§281锐角三角函数(一)
- 格式:doc
- 大小:96.50 KB
- 文档页数:2
锐角三角函数一:【知识梳理】1.直角三角形的边角关系(如图)(1)边的关系(勾股定理):AC 2+BC 2=AB 2;(2)角的关系:∠A+∠B=∠C=900; (3)边角关系:①:00901230C BC AB A ⎫∠=⎪⇒=⎬∠=⎪⎭②:锐角三角函数:∠A 的正弦=A a sin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注:三角函数值是一个比值.2.特殊角的三角函数值.3.三角函数的关系(1) 互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin Atan (90○-A )= cotA cot (90○-A )=tanA (2) 同角的三角函数关系.①平方关系:sin 2 A+cos 2A=l ②倒数关系:tanA ·cotA=1③商数关系:sin cos tan ,cot cos sin A AA A A A==4.三角函数的大小比较(1) 同名三角函数的大小比较①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小. ②余弦、余切是减函数.三角函数值随角的增大而减小,随角的减小而增大。
(2) 异名三角函数的大小比较①tanA >SinA ,由定义,知tanA=a b ,sinA=a c ;因为b <c ,所以tanA >sinA②cotA >cosA .由定义,知cosA=b c,cotA=b a;因为 a <c ,所以cotA >cosA .③若0○<A <45○,则cosA >sinA ,cotA >tanA ;若45○<A <90○,则cosA <sinA ,cotA <tanA5.解直角三角形分类:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形. 6.在实际问题中常用的几种角 ①俯角和仰角在测量时,视线与水平线所成的角中,视线在水平线上方的角叫做仰角;视线在水平线下方的角叫做俯角.②坡度与坡角hα通常坡面的竖直高度h 和水平宽度l 的比叫做坡度,用字母i 表示,即lhi ==αtan ,其中α是坡面与水平面的夹角即坡角。
【锐角三角函数全章教案】锐角三角函数(第一课时)教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA、cosA、tanA表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三•情感目标:提高学生对几何图形美的认识。
教材分析:1. 教学重点:正弦,余弦,正切概念2 .教学难点:用含有几个字母的符号组siaA、cosA、tanA表示正弦,余弦,正切教学程序:一.探究活动1 .课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2. 归纳三角函数定义。
Z A的对边N A的邻边N A的对边siaA= ,cosA= ,ta nA=-斜边斜边N A的邻边3例1.求如图所示的Rt " ABC中的siaA,cosA,tanA 的值。
二.探究活动二1.让学生画30° 45° 60°的直角三角形,分别求sia 30 ° cos45 ° tan60归纳结果30 °45°60°siaAcosAta nA2.求下列各式的值三. 拓展提高 P82例4.(略)73厂1.如图在"ABC 中,/ A=30° ,tan B= ,AC=23 ,2求AB四•小结 五.作业课本 p85— 86 2,3,6,7,8,10解直角三角形应用(一)一•教学三维目标(一) 知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余 及锐角三角函数解直角三角形.(二) 能力训练点通过综合运用勾股定理, 直角三角形的两个锐角互余及锐角三角函数解直角三角形, 逐步培养学生分析问题、解决问题的能力.(三) 情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、 教学重点、难点和疑点1. 重点:直角三角形的解法.2. 难点:三角函数在解直角三角形中的灵活运用.3•疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、 教学过程(一)知识回顾1. 在三角形中共有几个元素?2. 直角三角形 ABC 中,/ C=90° , a 、b 、c 、/ A 、/ B 这五个元素间有哪些等量关系呢?(1) sia 30 ° +cos30 °( 2) , 2 sia 45-—cos30cos30sia45°+ta60-tan30aba(1)边角之间关系si nA= cosA= tan A=-c c b⑵三边之间关系a2 +b2 =c2(勾股定理)⑶锐角之间关系/ A+ / B=90° .以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)探究活动1•我们已掌握Rt△ ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素•这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2. 