spss第九章相关分析
- 格式:ppt
- 大小:3.58 MB
- 文档页数:118
第九章SPSS的聚类分析1.引言聚类分析是一种数据分析方法,用于将相似的对象划分到同一组中,同时将不相似的对象划分到不同的组中。
SPSS是一种常用的统计软件,提供了聚类分析的功能。
本章将介绍SPSS中的聚类分析方法及其应用。
2.数据准备在进行聚类分析之前,需要准备好待分析的数据。
数据应该是定量变量或者定性变量,可以包含多个变量。
如果存在缺失值,需要处理之后才能进行聚类分析。
3.SPSS中的聚类分析方法在SPSS中,聚类分析方法有两种:基于距离的聚类和基于密度的聚类。
基于距离的聚类方法将对象划分到不同的组中,使得组内的对象之间的距离最小,组间的对象之间的距离最大。
常见的基于距离的聚类方法包括单链接聚类、完全链接聚类和平均链接聚类。
基于密度的聚类方法则通过考虑对象周围的密度来划分对象所属的组。
在SPSS中,可以使用层次聚类和K均值聚类这两种方法进行聚类分析。
3.1层次聚类层次聚类又称为分级聚类,它将对象分为一个个的层级,直到每个对象都成为一个单独的组为止。
层次聚类分为两种方法:凝聚层次聚类和分化层次聚类。
凝聚层次聚类是从每个对象作为一个单独的组开始,然后根据对象之间的距离逐渐合并组,直到所有的对象都合并到一个组为止。
凝聚层次聚类的最终结果是一个层级的分组结构,可以根据需要确定分组的层数。
分化层次聚类是从所有的对象开始,然后根据对象之间的距离逐渐分离成不同的组,直到每个对象都成为一个单独的组为止。
在SPSS中,可以使用层次聚类方法进行聚类分析。
通过选择合适的距离度量和链接方法,可以得到不同的聚类结果。
3.2K均值聚类K均值聚类是一种基于距离的聚类方法,通过计算对象之间的距离,将对象分为K个组。
K均值聚类的基本思想是:首先随机选择K个对象作为初始的聚类中心,然后将每个对象分配到离它最近的聚类中心,重新计算聚类中心的位置,直到对象不再发生变化为止。
K均值聚类的结果是每个对象所属的聚类,以及聚类的中心。
在SPSS中,可以使用K均值聚类方法进行聚类分析。
第九章SPSS的聚类分析聚类分析是一种将相似个体或对象归类到同一组中的统计方法,它通过测量个体或对象之间的相似性或距离来确定聚类的结构。
聚类分析在许多领域中都有广泛的应用,如市场分析、社会科学研究和生物学等。
在SPSS中进行聚类分析可以帮助研究人员和分析师更好地理解数据的结构和模式。
SPSS的聚类分析功能位于“分析”菜单下的“分类”子菜单中。
在打开聚类分析对话框后,用户需要选择聚类变量,并可以设置合适的聚类方法和距离度量。
可以使用的聚类方法包括层次聚类和K均值聚类,常用的距离度量有欧氏距离和曼哈顿距离等。
此外,用户还可以选择是否进行标准化处理和设置聚类数目等。
在进行聚类分析之前,用户需要对变量进行适当的数据准备工作,如缺失值处理、异常值处理和变量转换等。
这些数据准备步骤可以在“转换”菜单中的相应功能中完成。
对于聚类分析的结果,SPSS提供了多种显示和解释的方法。
在聚类过程完成后,SPSS会自动生成聚类结果的总结报告,该报告包含了关于聚类数目和每个聚类的统计信息。
用户可以通过“聚类概括”选项卡中的预览按钮查看聚类结果的总结报告。
此外,用户还可以通过“数量聚类输出”选项卡中的可视化按钮来生成聚类结果的可视化图形,如散点图和聚类树等。
在解释聚类分析的结果时,用户应该关注聚类数目和每个聚类的特征。
聚类数目可以根据数据的结构和目标进行选择,一般来说,聚类数目越多,聚类结果更详细,但也更复杂。
每个聚类的特征指的是在该聚类中具有相似特征的个体或对象。
用户可以通过查看每个聚类的平均值和标准差来得到关于每个聚类的特征。
总之,在SPSS中进行聚类分析可以帮助研究人员和分析师更好地理解数据的结构和模式。
通过选择合适的聚类变量、聚类方法和距离度量,以及适当的数据准备和结果解释,用户可以得到有关数据聚类结构的有用信息。
SPSS学习笔记:探索相关分析方法(包括Pearson、Spearman 和卡方检验),了解如何运用这些统计工具揭示变量间的关联与独立性。
一、相关分析方法的选择及指标体系连续变量的两个相关分析1、Pearson相关系数最常用的相关系数,又称积差相关系数,取值-1到1,绝对值越大,说明相关性越强。
该系数的计算和检验为参数方法,适用条件如下:(1)两变量呈直线相关关系,如果是曲线相关可能不准确。
