2020届苏教版(文科数学) 概率与统计
- 格式:doc
- 大小:68.50 KB
- 文档页数:6
第1讲统计考试要求 1.抽样方法,分布的意义和作用,样本估计总体的思想(A级要求);2.频率分布表、频率分布直方图、频率分布折线图、茎叶图及各自特点(A级要求);3.样本数据的数字特征(如平均数、标准差)的意义和作用,它们的计算并作出合理的解释(B级要求);4.用样本的频率分布估计总体分布,用样本的基本数字特征估计总体的基本数字特征(B级要求).知识梳理1.简单随机抽样(1)定义:一般地,从容量为N的总体中逐个不放回地取出n个个体作为样本(n∈N),如果每个个体都有相同的机会被取到,那么这样的抽样方法,称为简单随机抽样.(2)最常用的简单随机抽样方法有两种——抽签法和随机数表法.2.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.①采用随机的方法将总体中的N个个体编号;②将编号按间隔k分段,当Nn是整数时,取k=Nn;当Nn不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N′能被n整除,这时取k=N′n,并将剩下的总体重新编号;③在第一段中用简单随机抽样确定起始的个体编号l;④按照一定的规则抽取样本,通常将编号为l,l+k,l+2k,…,l+(n-1)k的个体抽出.3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”.(2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法.4.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.频率分布直方图的特点说明①频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距. ②频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.③频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.5.频率分布折线图和总体密度曲线(1)频率分布折线图:将频率分布直方图中各个相邻的矩形的上底边的中点顺次连结起来,就得到频率分布折线图.(2)总体分布的密度曲线:将样本容量取得足够大,分组的组距取得足够小,那么相应的频率分布折线图趋于一条光滑曲线,称这条光滑曲线为总体分布的密度曲线.6.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.7.标准差和方差(1)标准差是样本数据到平均数的一种平均距离.(2)标准差:s =1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].(3)方差:s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2](x n 是样本数据,n 是样本容量,x -是平均数).方差的公式推广的说明(1)若数据x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是mx -+a .(2)数据x 1,x 2,…,x n 的方差为s 2.①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2;②数据ax 1,ax 2,…,ax n 的方差为a 2s 2.8.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.诊断自测1.(2018·宿迁摸底)某校高三年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人.为研究血型与色弱之间的关系,现用分层抽样的方法从这500名学生中抽取一个容量为60的样本,则应抽取________名血型为AB型的学生.解析由题意,从这500名学生中抽取一个容量为60的样本,抽样比例为60500=325,所以应抽取50×325=6名血型为AB型的学生.答案 62.(2018·全国Ⅲ卷)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.解析因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分层抽样,才能了解到不同年龄段的客户对公司服务的客观评价.答案分层抽样3.(1)某学校为了了解2016年高考数学学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法问题与方法配对正确的是________.解析通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法. 答案(1)Ⅲ(2)Ⅰ4.(必修3P81复习题8改编)一个社会调查机构就某地居民的月收入情况调查了10 000人,并根据所得数据画出样本的频率分布直方图(如图所示).为了分析居民的收入与年龄、学历、职业等方面的关系,再从这10 000人中用分层抽样的方法抽出100人作进一步调查,则在[2 500,3 500)(元/月)收入段应抽出________人.解析(0.000 5+0.000 3)×500×100=40.答案405.(2018·江苏卷)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.解析由茎叶图可得分数的平均数为89+89+90+91+915=90.答案90考点一随机抽样角度1简单随机抽样【例1-1】(1)以下抽样方法是简单随机抽样的有________(填序号).①在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖;②某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格;③某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见;④用抽签方法从10件产品中选取3件进行质量检验.(2)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.解析(1)①、②不是简单随机抽样,因为抽取的个体间的间隔是固定的;③不是简单随机抽样,因为总体的个体有明显的层次;④是简单随机抽样.(2)由题意知前5个个体的编号为08,02,14,07,01.答案(1)④(2)01规律方法应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.角度2系统抽样【例1-2】(1)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 解析(1)由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]的运动员共有4组,故由系统抽样法知,共抽取4名.(2)由84042=20,即每20人抽取1人,所以抽取编号落在区间[481,720]的人数为720-48020=24020=12.答案(1)4(2)12规律方法(1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.角度3分层抽样【例1-3】(1)(2019·南京学情调研)某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽取的学生人数为________名. (2)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.