第八章 双变量回归与相关
- 格式:ppt
- 大小:290.00 KB
- 文档页数:41
双变量回归与相关两变量间的关系1、确定性关系:函数2、不确定性关系:回归关系或相关关系现实生活中,许多现象之间有相互联系,然而并不像函数那样是确定性关系。
例如:身高与体重、体温与脉搏、年龄与医疗费用等。
在这些有关系的现象中,它们之间联系的程度和性质也各不相同。
有些变量间关系密切,有些不密切;有些是因果关系,有的只是伴随关系。
直线(线性)回归(Linear regression)“regression”一词的来源F Galton的研究为了研究父亲与成年儿子身高之间的关系,卡尔.皮尔逊测量了1078对父子的身高。
把1078对数字表示在坐标上,如图。
用水平轴X上的数代表父亲身高,垂直轴Y上的数代表儿子的身高,1078个点所形成的图形是一个散点图。
它的形状象一块橄榄状的云,中间的点密集,边沿的点稀少,其主要部分是一个椭圆。
*为了描述两变量之间的关系,首先在直角坐标系上描述这些点,这一组点集称为散点图(scatter diagram )图1078对父子身高间的关系直线回归分析就是用来描述一个变量(Y)如何依赖于另一个变量(X)的统计方法。
dependent variable(应变量,Y) independent variable(自变量,X)回归方程直线回归的任务就是要找出因变量(Y)随自变量(X)变化的直线方程,该方程叫做直线回归方程。
式中的是由自变量X 推算应变量Y 的估计值。
a 是回归直线在Y 轴上的截距,称为常数项(constant),即X=0时的Y 值;b 为回归直线的斜率,称为回归系数(reg. Coeff.),即表示当X 每改变一个单位时,Y 平均变动b 个单位。
ˆY a bX=+ˆY求偏导数得正规方程组22ˆ()i Q e Y y ==-∑∑2[()]Y a bX =-+∑min →00Q aQ b∂=∂∂=∂最小二乘法(least square method, LS):使各散点到直线的纵向距离的平方和最小。
统计学基础第八章相关与回归分析【教学目的】1.掌握相关系数的测定和性质2。
明确相关分析与回归分析的特点3.建立回归直线方程,掌握估计标准误差的计算【教学重点】1。
相关关系、相关分析和回归分析的概念2。
相关系数计算3.回归方程的建立和依此进行估计和预测【教学难点】1.相关分析和回归分析的区别2.相关系数的计算3。
回归系数的计算4。
估计标准误的计算【教学时数】教学学时为8课时【教学内容参考】第一节相关关系一、相关关系的含义宇宙中任何现象都不是孤立地存在的,而是普遍联系和相互制约的。
这种现象间的相互联系、相互制约的关系即为相关关系。
相关关系因其依存程度的不同而表现出相关程度的差别。
有些现象间存在着严格的数据依存关系,比如,在价格不变的条件下销售额量之间的关系,圆的面积与半径之间的关系等等,均具有显著的一一对应关系。
这些关系可由数学中的函数关系来确切的描述,因而也可以认为是一种完全相关关系.有些现象间的依存关系则没有那么严格。
当一种现象的数量发生变化时,另一种现象的数量却在一定的范围内发生变化,比如身高与体重的关系就是如此。
一般来说,身高越高,体重越重,但二者之间的关系并非严格意义上的对应关系,身高1.75米的人,对应的体重会有多个数值,因为影响体重的因素不只身高而已,它还会受遗传、饮食习惯等因素的制约和影响.社会经济现象中大多存在这种非确定的相关关系。
在统计学中,这些在社会经济现象之间普遍存在的数量依存关系,都成为相关关系。
在本章,我们主要介绍那些能用函数关系来描述的具有经济统计意义的相关关系。
二、相关关系的特点1。
现象之间确实存在数量上的依存关系如果一个现象发生数量上的变化,则另一个现象也会发生数量上的变化.在相互依存的两个变量中,可以根据研究目的,把其中的一个变量确定为自变量,把另一个对应变量确定为因变量。
例如,把身高作为自变量,则体重就是因变量.2。
现象之间数量上的关系是不确定的相关关系的全称是统计相关关系,它属于变量之间的一种不完全确定的关系。