最简单的变频器控制电机正反转及调速电路
- 格式:doc
- 大小:28.50 KB
- 文档页数:2
变频器的运行方式之正、反转运行-民熔
正、反转运行
在实际生产中有大量频繁的、向后移动的设备,如龙门、铣床、磨床等等等驱动这些设备的异步引擎,自己能纠正和哈莉工作地点工频异步电动机可以通过改变电源相序来改变发动机的方向如果逆变器作为发动机的电源,有些逆变器具有正向和反向的功能,而其他人没有。
对于具有正向和反向功能的逆变器,利用逆变器的正向和反向控制信号对发动机进行正向和反向控制。
具有正反转功能变频器正、反转的控制线路
此图为发动机前后操作电路图变频器。
通过直接控制变频器的前后控制接口,可以实现发动机的前后操作。
对于无正向和反向功能的变频器,可以利用屏蔽开关将变频器的输出相序切换到如果我们用这种变频器,在设计其控制开关时,不能当心将发动机直接前后转换,而应在发动机熄火的情况下对发动机进行转换,否则转换过程中过多的电流会对变频器和发动机造成损坏。
无正反转功能变频器正反转运行接线图
在图中,KM-1和KM-2射手的初始相序改变主电路的相序,以实现发动机的前后控制。
三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转;按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保;使KM1的线圈通电,开始正转运行;按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行;在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”;除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联;设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转;在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通;由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障;可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故;如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故;为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路见图2,假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电;图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合;其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用;有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合;这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点;有的热继电器有复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点恢复原状;如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故;因此有自动复位功能的热继电器的常闭触点不能接在PLC 的输出回路,必须将它的触点接在PLC的输入端可接常开触点或常闭触点,用梯形图来实现点击的过载保护;如果用式电机过载保护来代替热继电器,也应注意它的复位.电动机正反转实物接线图按钮联锁正反转控制电路图接触器联锁正反转控制线路。
三相电机正反转控制电路是通过改变电机电源的相序来实现的。
下面是一个简单的三相电机正反转控制电路的示例:
1. 电路图:
* 主电路电源进断路器QS,然后到KM1,到热继电器FR到电机。
