微电网小干扰稳定概率分析
- 格式:pdf
- 大小:19.35 MB
- 文档页数:152
电力系统小干扰稳定性分析【摘要】本文主要研究电力系统小干扰稳定性分析。
阐述了电力系统小干扰稳定性对电力系统的重大意义,对电力系统小干扰稳定性的分析方法进行了总结归纳,并对各种方法的主要原理和适应性进行了详细分析,希望能够为电力系统小干扰稳定性的分析工作提供帮助。
【关键词】电力系统;小干扰稳定性不同地区之间的电力系统的多重互联能够大大提高输电的经济性,但是这种互联电网会把很多动态问题诱发出来,系统更加复杂化,降低了稳定性。
电力系统的安全运行需要满足一定的基本条件要求,例如电压、频率和小干扰等都需要有着相当的稳定性,并且这种稳定性应该是动态的,这些稳定性随着现代社会对电网的依赖越来越大而逐渐被人们重视起来。
从上个世纪70年代开始,小干扰稳定性的失去就已经造成了很多严重的事故,对相关国家造成了严重的经济损失。
为了保证电力系统的稳定性,保证其安全稳定运行,有必要对电力系统的小干扰稳定性进行分析,保障电力系统的安全运行。
一、电力系统小干扰稳定性分析方法1.数值仿真法。
使用一组微分方程来描述电力系统,根据电力系统扰动的特定性结合相关的数值计算方法计算系统变量及其完整的时间响应[1]。
小干扰稳定性问题的本质是不能被时域响应最大程度的体现出来,造成系统稳定性下降的原因即便使用模拟仿真也不能够很好的找出来,也就无从找寻改进措施。
2.线性模型基础上的分析方法。
这种方法是利用线性模型研究小干扰稳定性,使用微分方程和积分方程描述系统动态行为的变化,在稳态运行点现化,获得线性模型[2]。
目前主流的电力系统小干扰稳定性分析方法就是基于线性模型的,目前来看主要有特征性分析方法和领域分析两种,前一种以状态空间模型为描述基础,后一种是基于函数矩阵的方法。
二、特征分析法目前大多数电力系统分析软件都是暂态稳定仿真进行操作的,但是实际中相当多的限制条件约束了这种应用。
相关结果受到选择的扰动或者时域响应观测量的很大影响,选择不合理时系统中的一些关键模式将不能被扰动触发,并且如果选择不合理,进行响应的观察时很多震荡模式中不明显的响应可能就是若阻尼模式[3]。
小水电群对主网的小干扰稳定性分析对富含小水电群的地区电网进行小干扰稳定性分析,由于小水电数目众多,容量不等,故采用简单有效的加权法进行小水电等值,采用多机电力系统的特征值分析方法,应用电力系统计算分析综合程序对研究地区电网小干扰稳定进行了分析研究,给出了电网可能存在的弱阻尼的振荡模式,并为下一步整定电力系统稳定器参数提出指导性建议。
标签:小水电;加权等值;振荡模式;小干扰稳定1 引言电力系统中发电机经输电线路并联运行时,在扰动下会发生发电机转子间的相对摇摆,并在缺乏阻尼时引起持续振荡,即通常说的电力系统低频振荡。
此时,输电线上功率也发生相应振荡,其振荡频率很低,一般在0.2~2.5 Hz间。
低频振荡常出现在长距离、重负荷输电线上,地区电网在长期的发展建设过程中,也曾发生过局部区域的低频振荡问题,随着电网网架结构的不断加强,一些振荡问题已逐步消除。
但是,由于现代快速、高增益倍数励磁系统的广泛应用,其对系统的负阻尼效应使得电网的低频振荡问题又逐渐显露出来[1]。
2小水电群的等值建模在研究一个水电丰富的地区电网时,由于网络结构复杂,电网电压等级跨度大,节点数众多,若要对所有的网络节点和元件进行详细仿真,其计算量会非常大,因此我们在对主网进行仿真时往往需要将低电压等级的网络和元件进行等效。
而分布式小水电通常是通过110kV或220kV及以下的网络上网的,为了深入研究低压配电网中广泛接入的分布式电源对电网的影响,有必要在对这些分布式小水电的并网运行外特性进行分析的基础上,构建能满足适合主网仿真需要的等值模型[2]。
本论文所研究的小水电群所处的网络大部分是辐射状网络,电气距离较小,故可将经同一变电站上网的小水电机组近似划分为一个同调机群。