解析(1)应从丙专业抽取的学生人数为400×40=16名.150+150+400+300(2)分层抽样中各层的抽样比相同.样本中甲设备生产的产品有50件,则乙设备生产的产品有30件.在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1 800件.答案(1)16(2)1 800规律方法(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.分层抽样的有关计算,转化为按比例列方程或算式求解.【训练1】(1)高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是________.(2)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为________.解析(1)分段间隔为524=13,故还有一个学生的编号为5+13=18.(2)由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n项,显然有729=459+(n-1)×30,解得n=10.所以做问卷B的有10人.答案(1)18(2)10考点二总体分布估计角度1用样本的频率分布估计总体的频率分布【例2-1】(2018·全国Ⅰ卷)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解 (1)如图所示.(2)根据以上数据,该家庭使用节水龙头后50天的日用水量小于0.35 m 3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m 3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天的日用水量的平均数为x -1=150(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头后50天的日用水量的平均数为x -2=150(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m 3).规律方法 用频率分布直方图解决相关问题时,应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个要点:(1)纵轴表示频率/组距;(2)频率分布直方图中各长方形高的比也就是其频率之比;(3)直方图中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.【训练2-1】 某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.解 (1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1,得x =0.007 5,所以直方图中x 的值为0.007 5. (2)月平均用电量的众数是220+2402=230. ∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240]中,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5.解得a=224,即中位数为224.角度2用茎叶图估计总体的分布【例2-2】某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.解(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.规律方法(1)茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.(2)①作样本的茎叶图时先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.②给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.【训练2-2】(2019·南京、盐城一模)重庆市2017年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是________.解析从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20.答案20角度3用样本的数字特征估计总体的数字特征【例2-3】(1)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.(2)甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.①分别求出两人得分的平均数与方差;②根据图和上面算得的结果,对两人的训练成绩作出评价. (1)解析x -甲=15(87+91+90+89+93)=90,x -乙=15(89+90+91+88+92)=90,s 2甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4, s 2乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2. 答案 2(2)解 ①由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分.x -甲=10+13+12+14+165=13;x -乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4; s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. ②由s 2甲>s 2乙,可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.规律方法(1)平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行平均数与方差的计算,关键是正确运用公式.(2)平均数与方差所反映的情况有着重要的实际意义,一般可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种可以做出评价或选择.【训练2-3】为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为________.解析甲地5天的气温为:26,28,29,31,31,其平均数为x-甲=26+28+29+31+315=29;方差为s2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;标准差为s甲= 3.6.乙地5天的气温为:28,29,30,31,32,其平均数为x-乙=28+29+30+31+325=30;方差为s2乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s乙= 2.∴x-甲<x-乙,s甲>s乙.答案①④一、必做题1.(2017·江苏卷)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件. 解析 应从丙种型号的产品中抽取60×300200+400+300+100=18(件).答案 182.(2016·江苏卷)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. 解析 易求x -=15(4.7+4.8+5.1+5.4+5.5)=5.1,∴方差s 2=15[(-0.4)2+(-0.3)2+02+0.32+0.42]=0.1.答案 0.13.