* KM2主电路改变其中两项的相序从而改变电机转向。
2. 实物图配合电路图:
* 合上电源电源导入KM1----KM2主触点,同时到停止常闭,到启动按钮常开。
* 正转:按下启动按钮SB2接触器得电吸合,接触器主触点闭合,辅助触点闭合接触器自锁,电机正转运行。
同时接触器KM1常闭断开,此时即便按下启动按钮SB3也无法启动KM2。
* 停止:按下停止按钮SB1整个电路失电。
* 反转:按下启动按钮SB3接触器KM2得电吸合,接触器KM2主触点辅助触点闭合,同时常闭断开形成了对KM1互锁。
电机反转运行,停止按线停止按钮,接触器失电。
整个电路失电。
3. 工作原理:
* 主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。
当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。
当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。
* 为确保两个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
在线路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源。
这两
正向启动过程对辅助常闭触头就叫联锁或互锁触头。
以上示例仅供参考,实际电路可能会因具体需求而有所不同。
建议咨询专业电工以获取更准确的信息。
变频调速电机通风机的线路接法
一、主电路接线
1. 将电机电源线接入变频器输出端,即UVW端子。
确保电源线的规格合适,并且电源线的连接牢固。
2. 连接电机接地线,确保电机安全接地。
3. 根据实际需求,设置电机的旋转方向。
如果需要正反转控制,可以通过调换UVW三相中的任意两相来实现。
二、控制电路接线
1. 将控制电路的电源线接入变频器的控制电源端子,一般为DC12V或DC24V,具体电压值根据实际使用的变频器型号而定。
2. 连接启动信号线,将启动信号线接入变频器的控制端子,如STF 或STR端子(根据变频器型号而定)。
3. 根据需要,连接速度给定信号线,通常接入变频器的模拟量输入端子,如AI1和AI2端子。
可以通过调整速度给定信号来改变电机的转速。
三、传感器线路接线
1. 如果通风机配备了传感器,如温度传感器、湿度传感器等,需要根据传感器的接口类型和规格进行接线。
2. 确保传感器与通风机的安装位置正确,并且传感器的线路连接牢固,避免传感器线路松动或脱落。
四、通风管道连接
1. 根据通风机的设计要求,正确连接通风管道。
确保通风管道的连接处密封良好,防止漏风现象发生。
2. 在连接通风管道时,应考虑到管道的走向和支撑,避免管道过重或受到过大的外力作用导致通风机运行异常。
五、电源和接地线连接
1. 将电源线接入电源插座或电源开关,确保电源电压与变频器的额定电压相符。
2. 连接接地线,确保整个系统接地良好,提高系统的安全性能。
3. 在连接电源和接地线时,应确保接线符合当地电气规范和安全标准。
变频器在恢复出厂参数后,按下“RUN”键,变频器驱动马达的转向,称为正向,若此时的旋转方向与设备要求的转向相反,请将F0-13=1或断电后(注意待变频器主电容电荷泄放完毕),将变频器UVW输出线中的任何两个接线掉换一下,排除旋转方向的问题。
在有的驱动系统中,只允许系统正转运行而不允许反转运行,则需要将F0-13=2,此时若出现反转指令,则变频器将减速至0并进入停机状态,同时操作面上FWD/REV一直闪烁。
如下图逻辑所示。
对于不允许有电机反转的应用,请不要用修改功能码的方法来改变转向,因恢复出厂值后,会复位上述两个功能码。
此时可以采用数字输入端子DI的50号功能实现禁止反转。
扩展资料:
变频器控制正反转和工频控制正反转原理差不多,工频是通过控制电机的线圈从机控制主电路来实现,而变频器是通过控制变频器的正反转端子从而来控制电机的正反转,在原有工频控制线路基础上在一些改进,将正反转的两个接触器的输出拆掉,分别在每个接触器上加一个辅助触头,用常开触头的通断来控制变频器的正转FWD和DCM端子,反转REV和DCM端子就可以了。
