_液力变矩器结构与原理
- 格式:ppt
- 大小:8.02 MB
- 文档页数:65
液力变矩器的原理液力变矩器是一种常见的动力传动装置,广泛应用于各种车辆和机械设备中。
它的主要作用是将发动机输出的旋转动力转化为适合驱动车轮或机械设备的转矩,并且能够在不同负载下保持恒定的输出转速。
本文将详细介绍液力变矩器的原理。
一、液力变矩器的结构液力变矩器由泵轮、涡轮、导向叶片和油箱等组成。
其中,泵轮和涡轮分别位于两个相邻的腔室中,通过导向叶片使工作介质(通常为油)在两个腔室之间流动,从而实现传递功率。
1. 泵轮泵轮通常由几个弯曲叶片组成,呈现出类似风扇的形状。
当发动机输出旋转动力时,驱动泵轮旋转。
泵轮内部有许多小凸起,这些凸起可以捕捉工作介质并将其加速。
2. 涡轮涡轮与泵轮相对应,也由几个弯曲叶片组成。
当工作介质在泵轮中被加速后,会流向涡轮,并且推动涡轮旋转。
涡轮内部也有许多小凸起,这些凸起可以将动能转化为转矩。
3. 导向叶片导向叶片位于泵轮和涡轮之间的腔室内,用于引导工作介质的流动方向。
导向叶片的角度可以根据需要进行调整,以改变液力变矩器的输出特性。
4. 油箱油箱是存放工作介质的容器,通常位于液力变矩器的底部。
油箱还可以起到冷却和过滤工作介质的作用。
二、液力变矩器的工作原理当发动机启动时,发动机输出旋转动力驱动泵轮旋转。
泵轮内部的小凸起捕捉到工作介质并将其加速,使其流入导向叶片中。
导向叶片将工作介质引导到相邻的腔室中,并且使其流入涡轮中。
当工作介质在涡轮中被推动旋转时,会产生一个转矩输出。
这个转矩由涡轮内部的小凸起转化为动能,并且传递到液力变矩器的输出轴上。
输出轴会带动车轮或机械设备旋转,从而实现动力传递。
由于液力变矩器内部的工作介质是不可压缩的,因此当负载增加时,液力变矩器会自动调整泵轮和涡轮之间的工作介质流量,以保持恒定的输出转速。
这种特性使得液力变矩器在各种负载下都能够提供稳定的动力输出。
三、液力变矩器的优缺点液力变矩器具有以下优点:1. 能够在不同负载下提供恒定的输出转速。
2. 具有较高的扭矩放大比,能够提供较大的驱动力。
铲车液力变矩器工作原理铲车液力变矩器是铲车传动系统中的重要部件,它通过液压原理实现动力传递和变速功能。
液力变矩器的工作原理是利用液体在转子间的流动来传递动力,并通过调整液体的流动来实现变速功能。
本文将从液力变矩器的结构和工作原理两个方面来详细介绍。
首先,液力变矩器的结构包括泵轮、涡轮和导向轮。
泵轮和涡轮之间通过液体相互作用来传递动力,导向轮则用来控制液体的流向。
当铲车发动机工作时,泵轮受发动机输出轴的动力驱动,液体被泵轮抛出,形成高速液体流。
涡轮接收泵轮抛出的液体流,使液体流动能量转化为动力,从而驱动铲车的传动系统。
导向轮的作用是控制液体流向,通过调整导向轮的位置来改变液体的流动方向,从而实现变速功能。
其次,液力变矩器的工作原理是基于液体的流动和液压原理。
当铲车需要进行加速或减速时,导向轮会调整液体的流向,使液体流动的能量得到调整,从而改变液力变矩器的输出转矩和速度。
在铲车启动和行驶过程中,液力变矩器能够根据实际工况自动调整输出转矩和速度,以满足铲车的动力需求。
这种自动调整的特性使得铲车能够在不同工况下保持稳定的动力输出,提高了铲车的工作效率和驾驶舒适性。
总的来说,铲车液力变矩器是铲车传动系统中的重要部件,它通过液压原理实现动力传递和变速功能。
液力变矩器的工作原理是基于液体的流动和液压原理,通过调整液体的流向来实现变速功能。
液力变矩器能够根据实际工况自动调整输出转矩和速度,以满足铲车的动力需求,提高了铲车的工作效率和驾驶舒适性。
因此,了解铲车液力变矩器的工作原理对于提高铲车的使用效率和维护保养具有重要意义。
液力变矩器的结构与工作原理(一)液力变矩器的结构液力变矩器以液体作为介质,传递和增大来自发动机的扭矩液力变矩器由可转动的泵轮和涡轮,以及固定不动的导轮三元件构成。
各件用铝合金精密铸造或者用钢板冲压焊接而成。
泵轮与变矩器壳成一体。
用螺栓固定在飞轮上,涡轮通过从动轴与传动系各件相连。