(2018·全国Ⅰ卷改编)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如图所示的饼图:则下面结论中不正确的有________(填序号).①新农村建设后,种植收入减少;②新农村建设后,其他收入增加了一倍以上;③新农村建设后,养殖收入增加了一倍;④新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半.解析法一设新农村建设前经济收入为a,则新农村建设后经济收入为2a,则由饼图可得新农村建设前种植收入为0.6a,其他收入为0.04a,养殖收入为0.3a.新农村建设后种植收入为0.74a,其他收入为0.1a,养殖收入为0.6a,养殖收入与第三产业收入的总和为1.16a,所以新农村建设后,种植收入减少是错误的.故填①.法二因为0.6<0.37×2,所以新农村建设后,种植收入增加,而不是减少,所以①是错误的.故填①.答案①4.(2019·扬州期末检测)为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2 000名男生中体重在70~78 kg的人数为________.解析根据频率分布直方图,估计该校2 000名男生中体重在70~78 kg的人数为2 000×(0.02+0.01)×4=240.答案2405.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160进行编号,并按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若按等距的规则从第16组抽出的号码为126,则第1组中用抽签法确定的号码是________.解析第1组中用抽签法确定的号码是126-15×8=6.答案 66.(2019·镇江模拟)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图,后来有1个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为________.解析由题意知87+94+90+91+90+90+x+917=91,解得x=4.所以s2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=17(16+9+1+0+1+9+0)=367.答案36 77.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为________.解析由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495得1034<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17.答案25,17,88.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.解析(1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.答案(1)3(2)6 0009.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.解析将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x人,则40200=x100,解得x=20.答案372010.某车间20名工人年龄数据如下表:年龄(岁) 工人数(人)192829303132401335431合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.解(1)这20名工人年龄的众数为30;这20名工人年龄的极差为40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:(3)这20名工人年龄的平均数为(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;所以这20名工人年龄的方差为120[(19-30)2+3×(28-30)2+3×(29-30)2+5×(30-30)2+4×(31-30)2+3×(32-30)2+(40-30)2]=12.6.11.某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.解(1)由用水量的频率分布直方图,知该市居民该月用水量在区间[0.5,1),[1,1.5),[1.5,2),[2,2.5),[2.5,3)内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表如下:根据题意,该市居民该月的人均水费估计为4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).二、选做题12.(2019·苏、锡、常、镇调研)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解(1)样本数据的频率分布直方图如图所示:(2)质量指标值的样本平均数为x -=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 质量指标值的样本方差为s 2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104. 所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104. (3)质量指标值不低于95的产品所占比例的估计值为 0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.13.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解 (1)由频率分布直方图可知:月均用水量在[0,0.5)内的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a +0.5×a , 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.。
第3讲几何概型考试要求以理解几何概型的概念、概率公式为主,会求一些简单的几何概型的概率,常与平面几何、线性规划、不等式的解集等知识交汇考查.在高考中常以填空题的形式考查,难度为中档.知识梳理1.几何概型设D是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点.这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比,与d的形状和位置无关.我们把满足这样条件的概率模型称为几何概型.2.几何概型的概率计算公式一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)=d的测度D的测度.3.要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.()(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.()(4)与面积有关的几何概型的概率与几何图形的形状有关.()(5)从区间[0,10]内任取一个数,取到1的概率是P=19.()解析(4)与面积的比值有关,(5)中[1,10]内无穷多个数,应为P=0.答案(1)√(2)√(3)√(4)×(5)×2.(2019·南京学情调研)记函数f(x)=4-3x-x2的定义域为D.若在区间[-5,5]上随机取一个数x,则x∈D的概率为________.