浅析富士 G1S 变频器正反转功能应用电路发布时间:2022-01-12T01:15:18.585Z 来源:《现代电信科技》2021年第13期作者:周雪峰[导读] 该电路应用富士变频器输入端子正/反转切换指令及变频器输出端子正/反转时信号指令,通过驱动信号指示灯,完成对电机正/反转进行的变频控制,实现变频器正/反转信号指示的功能。
(庆北工矿服务公司油田机关西区分公司黑龙江大庆 163000)摘要:该电路应用富士变频器输入端子正/反转切换指令及变频器输出端子正/反转时信号指令,通过驱动信号指示灯,完成对电机正/反转进行的变频控制,实现变频器正/反转信号指示的功能。
该电路在同一时间段控制一台电动机的正/反转,并且变频器自身带有信号指示功能。
减少了电路中的电器元件,降低了电路的故障率。
一、原理图图 1 富士 G1S 变频器晶体管输出(正、反转时信号)功能应用电路及参数设置电路原理图二、电路的组成:该电路主要由富士 FRN2.2G1S-4C 变频器、NB1-63H-4P-D10 塑料外壳式断路器、NB1-63H-2P-C6 断路器、S9 分励脱扣器、24V 直流开关电源、24V 继电器、CJX2-0910 接触器/220V、NP9-3-1-D3-1/ 220V 按钮、NP9-3-1-D3-2/220V 按钮、1~5KΩ/2W 外置电位器、Y 2-100L1-4 三相异步电动机组成:三、操作步骤:1.闭合总电源及参数设置:闭合总电源断路器 QF1、直流开关电源断路器 QF2,变频器上电。
由于分励脱扣器 S9 和 QF1 安装在一起,故 S9 也闭合和 QF1 同时闭合,但分励线圈为开路,当变频器内部发生故障时, 30A、30C 闭合,接通 S9 分励线圈,使 QF1 分断跳闸,断开总电源及 QF2 上端电源。
根据参数表设置变频器参数。
2.变频器正向(正转)运行[FWD]: E98=98按下启动按钮 SB1, FWD(正转端子)和 CM(接点输入公共端端子)回路接通,变频器按[F07]加速时间 1 加速至频率设定值,运行频率按外置电位器给定的频率运行(50Hz)。
湖南省技工学校
理论教学教案
教师姓名:
图4-1 模拟输入端子信号引入方法
VRF端子上接入分压电位器,这种控制方法使用方便,多用于变频器的开环控制。
由外电路提供的反馈信号或远程电压控制信号送入
种控制方法时要注意导线屏蔽,以防电磁干扰,这种方法多用
范文范例指导参考
QF--空气开关 KM--接触器—继电器
SB1--通电按钮 SB2--断电按钮 SB3--正转按钮 SB4--停止按钮2.变频器的正转控制原理分析
按QF→ SB1→KM线圈得电→主触点闭合→接通变频器电源
接通控制电路电源辅助触点闭合→KM接触器自锁以保
范文范例指导参考
范文范例指导参考
范文范例指导参考
范文范例指导参考。
变频器正反转的接线方法嘿,朋友们!今天咱就来聊聊变频器正反转的接线方法,这可真是个有趣又实用的事儿呢!想象一下,这变频器就像是一个超级厉害的指挥官,它能让电机按照我们的要求正转或者反转,是不是很神奇呀!那怎么给它接上线,让它乖乖听话呢?别急,听我慢慢道来。
首先,咱得找到变频器上那些密密麻麻的接线端子,就好像是一群小士兵在等着我们安排任务。
一般来说,会有专门的正转和反转的接线端子哦。
然后呢,我们要把电源线接到合适的地方,这就像是给指挥官提供能量一样。
接下来,就是关键的正反转接线啦!通常会有两个端子,一个代表正转,一个代表反转。
这就好比是两条不同的道路,一条通向正转的方向,一条通向反转的方向。
我们要把对应的线接到正确的端子上,可不能接错了呀,不然这“指挥官”可就不听话啦!在接线的时候,一定要小心仔细,就像我们穿针引线一样,不能马虎。
你想想,如果线接错了,电机转错了方向,那可就麻烦大了。
就好比你本来想让车子往前走,结果它却往后退,那不就乱套了嘛!还有啊,记得把接地线也接好,这就像是给整个系统穿上了一双安全的鞋子,能保护我们不被电到哦。
哎呀,说起来容易做起来难呀!在实际操作中,可能会遇到各种各样的问题。
但别担心,只要我们耐心细心,多研究研究,肯定能把这个“小难题”给解决掉的。
