spss第九章方差分析
- 格式:ppt
- 大小:1.17 MB
- 文档页数:4
方差分析(SPSS版)原创 Gently spss学习乐园00方差分析方差分析的基本思想R.A.Fisher提出的统计理论基础:将总变异分解为由研究因素所产生的变异与抽样误差的部分,通过比较来自于不同部分的变异,借助统计分析做出推断。
(将所有样本响应变量的变异分解成因素不同水平间变异和随机误差,再判断因素不同水平间变异与随机误差之间是否存在统计学意义。
)其中,所有样本响应变量的方差称为全部平方和 SS T;由因素不同水平间差异引起的、可以由模型中因素解释的部分方差称为模型平方和(SS M);由抽样过程本身引起的部分方差称为误差平方和(SSE);且有 SS T = SS M+ SSE ;其中,R2 =SSM / SST ;取值范围为0~1,R方越趋近于1,意味着模型能解释的比例越大,即模型对数据的拟合越好。
方差分析应用条件① 样本数据服从正态分布② 样本数据满足方差齐性要求③ 样本数据集中观测间是独立的(样本数据中,其中一个观测所包含的信息与其它观测均无关)【注】在实际应用中,并不要求观测严格服从正态分布,如果观测近似服从正态分布,就认为其满足方差分析的正态性假设;当样本含量较大时,无论资料是否来自正态分布总体时,中心极限定理均保证了样本均数的抽样分布服从或近似服从正态分布。
通常采用方差齐性检验来判断方差齐性,如果样本含量相等或相近,即使方差不齐,方差分析仍然稳健且检验效能较好。
SPSS中提供了Levene检验来判断是否方差齐性。
对于明显偏离正态性和方差齐性的资料,可采用数据变换或秩变换的非参数检验的方法。
方差分析的分类:按照因素个数可分为,单因素方差分析、双因素方差分析、多因素方差分析等等。
按照不同的设计方式可分为,完全随机设计资料的方差分析、随机区组设计资料的方差分析、拉丁方设计资料的方差分析、析因设计资料的方差分析等等。
本节以单因素方差分析为例,介绍主要的操作步骤和结果分析。
Read More ↓↓↓【】【】【】【】【】数据基本信息①数据类型:自变量为分组变量,响应变量为连续型变量②只有一个因素是降血脂药物③该因素有4个水平(安慰剂组、2.4g组、4.8g组、7.2g组)④响应变量为低密度脂蛋白手把手教你① 检验方差分析的应用条件(Ⅰ)正态性检验【】Analyze→Descriptive Statistics → Explore正态性检验结果:Shapiro-Wilk 检验表明4组数据均服从正态分布;方差同质性检验:Levene检验表明4组样本数据的总体方差相等,即满足方差齐性检验。
实验报告——(方差分析)一、实验目的熟练使用SPSS软件进行方差分析。
学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。
二、实验内容1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.53.01.82.33.41.92.43.01.82.43.41.8 3.32.03.5SPSS计算结果:在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。
零假设:各水平下总体方差没有显著差异。
相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。
从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。
2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。
(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?SPSS计算结果:(1)此为多因素方差分析相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。
不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。
说明不同广告和不同地区对汽车销量都有显著性影响。
广告对于销量的影响略大于地区对销量的影响。
从地区这个变量比较:第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。
spss课后作业——方差分析(答案)1. 不同岗位的平均工资问题,用方差分析的方法分析一线工人、科以上干部、一般干部三类职工的当前平均工资有无显著差异。
(见岗位工资.sav)要求:1.进行方差齐次性检验。
2.输出描述统计量表。
3.输出方差分析表(要求对组间平方和进行线性分解)。
4.进行均值的多重比较,方差相等时,用LSD方法;方差不等时,用Tamhane’s T2方法。
5.进行均值多项式比较。
均值系数coefficients的选择为(-1,1,-1)答:表1 描述统计量表此表说明略。
Oneway表2表2是方差齐次性检验结果。
该检验的F统计量的值为10.512,对应的概率p值=0<0.05,说明三组数据不具有方差齐性表3 方差分析结果表3是方差分析的主要结果。
从中可以看出,组间离差平方和为42070380885,组内离差平方和为52166613580.8,总的离差平方和为94236994465.8。
第一个P值P=0,小于显著水平0.05,故认为三类职工的当前平均工资存在显著差异。
对组间平方和进行线性分解,其中可以被线性解释的部分为437435223.343,不能被线性解释的部分为41632945661.7,第三个概率P值0.082来看,0.082>0.05,故不能认为当前平均工资受职工类别的线性影响是显著的。
表4 多项式比较系数表4显示输入的所要比较的各值均值的系数。
