北师大版九年级上册数学期末复习知识点总结汇编
- 格式:doc
- 大小:146.50 KB
- 文档页数:13
北师大版《数学》(九年级上册)知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一 判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形 (3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
九年级上第一章特殊平行四边形(9课时)目标:经历菱形、矩形、正方形概念的抽象过程,性质与判定的探索、猜测与证明的过程;理解菱形、矩形、正方形的概念,了解它们与平行四边形之间的关系;证明菱形、矩形、正方形的性质定理及判定定理;探索并掌握直角三角形的性质定理,直角三角形斜边上的中线等于斜边的一半。
菱形的性质与判定(3课时),矩形的性质与判定(3课时),正方形的性质与判定(2课时),回顾与思考(1课时);共9课时。
1、菱形的性质与判定有一组邻边相等的平行四边形叫做菱形。
菱形是轴对称图形。
定理:菱形的四条边相等。
定理:菱形的对角线互相垂直。
定理:对角线互相垂直的平行四边形是菱形。
定理:四边相等的四边形是菱形。
2、矩形的性质与判定有一个角是直角的平行四边形叫做矩形。
矩形是轴对称图形。
定理:矩形的四个角都是直角。
定理:矩形的对角线相等。
定理:直角三角形斜边上的中线等于斜边的一半。
定理:对角线相等的平行四边形是矩形。
定理:有三个角是直角的四边形是矩形。
3、正方形的性质与判定有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
正方形既是矩形,又是菱形,它具有矩形与菱形的所有性质。
正方形是轴对称图形。
定理:正方形的四个角都是直角,四条边相等。
定理:正方形的对角线相等且互相垂直平分。
定理:对角线相等的菱形是正方形。
定理:对角线垂直的矩形是正方形。
定理:有一个角是直角的菱形是正方形。
第二章一元二次方程(11课时)目标:经历从具体情境中抽象出一元二次方程的过程;理解一元二次方程相关的概念,理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程,并在这个过程中体会转化的数学思想;经历估计一元二次方程解的过程;会用一元二次方程根的判别式判别方程是否有实数根和两个实数根是否相等;了解一元二次方程的根与系数的关系;利用一元二次方程解决实际问题。
认识一元二次方程(2课时),用配方法求解一元二次方程(2课时),用公式法求解一元二次方程(2课时),用因式分解法求解一元二次方程(1课时),一元二次方程的根与系数的关系(1课时),应用一元二次方程(2课时),回顾与思考(1课时),共11课时。
九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,全部字母的指数的和叫做这个单项式的次数。
假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。
北师大版初中数学九年级(上册)各章知识点第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数第一章特殊平行四边形1.1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
1.2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
〔矩形是轴对称图形,有两条对称轴〕※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
由莲山课件提供://5ykj/资源全部免费1.3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
〔正方形是轴对称图形,有两条对称轴〕※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
一个内角为直角菱形※一条腰和底垂直的梯形叫做直角梯形。
一组邻边相等〔或对角线相等〕平行四边形一组邻边相等且一个内角为直角〔或对角线互相垂直平分〕正方形一邻边相等矩形一内角为直角或对角线垂直鹏翔教图3※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
北师大版-数学九年级上册知识点归纳总结第一章特殊的平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。
(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
(边)(3)定理2:对角线互相垂直的平行四边形是菱形。
(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
北师大版九年级数学上册第三章知识点总结《北师大版九年级数学上册第三章知识点总结》嘿,宝子们。
今天咱们来唠唠北师大版九年级数学上册第三章的那些知识点。
这一章呢,有好多重要的东西。
像证明(三)这部分,平行四边形可是个大主角。
平行四边形的性质可不少,对边平行且相等,对角也相等呢。
就好比咱们生活中的那种平行的栏杆,两边总是规规矩矩地保持着自己的状态。
而且平行四边形的对角线互相平分,这就像两个人分东西,分得那叫一个公平。
再说说特殊的平行四边形吧。
矩形,这家伙可特别了。
它是平行四边形的一种特殊情况,四个角都是直角。
想象一下家里的那种方方正正的相框,四个角都是九十度,规规矩矩的。
矩形的对角线不仅互相平分,还相等呢。
这就好比它比普通的平行四边形又多了点“小特权”。
菱形也不甘示弱呀。
菱形的四条边都相等,就像一个规规矩矩的小方块被拉成了斜斜的样子,但是四条边依旧保持着相等的长度。
它的对角线互相垂直,而且还平分每一组对角呢。
感觉菱形就像是一个很有个性的平行四边形,有着自己独特的魅力。
还有正方形呢,正方形可就厉害了。
它既是矩形又是菱形,所以它既有矩形四个角是直角的特点,又有菱形四条边相等的优点。
就像是一个集万千优点于一身的学霸,啥都好。
在证明这些图形的性质和判定的时候,也有很多小窍门。
比如说要证明一个四边形是平行四边形,咱们可以从对边相等、对边平行、对角线互相平分等方面入手。
要是证明矩形呢,就可以先证明它是平行四边形,再加上一个角是直角这个条件。
菱形的话,可以先证平行四边形,再加上邻边相等之类的。
这些知识点在咱们做数学题的时候可太重要了。
就像盖房子的砖头一样,少了哪一块都不行。
有时候遇到一道几何证明题,你就得在脑袋里把这些知识点过一遍,看看哪个能用得上。
就像从自己的小百宝箱里找工具一样,找对了工具,问题就迎刃而解了。
我觉得这一章的知识点虽然有点多,但是只要咱们把每个图形的特点和判定方法都搞清楚,就像熟悉自己的朋友一样,做数学题的时候就不会害怕了。