解析要使函数f(x)有意义,则4-3x-x2≥0,解得-4≤x≤1,即D=[-4,1],若在区间[-5,5]上随机取一个数x,则x∈D的概率为P=1-(-4)5-(-5)=12.答案1 23.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是________.解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13, ∴P (A )>P (C )=P (D )>P (B ). 答案 ①4.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是________.解析 如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域,易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4.答案4-π45.在Rt△ABC中,∠A=30°,过直角顶点C作射线CM交线段AB于点M,则AM>AC 的概率为________.解析设事件D为“作射线CM,使AM>AC”.在AB上取点C′使AC′=AC,因为△ACC′是等腰三角形,所以∠ACC′=180°-30°2=75°,事件D发生的区域μD=90°-75°=15°,构成事件总的区域μΩ=90°, 所以P (D )=μD μΩ=15°90°=16.答案 16考点一 与长度、角度有关的几何概型【例1】 (1)(2018·江苏高考冲刺卷)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝⎛⎭⎪⎫x +12≤1”发生的概率为________.(2)如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ︵,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.解析 (1)由-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1,可得12≤x +12≤2,解得0≤x ≤32,结合几何概型的概率公式,可得所求的概率P =32-02-0=34.(2)因为在∠DAB 内任作射线AP ,所以它的所有等可能事件所在的区域H 是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,所以射线AP 与线段BC 有公共点的概率为∠CAB ∠DAB =30°90°=13.答案 (1)34 (2)13规律方法 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).【训练1】 (1)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.(2)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为________. 解析 (1)方程x 2+2px +3p -2=0有两个负根,则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧4p 2-4(3p -2)≥0,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5], 则所求概率为P =3+135=1035=23.(2)至少需要等待15秒才出现绿灯的概率为40-1540=58.答案 (1)23 (2)58考点二 与面积有关的几何概型 角度1 与平面图形面积有关的问题【例2-1】 从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为________.解析 如图,数对(x i ,y i )(i =1,2,…,n )表示的点落在边长为1的正方形OABC 内(包括边界),两数的平方和小于1的数对表示的点落在半径为1的四分之一圆(阴影部分)内.由几何概型的概率计算公式知P =S 扇形S 正方形=14π1=π4,又P =m n ,所以π4=m n ,故π=4mn .答案 4m n角度2 与线性规划知识交汇命题的问题【例2-2】 由不等式组⎩⎨⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎨⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________.解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝ ⎛⎭⎪⎫-12,32,故由几何概型的概率公式,得所求概率P =S 四边形OACDS △OAB =S △OAB -S △BCD S △OAB=2-142=78.答案 78规律方法 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解. 【训练2】 (2019·苏、锡、常、镇四市调研)欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超,若铜钱直径4厘米,中间有边长为1厘米的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是________.解析 油恰好落入孔中的概率为12π×22=14π. 答案 14π考点三 与几体积有关的几何概型【例3】 (1)已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC <12V S -ABC 的概率是________.(2)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M -ABCD 的体积小于16的概率为________.解析 (1)当P 在三棱锥的中截面以下时符合V P -ABC <12V S -ABC ,由几何概型知, P =1-18=78.(2)过点M作平面RS∥平面AC,则两平面间的距离是四棱锥M-ABCD的高,显然点M在平面RS上任意位置时,四棱锥M-ABCD的体积都相等.若此时四棱锥M-ABCD的体积等于16,只要M在截面以下即可小于16,当V M-ABCD=16时,即13×1×1×h=16,解得h=12,所以所求概率P=1×1×121×1×1=12.答案(1)78(2)12规律方法求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可以利用其对立事件去求.【训练3】如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是________.解析正方体的体积为23=8,圆锥的体积为13×π×12×2=2π3,故“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率为8-2π38=1-π12.答案1-π12一、必做题1.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是________. 解析如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB中,而当他的到达时间落在线段AC或DB上时,才能保证他等车的时间不超过10分钟,根据几何概型,得所求概率P=10+10 40=1 2.答案1 22.(2017·江苏卷)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.解析 由6+x -x 2≥0得-2≤x ≤3,即D 为[-2,3].