大值4.(1)求)(x f 的最小正周期;(2)求)(x f 的解析式.16.(2011年北京理)已知函数.1)6sin(cos 4)(-+=πx x x f (1)求)(x f 的最小正周期;(2)求)(x f 在区间]4,6[ππ-上的最大值和最小值,。