九年级数学上册知识点归纳北师大版第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数八下前情回顾※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...;※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分;※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形;※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等;这个距离称为平行线之间的距离;第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形;※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角;菱形是轴对称图形,每条对角线所在的直线都是对称轴;※菱形的判别方法:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形;2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..;矩形是特殊的平行四边形; ※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角;矩形是轴对称图形,有两条对称轴※矩形的判定:有一个内角是直角的平行四边形叫矩形根据定义;对角线相等的平行四边形是矩形;四个角都相等的四边形是矩形;※推论:直角三角形斜边上的中线等于斜边的一半;3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形;※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质;正方形是轴对称图形,有两条对称轴※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形;正方形、矩形、菱形和平行边形四者之间的关系如图3所示:※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形;※两条腰相等的梯形叫做等腰梯形;※一条腰和底垂直的梯形叫做直角梯形;※夹在两条平行线间的平行线段相等; ※在直角三角形中,斜边上的中线等于斜边的一半第二章 一元二次方程1认识一元二次方程※只含有一个未知数的整式方程,且都可以化为02=++c bx ax a 、b 、c 为 常数,a ≠0的形式,这样的方程叫一元二次方程......; ※把02=++c bx ax a 、b 、c 为常数,a ≠0称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项;2用配方法求解一元二次方程①配方法 <即将其变为0)(2=+m x 的形式>※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成0)(2=+m x 的形式;⑥两边开方求其根;3用公式法求解一元二次方程图3②公式法 aac b b x 242-±-= 注意在找abc 时须先把方程化为一般形式 4用因式分解法求解一元二次方程③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解;主要包括“提公因式”和“十字相乘”5一元二次方程的根与系数的关系※根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根;当b 2-4ac<0时,方程无实数根;※如果一元二次方程02=++c bx ax 的两根分别为x 1、x 2,则有:ac x x a bx x =⋅-=+2121; ※一元二次方程的根与系数的关系的作用:1已知方程的一根,求另一根;2不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x x x x +=+ ③212212214)()(x x x x x x -+=- ④21221214)(||x x x x x x -+=- ⑤||22)(|)||(|2121221221x x x x x x x x +-+=+⑥)(3)(21213213231x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式;3已知方程的两根x 1、x 2,可以构造一元二次方程:0)(21221=++-x x x x x x 4已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程0)(21221=++-x x x x x x 的根6应用一元二次方程※在利用方程来解应用题时,主要分为两个步骤:①设未知数在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑;②寻找等量关系一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程;※处理问题的过程可以进一步概括为: 解答检验求解方程抽象分析问题→→第三章 概率的进一步认识用树状图或表格求概率相关知识点链接:频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率;概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值;必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间;知识点1频率与概率的含义在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即=频数频率总次数把刻画事件A 发生的可能性大小的数值,称为事件A 发生的概率;知识点2通过实验运用稳定的频率来估计某一时间的概率在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近;我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率; 知识点3利用画树状图或列表法求概率重难点第四章 图形的相似1成比例线段一. 线段的比※1. 如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. ※2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a=,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※3. 注意点:①a:b=k,说明a 是b 的k 倍;②由于线段 a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b 之外,a:b ≠b:a, b a 与a b 互为倒数; ⑤比例的基本性质:若d c b a =, 则ad=bc; 若ad=bc, 则dc b a = 2平行线分线段成比例 ※1. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l 1 EF BC DE AB =二. 黄金分割 ※1. 如图1,点C 把线段AB 分成两条线段AC 和BC,如果AC BC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比._ 图1 _B_C _A _ 图2 _ F _ E _ D _ C_ B _ A _l_3 _l _2 _l _11:618.0215:≈-=AB AC ※2.黄金分割点是最优美、最令人赏心悦目的点.3相似多边形1. 一般地,形状相同的图形称为相似图形.※2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.※1. 在相似多边形中,最为简单的就是相似三角形.※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上. ※4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. ※5. 相似三角形周长的比等于相似比.※6. 相似三角形面积的比等于相似比的平方.※相似多边形的周长等于相似比;面积比等于相似比的平方.4探索三角形相似的条件※1. 相似三角形的判定方法:基本定理:平行于三角形的一边且和其他两边或两边的延长线相交的直线,所截得的三角形与原三角形相似.※2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图2, l 1 EFBC DE AB ※3. 平行于三角形一边的直线与其他两边或两边的延长线相交,所构成的三角形与原三角形相似.5相似三角形的判定定理的证明6利用相似三角形测高7相似三角形的性质8图形的位似 第五章 投影与视图A 三视图主视图——从正面看到的图左视图——从左面看到的图俯视图——从上面看到的图画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等.虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线.B 投影物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象. 太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影; 在同一时刻,物体高度与影子长度成比例.物体的三视图实际上就是该物体在某一平行光线垂直于投影面的平行光线下的平行投影.探照灯,手电筒,路灯,和台灯的光线可以看成是从一点出发的光线,像这样的光线所形成的投影称为中心投影皮影和手影都是在灯光照射下形成的影子.它们是中心投影;C 视点、视线、盲区的定义以及在生活中的应用;.眼睛所在的位置称为视点,.由视点发出的光线称为视线,.眼睛看不到的地方称为盲区第六章 反比例函数知识点1 反比例函数的定义一般地,形如xk y =k 为常数,0k ≠的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分;⑷反比例函数有三种表达式: ①x k y =0k ≠, ②1kx y -=0k ≠,③k y x =⋅定值0k ≠; ⑸函数xk y =0k ≠与y k x =0k ≠是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数;k 为常数,0k ≠是反比例函数的一部分,当k=0时,x k y =,就不是反比例函数了,由于反比例函数xk y =0k ≠中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式;知识点2用待定系数法求反比例函数的解析式 由于反比例函数xk y =0k ≠中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式;知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴;反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线;再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右或从右至左用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交;知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:k 的 符号 图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠ ②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小; ①x 的取值范围是0x ≠,y的取值范围是0y ≠②当0k <时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y 随x的增大而增大;注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾;反比例函数图像的位置和函数的增减性,是有反比例函数系数k 的符号决定的,反过来,由反比例函数图像双曲线的位置和函数的增减性,也可以推断出k 的符号;如xk y =在第一、第三象限,则可知0k >; ☆反比例函数x k y =0k ≠中比例系数k 的绝对值k 的几何意义; 如图所示,过双曲线上任一点Px,y 分别作x 轴、y 轴的垂线,E 、F 分别为垂足, 则OEPF S PE PF y x xy 矩形=⋅=⋅==k☆ 反比例函数x k y =0k ≠中,k 越大,双曲线x k y =越远离坐标原点;k 越小,双曲线xk y =越靠近坐标原点; ☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x 和直线y=-x;。
第一章 特殊平行四边形第1节 菱形的性质与判定一、菱形的性质1、菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
(1)菱形的对边平行且相等。
(2)菱形的对角相等,邻角互补。
(3)菱形的对角线互相平分。
2、菱形是特殊的平行四边形,它具有一般平行四边形不具有的特殊性质。
(1)菱形的四条边相等。
(2)菱形的对角线互相垂直且每一条对角线平分一组对角。
【说明】①菱形是轴对称图形,对角线所在的直线是它的对称轴,所以菱形有两条对称轴。
②菱形是中心对称图形,两条对角线的交点是它的对称中心。
③菱形的两条对角线把菱形分成四个全等的直角三角形,所以菱形的面积等于对角线乘积的一半。