故所求概率P =3-(-2)5-(-4)=59.答案 593.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是________.解析 设阴影部分的面积为S ,且圆的面积S ′=π×32=9π.由几何概型的概率,得SS ′=13,则S =3π. 答案 3π4.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为________.解析 由|z |≤1可得(x -1)2+y 2≤1,表示以(1,0)为圆心,1为半径的圆及其内部,满足y ≥x 的部分为如图阴影部分所示,由几何概型概率公式可得所求概率为 P =14π×12-12×12π×12=π4-12π=14-12π.答案 14-12π5.(2018·镇江模拟)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为________.解析 由x ,y ∈[0,4]知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分.易知A (4,2),S 正方形=16,S 阴影=(2+4)×42=12.故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.答案 346.如图,在长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.解析 因为V AA 1BD =V A 1-ABD =13AA 1×S △ABD =16×AA 1×S 矩形ABCD =16V 长方体, 故所求概率为V A -A 1BD V 长方体=16.答案 167.在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.解析 直线y =kx 与圆(x -5)2+y 2=9相交的充要条件是圆心(5,0)到直线y =kx 的距离小于3. 则|5k -0|k 2+1<3,解之得-34<k <34,故所求事件的概率P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34. 答案 348.(2019·江苏高考冲刺卷)如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自白色区域的概率为________.解析由题设条件,得正方形的内切圆的半径为4,黑色大圆的半径为2,黑色小圆的半径为1,所以白色区域的面积为π×42-π×22-4×π×12=8π,所以所求概率为8π82=π8.答案π89.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为________.解析如图,当BE=1时,∠AEB为直角,则点D在线段BE(不包含B,E点)上时,△ABD为钝角三角形;当BF=4时,∠BAF为直角,则点D在线段CF(不包含C,F点)上时,△ABD为钝角三角形.所以△ABD为钝角三角形的概率为1+26=12.答案1 210.在区间[-π,π]内随机取出两个数分别记为a,b,求函数f(x)=x2+2ax-b2+π2有零点的概率.解由函数f(x)=x2+2ax-b2+π2有零点,可得Δ=(2a)2-4(-b2+π2)≥0,整理得a2+b2≥π2,如图所示,(a,b)可看成坐标平面上的点,试验的全部结果构成的区域为Ω={(a,b)|-π≤a≤π,-π≤b≤π},其面积SΩ=(2π)2=4π2.事件A表示函数f(x)有零点,所构成的区域为M={(a,b)|a2+b2≥π2},即图中阴影部分,其面积为S M=4π2-π3,故P(A)=S MSΩ=4π2-π34π2=1-π4.11.已知向量a=(-2,1),b=(x,y).(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=-1的概率;(2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.解(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36,由a·b=-1,得-2x+y=-1,所以满足a·b=-1的基本事件为(1,1),(2,3),(3,5),共3个.故满足a·b=-1的概率为336=112.(2)若x,y在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x,y)|1≤x≤6,1≤y≤6}.满足a·b<0的基本事件的结果为A={(x,y)|1≤x≤6,1≤y≤6且-2x+y<0}.画出图象如图所示,矩形的面积为S矩形=25,阴影部分面积为S阴影=25-12×2×4=21,故满足a·b<0的概率为21 25.二、选做题12.(2018·全国Ⅰ卷改编)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则下列结论正确的有________(填序号).①p 1=p 2;②p 1=p 3;③p 2=p 3;④p 1=p 2+p 3.解析 法一 设直角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则区域Ⅰ的面积即△ABC 的面积,为S 1=12bc ,区域Ⅱ的面积S 2=12π×⎝ ⎛⎭⎪⎫c 22+12π×⎝ ⎛⎭⎪⎫b 22-⎣⎢⎢⎡⎦⎥⎥⎤π×⎝ ⎛⎭⎪⎫a 222-12bc=18π(c 2+b 2-a 2)+12bc =12bc ,所以S 1=S 2,由几何概型的知识知p 1=p 2,故填①.法二 不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2,区域Ⅱ的面积S 2=π×12-⎣⎢⎡⎦⎥⎤π×(2)22-2=2,区域Ⅲ的面积S 3=π×(2)22-2=π-2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2,所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故填①.答案 ①13.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,求它们中的任意一艘都不需要等待码头空出的概率.解设甲、乙两艘船到达码头的时刻分别为x与y,记事件A为“两船都不需要等待码头空出”,则0≤x≤24,0≤y≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h以上或乙比甲早到达2 h以上,即y-x≥1或x-y≥2.故所求事件构成集合A={(x,y)|y-x≥1或x-y≥2,x∈[0,24],y∈[0,24]}.A为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部.所求概率为P(A)=A的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.。