教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3•例题评析例1在厶ABC中,/ C为直角,/ A、/ B、/ C所对的边分别为a、b、c,且b= 2 a—. 6,解这个三角形.例2在厶ABC 中,/ C为直角,/ A、/ B、/ C所对的边分别为a、b、c,且b= 20 .B=35°,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用•因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边•计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt△ ABC中,a=104.0, b=20.49,解这个三角形.(三)巩固练习在厶ABC中,/ C为直角,AC=6 , - BAC的平分线AD=4 . 3,解此直角三角形。
教师备课稿学科_ 数学__ _九_年级第_下册教师朱晶_课题1.1锐角三角函数(1)第课时教学目标1.经历锐角的正弦、余弦和正切的探索过程,了解三角函数的概念.2.掌握正弦、余弦和正切的符号,会用符号表示一个锐角的三角函数.3.掌握在直角三角形中,锐角三角函数与边之比的关系.4.了解锐角的三角函数值都是正实数,会根据锐角三角函数的定义求锐角三角函数值.重难点教学重点:锐角的正弦、余弦、正切和锐角三角函数的概念. 教学难点:锐角三角函数的概念.教具、学具准备ppt课件学教安排教法及学法指导、反思课前准备一、创设情境,引入新课小红在上山过程中,下列哪些量是变量,哪些量是常量(坡角,上升高度,所走路程)?她在斜坡上任意位置时,上升的高度和所走路程的比值变化吗?小强呢?(通过学生自主探索,教师引导,从而发现小红在上山过程中,坡角是常量,上升高度和所走路程是变量.她在斜坡上任意位置时,上升的高度和所走路程的比值不会变化.)定义:一般地,对于每一个确定的锐角α,在角的一边上任取一点B,作BC⊥AC于点C,则比值BCAB,ACAB,BCAC都是一个确定的值,与点B在角的边上的位置无关,因此,比值BCAB,ACAB,BCAC都是锐角α的三角函数.比值BCAB叫做∠α的正弦(sine),记做sinα.比值ACAB叫做∠α的余弦(cosine) ,记做cosα.30°B45°西东比值BCAC叫做∠α的正切(tangent) ,记做tanα.注意:1、在三角函数的表示中,用希腊字母或单独一个大写英文字母表示的角前面的“∠”一般省略不写.2、sinα、cosα、tanα是一个完整的符号,单独的“sin”没有意义.如果∠A是Rt△ABC的一个锐角(如图),则有sin cos tanAAAAAAA∠=∠=∠=∠的对边斜边的邻边斜边的对边的邻边那么B∠呢?追问:你能求出sinA 与cosA的取值范围吗?.三、新知运用用一用1.如图△ABC中,∠C=90°,BC=5,AC=12.判断:(1)sinA=513(√)(2)tanB=512(×)2.如图,在Rt△ABC中,∠C=90°.⑴若BC=8,AB=17,求sinA, cosA,tanA的值;⑵若BC︰AB=1︰2 ,求sinA, cosA,tanA的值;⑶若sinA=513, 求sinB的值.解后语:已知直角三角形中的两边或两边之比,就能求出锐角三角函数值.例1.如图:在Rt△ABC中,∠B=90ο,AC=200, sinA=0.6.求BC的长.解后反思:本题属于简单题,属于知识的简单运用.练一练:1.在Rt△ABC中,∠C为Rt∠,AC:BC=1:2,求sinA+cosA的值.四、课堂小结1.正弦,余弦和正切的概念;2.三角函数的概念;3.如果∠A是直角三角形的一个锐角,那么它的三角函数与边的关系.4.锐角三角函数的值都是哪一类数,正弦和余弦有什么范围限制?课后反思感谢您的阅读,祝您生活愉快。
本章“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。
在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。
在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。
无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章重点是锐角三角函数的概念和直角三角形的解法。
锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
本章内容与已学“相似三角形”“勾股定理”等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
本章教学时间约需12课时,具体分配如下(仅供参考):28.1 锐角三角函数约6课时28.2 解直角三角形约4课时数学活动小结约2课时一、教科书内容与课程学习目标(一)本章知识结构框图本章知识的展开顺序(二)教科书内容本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容。