国内现有的动态等值程序中同调发电机的动态聚合主要采用了频域聚合的算法,这种方法假设发电机及其控制系统的传递函数可分为若干环节分别聚合,且线性部分和非线性部分可分别聚合,但由于同调发电机聚合较复杂,因此对于大系统,等值时间较长。
电力系统中的小信号稳定性分析与控制研究电力系统是现代工业的重要基础设施之一,它的稳定运行对于经济发展和人民生活都具有重要作用。
然而,由于电力系统的复杂性和不确定性,它经常会受到各种小信号的干扰,从而导致系统性能的下降。
因此,对电力系统的小信号稳定性进行研究和控制变得非常重要。
一、电力系统中的小信号概念我们所说的小信号是指电力系统在稳定工作状态下,所受到的微小扰动。
它们可能来自于负载的变化,天气变化或其他因素。
尽管这些信号很小,但它们可以通过系统反馈机制逐渐增大,进而引发系统动态响应的变化。
二、小信号稳定性分析方法小信号稳定性分析是通过线性化模型来研究系统的动态响应特性。
这种方法可以将非线性复杂的电力系统简化成一个线性的模型,从而更容易分析系统的特性和行为。
利用小信号分析,我们可以计算得到系统各个节点的传递函数和状态空间方程,进而对系统进行分析。
三、小信号稳定性控制方法要控制电力系统中的小信号,可以采取一系列控制策略。
一种常用的策略是采用领先型控制,通过加入相位补偿器的方式提高系统的相位裕度和稳定裕度。
另外,也可以采用反馈控制方式,通过对系统状态进行反馈,实时调节控制参数,从而控制小信号的影响。
还可以采用模型预测控制,通过预测未来时刻系统状态的变化,动态调整控制参数,从而使系统保持稳定。
四、小结电力系统中的小信号稳定性分析和控制是一个复杂的研究领域。
如何对系统进行合理的建模,选择合适的分析方法,并采取科学的控制策略,都需要深入研究和实践。
未来,随着电力系统的不断发展和升级,电力系统中的小信号稳定性研究也将更加重要和有意义。
第7章 电力系统小干扰稳定分析电力系统在运行过程中无时不遭受到一些小的干扰,例如负荷的随机变化及随后的发电机组调节;因风吹引起架空线路线间距离变化从而导致线路等值电抗的变化,等等.这些现象随时都在发生。
和第6章所述的大干扰不同,小干扰的发生一般不会引起系统结构的变化。
电力系统小干扰稳定分析研究遭受小干扰后电力系统的稳定性。
系统在小干扰作用下所产生的振荡如果能够被抑制,以至于在相当长的时间以后,系统状态的偏移足够小,则系统是稳定的。
相反,如果振荡的幅值不断增大或无限地维持下去,则系统是不稳定的。
遭受小干扰后的系统是否稳定与很多因素有关,主要包括:初始运行状态,输电系统中各元件联系的紧密程度,以及各种控制装置的特性等等。
由于电力系统运行过程中难以避免小干扰的存在,一个小干扰不稳定的系统在实际中难以正常运行.换言之,正常运行的电力系统首先应该是小干扰稳定的。
因此,进行电力系统的小干扰稳定分析,判断系统在指定运行方式下是否稳定,也是电力系统分析中最基本和最重要的任务。
虽然我们可以用第6章介绍的方法分析系统在遭受小干扰后的动态响应,进而判断系统的稳定性,然而利用这种方法进行电力系统的小干扰稳定分析,除了计算速度慢之外,最大的缺点是当得出系统不稳定的结论后,不能对系统不稳定的现象和原因进行深入的分析.李雅普诺夫线性化方法为分析遭受小干扰后系统的稳定性提供了更为有力的工具。
借助于线性系统特征分析的丰富成果,李雅普诺夫线性化方法在电力系统小干扰稳定分析中获得了广泛的应用。
下面我们首先介绍电力系统小干扰稳定分析的数学基础。
李雅普诺夫线性化方法与非线性系统的局部稳定性有关。
从直观上来理解,非线性系统在小范围内运动时应当与它的线性化近似具有相似的特性。
将式(6—290)所描述的非线性系统在原点泰勒展开,得式中:()()0ee x x xf x x f x A x x ∆=∆=∂+∆∂==∂∆∂∆如果()h x ∆在邻域内是x ∆的高阶无穷小量,则往往可以用线性系统的稳定性来研究式(6-288)所描述的非线性系统在点e x 的稳定性[1]:(1)如果线性化后的系统渐近稳定,即当A 的所有特征值的实部均为负,那么实际的非线性系统在平衡点是渐近稳定的。