所有工作轮在装配后,形成断面为循环圆的环状体。
(二)液力变矩器的工作原理导涡泵液力变矩器工作原理可以用两台电风扇作形象描述,两风扇对置,一台通电转动,产生的气流可吹动不通电的风扇,如果给其添加一个管道这就成为了液力偶合器,它能传轴,并不增扭。
变矩器工作时,发动机带动泵轮转动,叶轮带动液流冲向涡轮,从而驱动涡轮转动,刚起动时扭矩最大,此时冲击力为F1,冲到涡轮的液流驱动涡轮后,由于叶片形状,冲向导轮,而导轮不动,冲击导轮的液流受到妨碍,可使涡轮受到反作用力F2,由于F1、F2 都作用于涡轮,所以使涡轮所受扭矩得到增大。
涡轮转速升高后,液流变向会冲击导轮叶背,而失去增扭,并有一定阻力。
所以现在所用导轮都使用单向离合器,使去冲击叶背时,导轮转过一个角度,使其继续增扭。
导轮下端装有单向离合器,可增大其变扭范围。
(三)锁止式变矩器是用液力来传递汽车动力的,而液压油的内部磨擦会造成一定的能量损失,因此传动效率较低。
为提高汽车的传动效率,减少燃油消耗,现代不少轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。
这种变矩器内有一个由液压油控制的锁止离合器。
锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作轴向挪移的压盘,它通过花键套与涡轮连接(如图 2.3) .压盘背面(如图 2.3 右侧)的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力) ;压盘左侧(压盘与变矩器壳体之间) 的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。
锁止控制阀由自动变速器电脑通过锁止电磁阀来控制。
自动变速器电脑根据车速、节气门开度、发动机转速、变速器液压油温度、操纵手柄位置、控制模式等因素,按照设定的锁止控制程序向锁止电磁阀发出控制信号,控制锁止控制阀,以改变锁止离合器压盘两侧的油压,从而控制锁止离合器的工作。
液力变矩器结构与原理液力变矩器(Torque Converter)是一种被广泛应用于汽车、船舶等动力传动系统中的液力传动装置。
它的主要作用是将发动机输出的高速低扭矩转化成低速大扭矩,从而实现汽车启动、加速、变速和传动的功能。
液力变矩器的结构复杂而精密,它包含了泵轮、涡轮、导叶轮等不同的部件,其中每个部件都扮演着特定的角色。
本文将详细介绍液力变矩器的结构与原理。
一、液力变矩器的结构液力变矩器是由泵轮、涡轮、导叶轮和油封等部件组成的。
泵轮和涡轮是液力变矩器的两个主要组成部分,其结构和相互配合决定液力变矩器的工作性能。
1. 泵轮(Pump Impeller)泵轮是液力变矩器的输入元件,它由一定数量的楔形叶片组成,其主要作用是将发动机输出的动力转化成液力。
当发动机运转时,泵轮产生旋转的动力,它通过离心力作用将工作介质(液体)强制送入涡轮。
2. 涡轮(Turbine Runner)涡轮是液力变矩器的输出元件,它与泵轮相对应,也由楔形叶片组成。
当泵轮发送液力流入涡轮时,涡轮受到液压的作用转动,从而输出扭矩。
涡轮的运转速度受到扭矩的大小以及返转器的变矩比的影响。
3. 导叶轮(Stator)导叶轮是液力变矩器的第三个组成部分,它位于泵轮和涡轮之间,主要用于改变流体的流向。
导叶轮的叶片可以自由调节,可以根据工作状态的需求来改变流体的流向,协助转化扭矩和提高效率。
4. 油封(Oil Seal)油封是用于保持液力变矩器内压力稳定的部件,它位于泵轮和涡轮之间,防止液体泄漏。
油封的质量和性能直接影响液力变矩器的工作效果和寿命。
二、液力变矩器的工作原理液力变矩器主要依靠流体的转化和涡旋流的原理来工作,通过泵轮、涡轮和导叶轮之间复杂的相互作用来实现转矩的变化。
液力变矩器的工作原理分为四个工作区域:冲击区、变矩区、松开区和高效率区。
1. 冲击区当发动机启动并带动泵轮开始旋转时,泵轮产生的涡旋流体流向涡轮,但此时导叶轮的叶片处于开启状态。
