第9章 大气边界层概述
- 格式:ppt
- 大小:3.22 MB
- 文档页数:35
台风形成的大气边界层过程引言台风是一种强烈的热带气旋,对于许多沿海地区来说都是一种常见的自然灾害。
了解台风形成的过程对于预测和防范台风具有重要意义。
台风形成的过程包括大气边界层的一系列复杂变化。
本文将探讨台风形成过程中大气边界层的关键环节。
大气边界层的概述大气边界层是指地球表面与自由大气之间的区域,它对于气候模式和天气系统的形成至关重要。
大气边界层的特征包括温度、湿度、气压和风速的变化。
在台风形成过程中,大气边界层的变化起着重要作用。
大气边界层的结构大气边界层通常可以分为三个层次:地面层、混合层和准静止层。
1.地面层:指离地表约1.5公里以下的区域,受到地表影响最为显著。
地面层的温度和湿度变化较大。
2.混合层:位于地面层之上,高度约为1.5公里至4公里。
混合层内的气体混合程度较高,温度和湿度的变化相对较小。
3.准静止层:位于混合层之上,高度约为4公里至15公里。
准静止层内的气体流动较为缓慢,温度和湿度的变化相对较小。
台风形成的过程台风形成的过程需要满足一系列气象条件和动力过程。
1. 气象条件台风形成的气象条件包括足够高的海水温度、弱的垂直风切变和足够的湿度。
这些条件有助于产生热带扰动,为台风的形成提供了基础。
2. 热带扰动热带扰动是台风形成的前兆。
当气象条件合适时,海洋表面上的热量会导致空气的上升,形成一个低压区域。
这个低压区域会吸引周围空气进一步上升,并逐渐形成一个热带扰动。
3. 热带扰动的增强热带扰动在与海洋表面的相互作用中逐渐增强。
海水蒸发导致热量释放到大气中,进一步加强了热带扰动。
此时,热带扰动会逐渐形成一个闭合的环流,也称为热带低压。
4. 台风的形成当热带低压进一步发展并且达到一定标准时,它会被升级为台风。
台风的形成与大气边界层的变化密切相关。
大气边界层的水汽能量提供了台风形成所需的燃料。
4.1 气流的对称性台风形成过程中,大气边界层内的气流逐渐变得对称。
气流的旋转围绕着台风的中心,并且逐渐向上升高。
大气边界层气流过地面时,地面上各种粗糙元,如草、沙粒、庄稼、树木、房屋等会使大气流动受阻,这种摩擦阻力由于大气中的湍流而向上传递,并随高度的增加而逐渐减弱,达到某一高度后便可忽略。
此高度称为大气边界层厚度,它随气象条件、地形、地面粗糙度而变化,大致为300~1000米。
直接受到地表作用力影响的大气对流层,有时也称为行星边界层。
这些作用力包括摩擦,加热,蒸发,蒸散和地形影响等。
大气边界层的厚度随时间空间变化而有明显差异,可由数百公尺至一,二公里。
大气边界层之上成为自由大气。
白天地表受到太阳照射加热,温度升高;晚上则因为地表长波辐射冷却作用而降温,使得接近地表的气温呈现日变化,这种日变化是陆地上大气边界层的主要特征。
由于海水的比热大,以及海洋上层海水强烈的混合作用,使得海水表面温度日变化不明显,所以海上大气边界层的日变化也不明显。
气温日变化的振幅大小随着高度的增加而很快减小,自由大气的日变化则很小。
乱流旺盛也是大气边界层的重要特性。
无论在陆上或海上,在高压区域因为气流沉降,边界层厚度通常比在低压区小。
在陆上高压区域,大气边界层的日夜演化,结构常比较清晰,主要包括混合层,剩余层和稳定边界层。
日出后地表受热,热空气上升,冷空气下降,对流逐渐加强,各种性质近乎均匀的混合,古称之为混合层,也称为对流边界层。
在混合层内为不稳定的大气,其乱流主要有对流作用主导。
日出后混合层很快发展,到了下午一,二点左右,混合层高度达到最高。
日落后,地表受热停止,使得混合层内的乱流强度减弱,原来为不稳定的大气,逐渐转为中性的大气;此为白天混合层的残余,故称之为剩余层。
日落后,地表以长波辐射冷却,逐渐降温,在地表形成逆温,发展成为夜间地面逆温层,这一层大气非常稳定,故称之为稳定边界层,层内的乱流强度很微弱。
在稳定边界层之上即为剩余层。
夜间地面的风通常是微风或静风,但在稳定边界层顶常会出现很强的风速,这种现象称为夜间低层喷流。
无论在混合层或稳定边界层,从地表到约十分之一边界层厚度附近的热通量,水气通量和应力随高度的变化不大,这一层被称为地面层,或等通量层。
边界层的概念和特点边界层是指在地球物理学中,大气界面和地面之间的一层气体。
在气象学上,边界层是指从地面到一定高度范围内,风速、温度、湿度等各种大气参数发生显著变化的区域。
边界层的高度通常为未来数小时预报所需要的范围内。
1. 逐渐递减的风速:在边界层内,风速逐渐递减。
开始时,风速最大并且逐渐降低。
具体的风速变化取决于地面和大气层的性质和情况。
2. 温度和湿度梯度:边界层内的温度和湿度呈现出明显的梯度变化。