基于矩阵摄动理论的微电网小扰动稳定性分析Small Signal Stability Analysis of Microgrid Based on Matrix Perturbation Theory(申请博士学位论文)一级学科:电气工程学科专业:电力系统及其自动化研究生:李琰指导教师:王成山教授天津大学电气与自动化工程学院二零一三年六月独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得天津大学或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解天津大学有关保留、使用学位论文的规定。
特授权天津大学可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。
同意学校向国家有关部门或机构送交论文的复印件和磁盘。
(保密的学位论文在解密后适用本授权说明)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日中文摘要将分布式电源以微电网形式接入电网并网运行,并与之互为支撑,是发挥分布式电源效能的有效方式。
分布式电源渗透率的逐步提高对微电网的运行提出了更高的要求,微电网的小扰动稳定性是本文关注的重点。
本文主要工作如下:(1)建立了微电网中通过逆变器/发电机并网的两类典型的分布式电源的小扰动稳定性分析模型,并对逆变器三种典型控制方式下的小扰动分析模型进行了分析。
在小扰动稳定性计算中,根据微电网小扰动分析模型的稀疏性和分块性,采用改进十字链表法构建了微电网系统的状态矩阵。
在此基础上,阐述了微电网特征值分布的广域性和区域性,以及导致这种分区域现象的影响因素。
(2)针对特征值和特征向量灵敏度难以准确求解的问题,提出了基于矩阵摄动理论的微电网中特征值和特征向量灵敏度求解的方法。
考虑构网型与跟网型逆变器交互的孤岛微电网小信号稳定性分析一、本文概述随着可再生能源的快速发展和分布式发电技术的广泛应用,孤岛微电网已成为一个重要的研究方向。
孤岛微电网通常由多种分布式电源(如光伏、风电、储能等)和负荷组成,并通过电力电子设备(如逆变器)进行能量转换和控制。
在这些电力电子设备中,构网型逆变器和跟网型逆变器是两种常见的类型,它们在孤岛微电网中扮演着不同的角色。
构网型逆变器主要负责维持微电网的电压和频率稳定,而跟网型逆变器则主要跟踪大电网的电压和频率。
然而,在孤岛微电网中,构网型逆变器和跟网型逆变器之间的交互可能会对微电网的小信号稳定性产生影响。
小信号稳定性是指系统在受到小扰动后能否保持稳定运行的能力,对于孤岛微电网来说,小信号稳定性是非常重要的。
因此,本文旨在研究构网型逆变器和跟网型逆变器交互对孤岛微电网小信号稳定性的影响,为孤岛微电网的优化设计和稳定运行提供理论支持和实践指导。
本文首先将对构网型逆变器和跟网型逆变器的基本原理和控制策略进行介绍,然后建立孤岛微电网的小信号模型,分析构网型逆变器和跟网型逆变器交互对小信号稳定性的影响机理。
接着,本文将通过仿真实验验证理论分析的正确性,并探讨不同参数和控制策略对孤岛微电网小信号稳定性的影响。
本文将提出优化孤岛微电网小信号稳定性的策略和建议,为孤岛微电网的稳定运行和可再生能源的可持续发展提供有益参考。
二、构网型与跟网型逆变器的工作原理构网型逆变器和跟网型逆变器是微电网中的两种关键设备,它们在孤岛微电网小信号稳定性中扮演着不同的角色。
理解这两种逆变器的工作原理,对于分析孤岛微电网的小信号稳定性至关重要。
构网型逆变器,又称为电压源型逆变器(VSI),其主要功能是在微电网中创建一个电压源。
构网型逆变器通过控制其输出电压的幅值、频率和相位,来主动支撑微电网的电压。
在孤岛模式下,构网型逆变器需要保持电压和频率的稳定,防止微电网出现电压和频率的波动。
构网型逆变器通常采用下垂控制策略,通过检测输出电压和电流,调整逆变器的输出电压和频率,以维持微电网的稳定。