不仅如此,凡是对角线互相垂直的四边形的面积都可以用两条对角线乘积的一半来计算。
④菱形的面积有两种求法,第一种是等于对角线乘积的一半,第二种是底乘以高。
⑤菱形中如果有一个角为60°倍。
二、菱形的判定1、有一组邻边相等的平行四边形叫做菱形。
(定义)2、对角线互相垂直的平行四边形是菱形。
3、四条边都相等的四边形是菱形。
第2节 矩形的性质与判定一、矩形的性质1、矩形是特殊的平行四边形,它具有一般平行四边形的所有性质。
(1)矩形的对边平行且相等。
(2)矩形的对角相等,邻角互补。
(3)矩形的对角线互相平分。
2、矩形是特殊的平行四边形,它具有一般平行四边形不具有的特殊性质。
(1)矩形的四个角都相等,都是直角。
(2)矩形的对角线相等。
【说明】①矩形是轴对称图形,经过每组对边中点的直线是它的两条对称轴。
②矩形是中心对称图形,两条对角线的交点是它的对称中心。
③直角三角形斜边上的中线等于斜边的一半。
④若一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形。
⑤矩形的周长等于长与宽的和的2倍,矩形的面积等于长与宽的积。
二、矩形的判定1、有一个角是直角的平行四边形叫做矩形。
(定义)2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章图形的相似第四章投影与视图第五章反比例函数第六章概率的进一步认识(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。
北师大版《数学》(九年级上册)知识点总结第一章证明(二)1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
北师大版九年级上册数学期末复习知识点总结汇编第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数第一章特殊平行四边形1.1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形.※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.菱形是轴对称图形,每条对角线所在的直线都是对称轴.※菱形的判别方法:一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边都相等的四边形是菱形.1.2 矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形.矩形是特殊的平行四边形...※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).对角线相等的平行四边形是矩形.四个角都相等的四边形是矩形.※推论:直角三角形斜边上的中线等于斜边的一半.1.3 正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形.※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形.正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.※两条腰相等的梯形叫做等腰梯形.※一条腰和底垂直的梯形叫做直角梯形.图3※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等.同一底上的两个内角相等的梯形是等腰梯形.※三角形的中位线平行于第三边,并且等于第三边的一半.※夹在两条平行线间的平行线段相等.※在直角三角形中,斜边上的中线等于斜边的一半第二章 一元二次方程2.1 认识一元二次方程......2.2 ...用.配方法求解.....一元二次方程......2.3 用公式法求解一元二次方程2.4 用因式分解法求解一元二次方程2.5 一元二次方程的跟与系数的关系2.6 应用一元二次方程※只含有一个未知数的整式方程,且都可以化为02=++c bx ax (a 、b 、c 为常数,a ≠0)的形式,这样的方程叫一元二次方程....... ※把02=++c bx ax (a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项.※解一元二次方程的方法:①配方法 <即将其变为0)(2=+m x 的形式> ②公式法 aac b b x 242-±-= (注意在找abc 时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解.(主要包括“提公因式”和“十字相乘”)※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成0)(2=+m x 的形式; ⑥两边开方求其根.※根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根;当b 2-4ac<0时,方程无实数根.※如果一元二次方程02=++c bx ax 的两根分别为x 1、x 2,则有:ac x x a bx x =⋅-=+2121. ※一元二次方程的根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x x x x +=+ ③212212214)()(x x x x x x -+=- ④21221214)(||x x x x x x -+=-⑤||22)(|)||(|2121221221x x x x x x x x +-+=+ ⑥)(3)(21213213231x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式.(3)已知方程的两根x 1、x 2,可以构造一元二次方程:0)(21221=++-x x x x x x (4)已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程0)(21221=++-x x x x x x 的根※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程).※处理问题的过程可以进一步概括为: 解答检验求解方程抽象分析问题→→ 第三章 概率的进一步认识3.1 用树状图或表格求概率3.2 用频率估计概率※在频率分布表里,落在各小组内的数据的个数叫做频数..; 每一小组的频数与数据总数的比值叫做这一小组的频率..; 即:实验次数频数数据总数频数频率== 在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1.因此,各个小长方形的面积的和等于1.※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观.用一件事件发生的频率来估计这一件事件发生的概率.可用列表的方法求出概率,但此方法不太适用较复杂情况.