一般来说,地面处温度最高,高层温度逐渐降低。
除此之外,空气湿度在边界层内也会发生变化。
具体变化也是因地而异的。
3. 乱流增大:边界层内的乱流比较显著。
在这里空气流动不是平稳的,而是发生着强烈的乱流。
气体不能在水平方向上自由扩散,而是在各种水平方向逐渐混合。
4. 光学特性不同:由于边界层内存在着大量悬浮的尘埃和气体,它具有不同于上层大气的光学特性。
这使得大气边界层对光的透过率发生了变化。
边界层在气象、环境科学、气候变化等领域具有重要意义。
较为典型的是它与交通工具有关的影响。
由于边界层内的风速变化大,乱流强,而车辆在受到这种影响的同时会发生摩擦热,从而可以推测车辆的燃油效率、稳定性和舒适性。
在电力行业,边界层的变化也会影响线路的温度和表面附着物的变化,从而影响电力传输的效率和稳定性。
同样,边界层的湿度和风速也会对农业和林业造成影响。
总之,边界层是一个非常重要和复杂的概念。
对于气象学家、大气化学家、环境工程师、天气预报员、交通工程专家等专业人士来说,了解边界层的基本原理、特点和影响就显得尤为重要。
边边界界层层重重要要知知识识点点归归纳纳第第一一章章大气边界层的定义:大气的最低部分受下垫面(地面)影响的层次,或者说大气与下垫面相互作用的层次。
大气边界层的厚度差异很大,平均厚度为地面以上约1km 的范围,以湍流运动为主要特征。
还可细分为近地层(大气边界层下部约1/10的厚度内)和Ekman 层。
大气边界层的主要特征:(1)大气边界层的主要运动形态一般是湍流:不规则性和脉动性(2)大气边界层的日变化:气象要素的空间分布具有明显的日变化。
【大气边界层湍流:①机械湍流:风切变,机械运动;②热力湍流:辐射特性的差异;】大气边界层的分层:(1)粘性副层(微观层)(2)近地层(常通量层)(3)Ekman 层(上部摩擦层)【(1).粘性副层(微观层):分子输送过程处于支配地位,分子切应力远大于湍流切应力。
(2).近地层(常通量层):大气受地表动力和热力影响强烈,气象要素随高度变化激烈,运动尺度小,科氏力可略。
(3).Ekman 层(上部摩擦层):在这一层里,湍流粘性力、科氏力和气压梯度力同等重要,需要考虑风随高度的切变。
】大气边界层厚度:边界层厚度的时空变化很大,空间范围从几百米到几千米。
海洋上:由于海水上层强烈混合使海面温度日变化很小。
陆地上,边界层具有轮廓分明、周日循环发展的结构。
大气边界层结构:(1)混合层: (2)残留层:日落前半小时,湍流在混合层中衰减形成的空气层,属中性层结。
(3)稳定边界层:夜间,与地面接触的残留层底部逐渐变为稳定边界层。
其特点为在静力稳定大气中有零散的湍流,虽然夜间近地面层风速常常减弱或静风,但高空200m 左右,风却由于低空急流或夜间急流能达到超地转风。
第二章湍流:流体运动杂乱而无规律性(运动具有脉动性),不同层次的流体质点发生激烈的混合现象,流体质点的运动轨迹杂乱无章,其对应的物理量随空间激烈变化。
雷诺数:——湍流判据,特征Re 数定义: =特征惯性力/特征粘性力;它表示了流体粘性在流动中的相对重要性:(1)Re 》1,粘性力相对小(可忽略),大Re 数流体,弱粘性流;(2)Re 《1,惯性力相对小(可忽略),小Re 数流体,强粘性流; ν/Re UL ≡(3)Re=1,二者同等重要,一般粘性流;湍流的基本特征:(1)随机性;(2)非线性;(3)扩散性;(4)涡旋性;(5)耗散性湍流的定量描述:湍流运动的极不规则性和不稳定性,并且每一点的物理量随时间、空间激烈变化,湍流的杂乱无章极随机性可以用概率论及数理统计的方法加以研究。
大气边界层名词解释
大气边界层是指地球表面与大气中的空气交互作用的区域,它是大气层中最接近地球表面的一层。
大气边界层的高度通常在地表上方数百米到数千米之间,具体高度取决于地理条件和气象因素。
在大气边界层内,地表的热量和湿度通过辐射、传导、对流等方式与大气中的空气进行交换。
这种交换过程对于气象、气候和环境等方面都具有重要影响。
大气边界层可以分为几个子层,包括地面边界层、对流层和边界层顶。
地面边界层是最接近地表的一层,受到地形、地表特征和太阳辐射等因素的影响,其性质和特征会随着时间和地点的变化而变化。
对流层是地面边界层上方的一层,其中存在着强烈的对流运动,这些对流运动对大气的混合和能量传递起着重要作用。
边界层顶是大气边界层与上层大气相接触的界面,其高度因地区和季节而异。
大气边界层的研究对于气象学、气候学、环境科学和空气质量管理等领域都具有重要意义。
通过深入了解大气边界层的结构和特
征,可以更好地理解和预测天气现象、空气污染扩散、气候变化等问题,为人类社会的发展和生活提供科学依据。