极端值会对结果造成较大影响。
(3)两变量符合双变量联合正态分布。
2、Spearman秩相关系数优化语序后的文本:对原始变量的分布不做要求、适用范围广泛,该方法不仅适用于等级资料,且对Pearson相关系数的应用场景有所扩展。
然而,作为非参数方法,它在检验效能上相较于基于参数的方法可能略显不足。
二:有序分类变量相关分析有序分类变量的相关性,即一致性,指的是:行变量等级高时,列变量等级亦高;反之,若行变量等级较高但列变量等级较低,则表现为不一致。
常用的统计量包括Gamma、Kendall的tau-b与tau-c。
(三)无序分类变量的相关分析最常用的为卡方检验,用于评价两个无序分类变量的相关性。
根据卡方值衍生出来的指标还有列联系数、Phi、Cramer的V、Lambda系数、不确定系数等。
OR、RR也是衡量两变量之间的相关程度的指标。
二、SPSS相关操作SPSS的相关分析散布在交叉表和相关分析两个模块中。
(1)交叉表过程如下图:以上的指标很全面,解释如下:(1)“卡方”复选框:为常用的卡方检验,适用于两个无序分类变量的检验。
相关性复选框适用于两个连续性变量的相关分析,提供两变量的Pearson及Spearman相关系数。
有序复选框组仅适用于两变量皆为有序分类变量,包含评估一致性指标。
(4)“名义”复选框组:包含一组分类变量相关性的指标,有序和无序分类时都可使用,但变量为有序时,检验效能没有“有序”复选框组中的统计量高。
第九章相关分析――Correlate菜单详解(医学统计之星:张文彤)上次更新日期:9.1 Bivariate过程9.1.1 界面说明9.1.2 分析实例9.1.3 结果解释9.2 Partial过程9.2.1 界面说明9.2.2 结果解释9.3 Distances过程在医学中经常要遇到分析两个或多个变量间关系的情况,有时是希望了解某个变量对另一个变量的影响强度,有时则是要了解变量间联系的密切程度,前者用下一章将要讲述的回归分析来实现,后者则需要用到本章所要讲述的相关分析实现。
SPSS的相关分析功能被集中在Statistics菜单的Correlate子菜单中,他一般包括以下三个过程:∙Bivariate过程此过程用于进行两个/多个变量间的参数/非参数相关分析,如果是多个变量,则给出两两相关的分析结果。
这是Correlate子菜单中最为常用的一个过程,实际上我们对他的使用可能占到相关分析的95%以上。
下面的讲述也以该过程为主。
∙Partial过程如果需要进行相关分析的两个变量其取值均受到其他变量的影响,就可以利用偏相关分析对其他变量进行控制,输出控制其他变量影响后的相关系数,这种分析思想和协方差分析非常类似。
Partial过程就是专门进行偏相关分析的。
∙Distances过程调用此过程可对同一变量内部各观察单位间的数值或各个不同变量间进行距离相关分析,前者可用于检测观测值的接近程度,后者则常用于考察预测值对实际值的拟合优度。
该过程在实际应用中用的非常少。
§9.1Bivariate过程9.1.1 界面说明【Variables框】用于选入需要进行相关分析的变量,至少需要选入两个。
【Correlation Coefficients复选框组】用于选择需要计算的相关分析指标,有:∙Pearson复选框选择进行积距相关分析,即最常用的参数相关分析∙Kendall's tau-b复选框计算Kendall's等级相关系数∙Spearman复选框计算Spearman相关系数,即最常用的非参数相关分析(秩相关)【Test of Significance单选框组】用于确定是进行相关系数的单侧(One-tailed)或双侧(Two-tailed)检验,一般选双侧检验。
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形今旧对话框今散点图今简单散点图今定义分将fore导入Y轴,将phy导入X轴,将sex导入设置标记今确定。
sexO femaleOrnateOU.UU-60.00-40.00-20.00-40.0050.0060.0070.0080.0090.00100.00phy接下来在SPSS输出查看器中,双击上图,打开图表编辑今点击子组拟合线今选择线性3应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。