※假设布袋内有m 个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x 条鱼,则可依照20010100 x 估算出鱼的条数.(注意估算出来的数据不是确切的,所以应谓之“约是XX ”)※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生.概率的求法:(1)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 个结果,那么事件A 发生的概率为P (A )=nm (2)、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法.(3)树状图法通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法.(当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.)第四章 图形的相似4.1 成正比线段4.2 平行线段成比例4.3 形似多边形4.4 探索三角形相似的条件4.5 相似三角形判定定理的证明4.6 利用相似三角形测高4.7 相似三角形的性质4.8 图形的位似一. 线段的比※1. 如果选用同一个长度单位量得两条线段AB , CD 的长度分别是m 、n ,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. ※2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※3. 注意点:①a:b=k ,说明a 是b 的k 倍;②由于线段 a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; ④除了a=b 之外,a:b ≠b:a ,b a 与a b 互为倒数; ⑤比例的基本性质:若d c b a =, 则ad=bc; 若ad=bc , 则dc b a = 二. 黄金分割※1. 如图1,点C 把线段AB 分成两条线段AC 和BC ,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC※2.黄金分割点是最优美、最令人赏心悦目的点.四. 相似多边形¤1. 一般地,形状相同的图形称为相似图形.※2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.五. 相似三角形※1. 在相似多边形中,最为简简单的就是相似三角形.※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5. 相似三角形周长的比等于相似比._ 图1 _ B_ C _ A※6. 相似三角形面积的比等于相似比的平方.六.探索三角形相似的条件※1. 相似三角形的判定方法:基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.※2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l 1 // l 2 // l 3,则EF BC DE AB ._图2_ F _ E _ D _ C _ B _ A _ l _3 _ l _2 _ l _1※3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质※相似多边形的周长等于相似比;面积比等于相似比的平方.九. 图形的放大与缩小※1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.※2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.◎3. 位似变换:①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.③利用位似的方法,可以把一个图形放大或缩小.第五章投影与视图5.1 投影5.2 视图※三视图包括:主视图、俯视图和左视图.三视图之间要保持长对正,高平齐,宽相等.一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边.主视图:基本可认为从物体正面视得的图象俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上.※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体).※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线. 物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影... 太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影..... 探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影..... ※区分平行投影和中心投影:①观察光源;②观察影子.眼睛的位置称为视点..;由视点发出的线称为视线..;眼睛看不到的地方称为盲区... ※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影. ①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度.③平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状.第六章 反比例函数6.1 反比例函数6.2 反比例函数的图像与性质6.3 反比例函数的应用※反比例函数的概念:一般地,xk y =(k 为常数,k ≠0)叫做反比例函数,即y 是x 的反比例函数. (x 为自变量,y 为因变量,其中x 不能为零)※反比例函数的等价形式:y 是x 的反比例函数 ←→ )0(≠=k xk y ←→ )0(1≠=-k kx y ←→ )0(≠=k k xy ←→ 变量y 与x 成反比例,比例系数为k.※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即k xy =>.(通常第二种方法更适用)※反比例函数的图象由两条曲线组成,叫做双曲线※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;②选取的点越多画的图越准确;③画图注意其美观性(对称性、延伸特征).※反比例函数性质:①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y随x的增大而增大;③双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交.※反比例函数图象的几何特征:(如图4所示)点P(x,y)||k。