1.4.3 正切函数的性质与图象
1.能借助单位圆中的正切线画出 y=tan x 的图象. 2.理解正切函数的定义域、值域、周期性、奇偶性和单调性,并能应用.
正切函数的图象与性质 (1)图象:如图所示.
正切函数 y=tan x 的图象叫做正切曲线.
(2)性质:如下表所示.
性质
函数
y=tan x
定义域
(1)y=-tan
3
x
3 5
;
(2)y=|tan x|.
分析:(1)利用 T= 求解;(2)画出函数图象利用图象法求解.
|ω|
解:(1)∵ω= ,∴最小正周期 T= =3.
3
3
(2)函数 y=|tan x|的图象是将函数 y=tan x 图象 x 轴下方的图象沿 x 轴翻折 上去,其余不变,如图所示.
2
4
答案:B
4
函数
y=tan
x
4
的定义域为
.
解析:要使函数有意义,自变量 x 的取值应满足 x+ ≤kπ+ (k∈Z),解得
4
2
x≠kπ+ .
4
答案:x|x
k
π 4
,
k
Z}
5 比较 tan 1,tan 2,tan 3 的大小.
解:∵tan 2=tan(2-π),tan 3=tan(3-π),
错解:∵1+tan x≠0,即 tan x≠-1,
∴x≠kπ-
4
(k∈Z),即
y=
1
1 tanx
的定义域为
x|x
k
π 4
,
k
Z}.
错因分析:错解忽略了 tan x 本身对 x 的限制.