液力偶合器和液力变矩器的结构与工作原理液力偶合器的结构通常由泵轮、涡轮和引导叶片组成。
其中,外壳是连接着发动机和传动系统的部件,它承受动力输入和输出的作用。
泵轮和涡轮是两个相对转动的元件,泵轮通常由发动机的曲轴通过一个连接装置驱动,涡轮则与传动系统相连。
引导叶片位于泵轮与涡轮之间的液力工作间隙中,其作用是引导和调节液力偶合器的工作流体。
液力偶合器的工作原理如下:当发动机启动并输出动力时,液压泵轮开始旋转。
液压泵轮通过离心力将液体从中心向外侧运动,这个过程会产生一个旋转的液力薄壁。
涡轮由液压泵轮的液力薄壁作用力驱动,形成一个相对于液压泵轮相反方向的旋转薄围。
因此,泵轮和涡轮之间的液体通过涡轮的传动作用将动力传递到输出轴上。
此时,泵轮和涡轮之间的液体介质起到了传递扭矩的作用,从而达到了动力输出的目的。
液力变矩器的结构和液力偶合器非常类似,也由泵轮、涡轮和引导叶片组成。
然而,液力变矩器相比于液力偶合器有一个主要的区别,就是在液力变矩器中引入了一种称为液力转化器的机件,用于改变输入转速和输出转矩的比例。
液力转化器通常由一个容积可调的转化器喷嘴和一个用于调节流体流动的转化器传动轮组成。
液力变矩器的工作原理如下:液压泵轮将动力从发动机输出到液力变矩器内部,涡轮通过液体对转化喷嘴的作用来改变输入动力所产生的旋转速度和转矩。
当发动机运行时,液力传输中的一部分旋转液流经过流量的改变和液体的离心力作用进入转化器喷嘴。
通过改变液体流量来改变喷嘴的容积,从而调节液力比例,实现输出转矩的调节。
因此,液力变矩器可以根据需求来调整输出转矩的大小,以适应不同的工作需求。
总结起来,液力偶合器和液力变矩器是一种通过液体的动力转化来实现动力输出和调节的装置。
液力偶合器通过液压泵轮和涡轮之间的液体传递扭矩,实现动力输出;而液力变矩器则通过引入液力转化器来调节输入和输出的转速和转矩比例,实现输出转矩的调节。
这两种装置在汽车、工程机械等设备中广泛应用,发挥着重要的传动作用。
简述液力变矩器的组成及工作原理液力变矩器(torque converter)是一种广泛应用于自动变速器中的液压传动装置。
它利用液体传递动力,起到变速和传递转矩的作用。
液力变矩器通过流体(通常是液压油)的流动来实现动力传递,其主要组成部分包括泵轮、涡轮和液力变矩器壳体。
液力变矩器具有结构简单、传动平稳、无级变速和自动调节功率输出等特点,因此在汽车、工程机械、船舶等领域得到广泛应用。
液力变矩器的主要组成包括泵轮、涡轮、锁止装置和液力变矩器壳体。
泵轮是液力变矩器的动力输入装置,它通常安装在发动机的曲轴上。
当发动机工作时,驱动泵轮旋转,泵轮的转动产生液体流入液力变矩器。
涡轮是液力变矩器的动力输出装置。
它紧密连接在变速器输入轴上,通过泵轮传递来的流体驱动涡轮旋转,从而实现动力输出。
液力变矩器还包括了一个液力变矩器壳体,它起到承载和固定泵轮和涡轮的作用,并且通过内部构造使液体能够流动,从而实现动力传递。
液力变矩器通常还配备了一个锁止装置,用来提高传输效率和防止内部滑动损失。
在高速行驶或特定工况下,锁止装置可以将泵轮和涡轮固定在一起,形成一个刚性连接,而不再依靠液体的流动传递动力。
液力变矩器的工作原理是基于液体的动力传递。
当发动机工作时,驱动泵轮旋转,泵轮内的液体随之旋转,并通过转动的液体来传递动力。
涡轮与泵轮相连,涡轮受到液体流动带来的动力,从而实现输出动力,驱动车辆或机械的运动。
在这个过程中,液体的流动和压力变化起到了关键作用,使得动力能够顺利地传递。
液力变矩器的工作过程可以简单描述为:发动机驱动泵轮旋转,形成液体的流动,液体的动能被传递到涡轮上,从而实现动力输出。
根据流体动力学原理,液体的流动和转动会产生动能和动量的转换,从而实现了液力变矩器的功率传递。
液力变矩器是一种利用液体传递动力的装置,通过泵轮和涡轮的结构设计和液体流动的原理,实现了对动力的变速和传递。
它的结构简单、传动平稳、无级变速和自动调节功率输出的特点,使其在汽车、工程机械、船舶等领域得到广泛应用。