§1.1锐角三角函数(第一课时:正切)学习目标:1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.学习重点:1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.学习难点:理解正切的意义,并用它来表示两边的比.学习方法:引导—探索法.学习过程:一、生活中的数学问题:1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?二、直角三角形的边与角的关系(如图,回答下列问题)⑴Rt△AB1C1和Rt△AB2C2有什么关系?⑵222111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢?⑷由此你得出什么结论?三、例题:例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?例2、在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.四、随堂练习:1、如图,△ABC 是等腰直角三角形,你能根据图中所给数据求出tanC 吗?2、如图,某人从山脚下的点A 走了200m 后到达山顶的点B ,已知点B 到山脚的垂直距离为55m ,求山的坡度.(结果精确到0.001)3、若某人沿坡度i =3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.五、课后练习:1、在Rt △ABC 中,∠C=90°,AB=3,BC=1,则tanA= _______.2、在△ABC 中,AB=10,AC=8,BC=6,则tanA=_______.3、在△ABC 中,AB=AC=3,BC=4,则tanC=______.4、在Rt △ABC 中,∠C 是直角,∠A、∠B、∠C 的对边分别是a 、b 、c,且a=24,c= 25,求tanA 、tanB的值.课堂小结:1.正切的定义2.梯子的倾斜程度和tanA的关系3.利用数形结合的方法,构造直角三角形的意识作业布置:习题1.1 第二题教学反思:希望学生通过经历探索直角三角形中边角关系的过程,理解正切的意义和现实生活中的联系。
数学导学案(5) 第二十八章 锐角三角函数 §28.1锐角三角函数(一)
课型:新课 主备:陆明和 审稿: 领导签字: 班级: 学生姓名: 【学习目标】1.知道锐角的正弦、余弦、正切三角函数的定义,并记住它们的符号; 2.知道锐角的正弦、余弦、正切值的范围,以及随角度的变化情况;
3.会求锐角的正弦、余弦、正切值。
【学习重点】目标1、2、3。
【学习难点】目标2。
【学习过程】 一、
独立看书80~76P 完
二、 完成下列预习作业: 1. 据下图求sinA 和sinB 的值。
2.若Rt △ABC 中, ∠C= 900, AB = 13,AC = 12, 则sinA = , cosA = , tanA = .sinB= , cosB = , tanB = .
3. .若Rt △ABC 中, ∠C= 900, BC = 3,AC = 2, 则sinA = , cosA = ,
tanA = ,sinB= , cosB = , tanB = .
4. 若Rt △ABC 中,各边长都扩大2倍,则锐角A 的正弦值、余弦值、正切值的变化情况是( )
A. 正弦值不变;
B. 余弦值不变;
C. 正切值不变;
D. 正弦值、余弦值、正切值都不变。
5.如图,在Rt △ABC 中,∠C= 900, AC = 8 ,tan A = 4
3 ,求sin A 、 cosB 的值。
小组评价: 组长签字: 三、 师生合作探究,解决问题 探究一
如图,在Rt △ABC 中, ∠C= 900
, 求sinA 和sinB 的值。
探究二
如图,在Rt △ABC 中,∠C= 900,BC= 6 ,sinA = 5
3
,求cosA 、tanB 的值
※探究三
如图,在△ABC 中,A D ⊥BC 于点D ,C E ⊥AB 于点E ,且EB = 2AE,若AD= 33,
tan ∠BCE =33
, 求CE 的长
B C
5
3
A
A B C 8
A
B
C
3
4
(1)
A
B
C
5 13
(2)
四、 达标检测: 1. 若Rt △ABC 中,∠C= 900, AB = 4, BC = 3, 则sinB 的值为( ) A.
54
B. 7
4 C. 47 D. 37
2.在平面直角坐标系xOy 中,已知点A (3,0)和B (0,-4),则 cos ∠OAB = 。
3. 在Rt △ABC 中,∠C= 900, AC= 5,BC = 12,则tanA = , tan B = 。
4. 直角三角形中,两个锐角的正弦平方和等于 。
5.在Rt △ABC 中,∠C= 900,∠A= 300,则tanB = .
6. 在Rt △ABC 中,∠C= 900, BC = 5 , sinA= 0.7, 求cosA 、tanA
※ 7. 已知△ABC 的两边长分别为a = 3,c = 5,且第三边长b 是关于x 的一元二次方程2x -4x +m=0的两个正整数根之一,求sinA 的值。
五.课时小结:
在Rt △中, ∠α为锐角,
则①sin α= ,cos α= , tan α= ;
②sin 2α+cos 2 α= ;
③sin α÷cos α= ;
④sin α随α的 增大而 ,cos α随α的增大而 ,tan α随α的增大而 ;⑤sin (900-α)= ,cos (900-α)= 。
六.学习后的评价
1.你自己对本节课学习后的评价: 理由: 组长评价: 组长签字:
2.教师对你学习的评价:。