§10.2 抽样方法考情考向分析 在抽样方法的考查中,系统抽样,分层抽样是考查的重点,题型主要以填空题为主,属于中低档题.1.简单随机抽样(1)定义:一般地,从个体数为N 的总体中逐个不放回地取出n 个个体作为样本(n <N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样. (2)最常用的简单随机抽样方法有两种——抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)采用随机的方式将总体中的N 个个体编号;(2)将编号按间隔k 分段,当N n 是整数时,取k =N n ;当Nn 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n ,并将剩下的总体重新编号;(3)在第一段中用简单随机抽样确定起始的个体编号l ;(4)按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. 3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”. (2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法.概念方法微思考三种抽样方法有什么共同点和联系?提示 (1)抽样过程中每个个体被抽取的机会均等.(2)系统抽样中在起始部分抽样时采用简单随机抽样;分层抽样中各层抽样时采用简单随机抽样或系统抽样.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)简单随机抽样是一种不放回抽样.(√)(2)抽签法中,先抽的人抽中的可能性大.(×)(3)系统抽样在第1段抽样时采用简单随机抽样.(√)(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.(×)(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(×)题组二教材改编2.[P52习题T1]某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________.答案分层抽样法解析从全体学生中抽取100名宜用分层抽样法,按男、女学生所占的比例抽取.3.[P52习题T4]某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_____名学生.答案15解析从高二年级中抽取的学生数与抽取学生总数的比为310,所以应从高二年级抽取学生人数为50×310=15.4.[P52习题T2]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是________.答案16解析从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16.题组三易错自纠5.在一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则________.答案p1=p2=p3解析由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等.6.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 1 800解析 分层抽样中各层的抽样比相同.样本中甲设备生产的产品有50件,则乙设备生产的产品有30件.在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1 800件.题型一 简单随机抽样1.某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生,6名女生,则下列命题正确的是________.(填序号) ①这次抽样中可能采用的是简单随机抽样; ②这次抽样一定没有采用系统抽样;③这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率; ④这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率. 答案 ①解析 利用排除法求解.这次抽样可能采用的是简单随机抽样,①正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,②错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,③和④均错误.2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.答案 01解析 由题意知前5个个体的编号为08,02,14,07,01.3.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为________.答案514解析 由题意知9n -1=13,得n =28,所以整个抽样过程中每个个体被抽到的概率为1028=514.思维升华 应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.题型二 系统抽样例1 (1)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. 答案 4解析 由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]内的运动员共有4组,故由系统抽样法知,共抽取4名.(2)某单位有840名职工,现采用系统抽样的方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 答案 12解析 由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. 引申探究1.若本例(2)中条件不变,若号码“5”被抽到,那么号码“55”________被抽到.(填“能”或“不能”) 答案 不能解析 若55被抽到,则55=5+20n ,n =2.5,n 不是整数.故不能被抽到.2.若本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28解析 因为在编号[481,720]中共有720-480=240(人),又在[481,720]中抽取8人, 所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为84030=28.思维升华 (1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定. 跟踪训练1 将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为________. 答案 25,17,8解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.题型三 分层抽样命题点1 求总体或样本容量例2 (1)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =________. 答案 13解析 ∵360=n120+80+60,∴n =13.(2)(2018·江苏省南京金陵中学模拟)某校共有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为50人,那么n 的值为________. 答案 120解析 因为共有教师200人,男学生1 200人,女学生1 000人, 所以女学生占的比例为1 0002 400=512,女学生中抽取的人数为50人, 所以n ×512=50,所以n =120.命题点2 求某层入样的个体数例3 (1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师的人数为________.答案 180解析 由题意,得抽样比为3201 600=15, ∴该样本中的老年教师的人数为900×15=180.(2)我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣________人. 答案 108解析 由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912=300×8 10022 500=108.