电力系统小干扰稳定性分析方法探讨作者:刘桂栋来源:《科技传播》2012年第20期摘要有关电力系统小干扰稳定性分析方法,本文就此进行了较为详细的介绍,并就各种方法进行了相应的探讨,在此基础上,把这些方法在应用上的优点、缺点以及能够适用的场合,进行了较为详细的分析关键词电力系统;小干扰稳定性分析方法;振荡模型中图分类号TM7 文献标识码A 文章编号 1674-6708(2012)77-0029-020引言不同地区之间电力系统进行多重互联,有其利的一面,也有其弊的一面;借助于互联电力系统,不仅可以把有关输电的经济性大大提高,还可以把有关输电的可靠性大幅度提高,这是有利的一面;不利主要体现在,这种互联电网同时也会把很多新的动态问题诱发出来,从而使系统失去稳定的概率大大提高。
电力系统要维持安全运行必须满足一些基本要求,例如电压、频率以及小干扰都要具有相应的稳定性,而且这种稳定性应该是一种动态的稳定性,有关这些基本要求所处地位的特殊性及重要性,正随着电力系统的快速发展,逐渐受到人们的认识和重视。
20世纪70年代以来,因为小干扰稳定性的失去而带来电压崩溃或者系统震荡这种严重事故,都曾经发生在世界上很多国家的电力系统中,从而给这些国家经济的正常发展带来了巨大的威胁,致使经济出现极大的损失。
正是基于此,促使人们对有关电力系统小干扰稳定性这个问题的研究,明显要比上个世纪末来得重视,并且相应的投入也明显增多了;在今天,进行相关电力系统的规划以及为保障电力系统的安全运行,一定要重视对小干扰稳定性进行较为详细的分析,并且要把有关这个稳定性分析作为规划电力系统、保障电力系统安全运行的一个重要内容来对待。
1 有关电力系统小干扰稳定性的分析方法总体看来,有关电力系统小干扰稳定性的分析方法,主要有以下这几种。
1.1 数值仿真方法以下(I)式为一组微分方程,可用来描述电力系统,因为电力系统的扰动具有特定性,根据这个特定性,结合相关数值计算方法(非线性方程)可以把系统变量v ( t )有关其完整的时间响应准确计算出来。
电力系统小干扰稳定性分析【摘要】本文主要研究电力系统小干扰稳定性分析。
阐述了电力系统小干扰稳定性对电力系统的重大意义,对电力系统小干扰稳定性的分析方法进行了总结归纳,并对各种方法的主要原理和适应性进行了详细分析,希望能够为电力系统小干扰稳定性的分析工作提供帮助。
【关键词】电力系统;小干扰稳定性不同地区之间的电力系统的多重互联能够大大提高输电的经济性,但是这种互联电网会把很多动态问题诱发出来,系统更加复杂化,降低了稳定性。
电力系统的安全运行需要满足一定的基本条件要求,例如电压、频率和小干扰等都需要有着相当的稳定性,并且这种稳定性应该是动态的,这些稳定性随着现代社会对电网的依赖越来越大而逐渐被人们重视起来。
从上个世纪70年代开始,小干扰稳定性的失去就已经造成了很多严重的事故,对相关国家造成了严重的经济损失。
为了保证电力系统的稳定性,保证其安全稳定运行,有必要对电力系统的小干扰稳定性进行分析,保障电力系统的安全运行。
一、电力系统小干扰稳定性分析方法1.数值仿真法。
使用一组微分方程来描述电力系统,根据电力系统扰动的特定性结合相关的数值计算方法计算系统变量及其完整的时间响应[1]。
小干扰稳定性问题的本质是不能被时域响应最大程度的体现出来,造成系统稳定性下降的原因即便使用模拟仿真也不能够很好的找出来,也就无从找寻改进措施。
2.线性模型基础上的分析方法。
这种方法是利用线性模型研究小干扰稳定性,使用微分方程和积分方程描述系统动态行为的变化,在稳态运行点现化,获得线性模型[2]。
目前主流的电力系统小干扰稳定性分析方法就是基于线性模型的,目前来看主要有特征性分析方法和领域分析两种,前一种以状态空间模型为描述基础,后一种是基于函数矩阵的方法。
二、特征分析法目前大多数电力系统分析软件都是暂态稳定仿真进行操作的,但是实际中相当多的限制条件约束了这种应用。
相关结果受到选择的扰动或者时域响应观测量的很大影响,选择不合理时系统中的一些关键模式将不能被扰动触发,并且如果选择不合理,进行响应的观察时很多震荡模式中不明显的响应可能就是若阻尼模式[3]。