该系数表明将要检验的是mean2-(mean1+mean3)的值和0有无显著差异。
表5 多项式比较检验表5是多项式比较检验的结果。
在(-1,1,-1)的系数下,由于本题是各总体方差不等的情况,故应该看第二行的分析结果。
概率P值为0.001,小于显著水平0.05,故拒绝零假设,即认为科以上干部的当前平均工资(mean2)与其余两类职工的当前平均工资的和(mean1+mean3)有显著差异。
科以上干部的当前平均工资比其余两类职工的当前平均工资的和还要高。
《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。
它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。
在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。
本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。
方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。
方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。
方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。
在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。
在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。
步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。
步骤3:点击“数据视图”页面,输入各组别的数据。
确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。
步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。
步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。
步骤6:点击“选项”按钮,出现选项对话框。
可以选择计算哪些统计量,如均值、标准差、总和平方和等。
步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。
方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。
-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。
-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。
-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。
-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。
第九章方差分析第九章方差分析【思考与练习】一、思考题1. 方差分析的基本思想及其应用条件是什么?2. 在完全随机设计方差分析中各表示什么含义?SS SS SS、、总组间组内3. 什么是交互效应?请举例说明。
4. 重复测量资料具有何种特点?5. 为什么总的方差分析的结果为拒绝原假设时,若想进一步了解两两之间的差别需要进行多重比较?二、最佳选择题1. 方差分析的基本思想为A. 组间均方大于组内均方B. 误差均方必然小于组间均方C. 总变异及其自由度按设计可以分解成几种不同来源D. 组内方差显著大于组间方差时,该因素对所考察指标的影响显著组间方差显著大于组内方差时,该因素对所考察指标的影响显著E.第九章 方差分析3.完全随机设计的方差分析中,下列式子正确的是4. 总的方差分析结果有P<0.05,则结论应为A. 各样本均数全相等B. 各总体均数全相等C. 各样本均数不全相等D. 各总体均数全不相等E. 至少有两个总体均数不等5. 对有k 个处理组,b 个随机区组的资料进行双因素方差分析,其误差的自由度为A. kb k b --B. 1kb k b ---C. 2kb k b ---D. 1kb k b --+E. 2kb k b --+6. 2×2析因设计资料的方差分析中,总变异可分解为A. MS MS MS =+B A 总B. MS MS MS =+B 总误差C. SS SS SS =+B 总误差D. SS SS SS SS =++B A 总误差E. SS SS SS SS SS =+++B A A B 总误差7.观察6只狗服药后不同时间点(2小时、4小时、8小时和24小时)血药浓度的变化,本试验应选用的统计分析方法是A. 析因设计的方差分析第九章方差分析B. 随机区组设计的方差分析C. 完全随机设计的方差分析D. 重复测量设计的方差分析E. 两阶段交叉设计的方差分析8. 某研究者在4种不同温度下分别独立地重复10次试验,共测得某定量指标的数据40个,若采用完全随机设计方差分析进行统计处理,其组间自由度是A.39B.36C.26D.9E.39. 采用单因素方差分析比较五个总体均数得,若需进一步了解其中一P0.05个对照组和其它四个试验组总体均数有无差异,可选用的检验方法是A. Z检验B. t检验C. Dunnett–t检验D. SNK–q检验E. Levene检验三、综合分析题1. 某医生研究不同方案治疗缺铁性贫血的效果,将36名缺铁性贫血患者随机等分为3组,分别给予一般疗法、一般疗法+药物A低剂量,一般疗法+药物A 高剂量三种处理,测量一个月后患者红细胞的升高数(102/L),结果如表9-1所示。