其实啊,这变频器正反转的接线就像是搭积木一样,一块一块地把正确的部分组合起来,最后就能搭出我们想要的“城堡”啦!只要我们认真对待,就一定能让它乖乖为我们服务。
所以啊,朋友们,别害怕去尝试,别害怕犯错。
大胆地去摆弄那些线,去探索这个神奇的世界。
等你成功地让电机按照你的要求正转反转的时候,那种成就感,哇,简直太棒啦!相信我,你一定能行的!。
变频器控制电动机正反转电路及参数设置
在控制电动机正反转时要给变频器设置一些基本参数,具体如下表:
参数名称参数号设置值
加速时间Pr.7 5s
减速时间Pr.8 3s
加减速基准频率Pr.20 50Hz
基底频率Pr.350Hz
上限频率Pr.1 50Hz
下限频率Pr.2 0Hz
运行模式Pr.79 2
1.开关控制正、反转控制电路
采用了一个三位开关SA,SA有“正转”、“停止”和“反转”3个位置。
(工作过程说明已省略)
该电路结构简单,缺点是在变频器正常工作时操作SB1可切断输入主电源,这样易损坏变频器。
2.继电器控制正、反转控制电路
采用了KA1、KA2继电器分别进行正转和反转控制。
(工作过程说明已省略)
KA1或KA2常开触点闭合将SB1短接,断开SB1无效,这样做可以避免在变频器工作时切断主电源。
ABB变频器参数及正反转设置变频器的参数设置包括基本参数、电机参数和控制参数等,可以根据实际需求进行调整和配置。
下面将详细介绍ABB变频器的参数设置及正反转设置方法。
一、基本参数设置1.网络配置参数:这些参数用于设置变频器的电源输入类型和电压等级。
2.输入输出参数:这些参数用于设置变频器的输入输出端口的功能和配置。
3.控制方式参数:这些参数用于设置变频器的控制模式,如速度闭环控制、电流闭环控制等。
4.运行参数:这些参数用于设置变频器在运行过程中的一些基本工作参数,如最大输出频率、最小输出频率等。
二、电机参数设置1.电机基本参数:这些参数用于设置电机的额定功率、额定电流、额定频率等基本参数。
2.磁化参数:这些参数用于设置电机的磁化特性,包括电机的铁心饱和、电机的磁化系数等。
3.频率变化特性:这些参数用于设置电机在变频运行下的频率变化特性,包括电机的转速变化规律、电机的负载扭矩等。
三、控制参数设置1.运行模式参数:这些参数用于设置变频器的运行模式,包括恒转速模式、恒转矩模式、恒功率模式等。
2.控制通道参数:这些参数用于设置变频器的控制通道数目和控制通道的功能。
3.调速环参数:这些参数用于设置变频器的速度闭环控制参数,包括速度给定、速度反馈、速度误差等。
4.电流环参数:这些参数用于设置变频器的电流闭环控制参数,包括电流给定、电流反馈、电流误差等。
正反转设置是指控制电机的运行方向,ABB变频器可以通过设置参数实现正反转切换。
设置方法如下:1.进入ABB变频器的参数设置界面,选择控制参数设置。
2.在控制参数设置中找到运行方向参数,选择正转或反转。
3.根据实际需求进行选择和配置,确认设置。
4.完成设置后,关闭参数设置界面,变频器即可根据设置实现正反转切换。
总结:ABB变频器的参数设置及正反转设置是调节变频器性能和电机运行特性的重要步骤,可以根据需要进行灵活调整和配置。
良好的参数设置可以提高变频器的工作效率和电机的工作质量,同时也能延长变频器和电机的使用寿命。
调速电机控制器正反转的接法1. 调速电机控制器正反转的接法调速电机控制器是工业生产中常见的设备之一,其作用是控制电机的运行,并调节其转速。
在许多应用场合中,需要对电机进行正反转的控制,以实现不同的工作功能。
那么,调速电机控制器正反转的接法是怎样的呢?2. 正转和反转接法首先,需要明确的一点是,调速电机控制器的正转和反转控制是通过交换电机的两个相位来实现的。
通常情况下,三相电机是由三个交流电源组成的,而通过在其中两个电源之间交换相位,即可实现电机的正反转。
具体来说,一般可以将其中两个交流电源接到控制器的两个输出端口上,然后通过控制器上的正反转开关来切换这两个输出端口之间的相位。
这样一来,电机就能够实现正反转控制了。
3. 控制器的正反转设置除了接线方式,调速电机控制器的正反转控制还需要进行特定的设置。
具体来说,一般需要在控制器的控制面板上进行设置,以使其能够识别和响应正反转命令。
在设置时,需要先确保控制器所使用的电机是支持正反转的电机。
如果电机不支持正反转控制,那么即使设置了也无法起到作用。
而对于支持正反转控制的电机,则可以在控制器的控制面板上进行设置,以选择正转或反转模式,并控制电机的转速。
4. 总结在实际应用中,调速电机控制器正反转的接法相当简单,只需要通过控制器上的正反转开关控制电机两个输出端口之间的相位即可。
同时,还需要在控制器的控制面板上进行相应的设置,以使其能够响应正反转命令并控制电机的运行。
总体来说,这种调速电机控制器正反转的接法简单易懂,非常适合实际应用中的需要。
变频器正反转控制的方法
变频器正反转控制难不难?其实不难啦!先来说说步骤。
嘿,你得找到变频器的参数设置界面,就像打开一个神秘的宝库。
然后找到正反转控制的参数,把它设置好。
接着连接好电机,就像给马儿套上缰绳。
一按按钮,哇,电机就转起来啦!注意事项可不少呢!一定要仔细看说明书,不然弄错了可就麻烦啦!就像走迷宫,不看地图可不行。
安全性咋样呢?放心吧!只要安装正确,一般不会有啥危险。
就像坐过山车,只要系好安全带,就可以尽情享受刺激。
稳定性也不错哦,只要参数设置合理,电机就会稳稳地转。
那应用场景多不多呢?那可多啦!工厂里、机械上,到处都能用到。
优势也很明显呀,能精准控制电机速度和转向,就像一个超级司机。
举个实际案例吧。
王师傅的工厂里用了变频器正反转控制,效率大大提高啦!就像给工厂装上了翅膀。
变频器正反转控制真的超棒,大家赶紧试试吧。
有很多初学机修的电工朋友,不知道该从哪些地方入手,今天我就列举一个应用最广的电路:控制电机正反转的接线,由浅入深,让你一步步脱离新手。
点动
KM接触器的线圈A1和A2分别连一条火线,SB启动按钮串到任意一条火线都可以实现点动效果,启动按钮都是接的按钮开关的NO常开点。
接触器自锁
比点动多了一条自锁线,SB2是停止按钮,停止按钮都是接的按钮开关的NC常闭一端。
自锁是通过自身的常开点在线圈通电吸合的状态下持续供电的一种接法。
这是个互锁的点动效果,两个接触器线圈A1的位置连一起接的零线,然后A2和另一个接触器的NC常闭点交叉连接。
辅助NC常闭点的出线接启动按钮,这时候同时按下2个启动按钮只能有一个吸合。
接触器互锁
这个图其实就是接触器互锁加上接触器的自锁,KM1和KM2互锁,每个接触器都可以自锁。
这个也是控制电机正反转的电路图。
如果可以的话,SB1和SB2还可以机械互锁。
控制电机正反转的完整电路
这个图比上一个图又多了一个机械互锁,SB2和SB3分别串了彼此的
常闭点,这样就实现了双重互锁。
这个也是控制电机正反转接线的完整电路图。
精心整理最简单的变频器控制电机正反转及调速电路
1.线路图
有正反转功能变频器控制电动机正反转调速线路,如下图
器件:QF:断路器
UF:变频调速器
SB1:正转启动按钮
SB2:反转启动按钮
SB3:停止按钮开关
SB4:故障复位按钮
K1,K2:继电器(线圈电压380Vac)
RP1,RP2:调速电位器
M:三相交流电动机
2.工作原理
旋转RP1调速电位器将设定频率调至目标值,再启动正反转,亦可在运行过程中随时调整电位器,改变变频器运行频率(注意不可转得太快)。
正转时,按下按钮SB1,继电器K1得电吸合并自锁,其常开触点闭合,FR-COM连接,电动机正转运行;停止时,按下按钮SB3,K1失电释放,电动机停止。
精心整理
反转时,按下按钮SB2,继电器K2得电吸合并自锁,其常开触点闭合,RR-COM连接,电动机反转运行;停止时,按下按钮SB3,K2失电释放,电动机停止。
事故停机或正常停机时,复位端子RST-COM断开,并发出报警信号。
按下复位按钮SB4,使RST-COM连接,报警解除。
控制线路串联于变频器内部热继电常闭辅助触点,提高电路保护性能。
3.应用
该电路有加减速平稳,运行可靠,控制简单的特点,大大调高了设备的自动化程度,比常规控制正反转电路的优点是:保护性能大大提高,可以调速。
可广泛应用于建筑施工,仓库,酒店餐饮业,小型工厂等货物的上下传输系统中。