思维升华 分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.跟踪训练2 (1)某校为了了解学生学习的情况,采用分层抽样的方法从高一1 000人,高二1 200人,高三n 人中抽取81人进行问卷调查,已知高二被抽取的人数为30,那么n =________. 答案 1 040解析 分层抽样是按比例抽样的,所以81× 1 2001 000+1 200+n=30,解得n =1 040.(2)(2018·如东模拟)下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如下表所示:现要在所有参与调查的人中用分层抽样的方法抽取n 人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n 的值为________. 答案 30解析 参与调查的总人数为150,由8∶n =40∶150, 得n =30.1.(2018·盐城调研)某单位有老年人20人,中年人120人,青年人100人,现用分层抽样的方法从所有人中抽取一个容量为n 的样本,已知从青年人中抽取的人数为10,则n =________. 答案 24解析 由分层抽样可得10n =10020+120+100=1024,故n =24.2.打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体中抽取一个13张的样本,则这种抽样方法是________. 答案 系统抽样解析 符合系统抽样的特点.3.用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是________. 答案110,110解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.4.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个样本编号为________. 答案 695解析 由题意可知,第一组随机抽取的编号为015,分段间隔数k =N n =1 00050=20,由题意知抽出的这些号码是以15为首项,20为公差的等差数列,则抽取的第35个样本编号为15+(35-1)×20=695.5.某工厂的一、二、三车间在某月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 成等差数列,则二车间生产的产品数为________.答案 1 200解析 因为a ,b ,c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3 600×13=1 200.6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为________. 答案 10解析 由系统抽样的特点知,抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 7.某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样的方法从4 300人中抽取一个样本,这4 300人中青年人1 600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为________. 答案 180解析 设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001 600=y320, 得y =180.8.某中学教务处采用系统抽样方法,从学校高三年级全体1 000名学生中抽50名学生做学习状况问卷调查.现将1 000名学生从1到1000进行编号,求得间隔数k =20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应抽取的号码是_____. 答案 157解析 根据系统抽样的特点可知,抽取出的编号成首项为17,公差为20的等差数列,所以第8组应抽取的号码是17+(8-1)×20=157.9.(2017·江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件. 答案 18解析 ∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).10.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为________. 答案 36解析 根据题意可知,样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件得,200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.12.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________. 答案 76解析 由题意知,m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.13.某市教育主管部门为了全面了解2018届高三学生的学习情况,决定对该市参加2018年高三第一次全省统一考试(后称统考)的32所学校进行抽样调查.将参加统考的32所学校进行编号,依次为1到32,现用系统抽样法抽取8所学校进行调查,若抽到的最大编号为31,则最小编号是________. 答案 3解析 根据系统抽样的特点可知,总体分成8组,组距为328=4,若抽到的最大编号为31,则最小编号是3.14.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.答案 16解析 由题意,知二年级女生有380人,那么三年级的学生人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×28=16.15.某公司员工对户外运动分别持“喜欢”、“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多13人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人中有6人对户外运动持“喜欢”态度,有2人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有________人. 答案 78解析 设持“喜欢”、“不喜欢”、“一般”态度的人数分别为6x,2x,3x ,由题意可得3x -2x =13,x =13,∴持“喜欢”态度的有6x =78(人).16.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,则在采用系统抽样时,需要在总体中先剔除2个个体,求n . 解 总体容量为6+12+18=36.当样本容量为n 时,由题意知,系统抽样的间隔为36n ;分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2, 所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n -1)时,总体容量剔除以后是34人,系统抽样的间隔为34n -1,因为34n -1必须是整数,所以n 只能取18,即样本容量n =18.。
2020届苏教版(文科数学) 概率与统计 (7) 单元测试 1.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
A .0.648
B .0.432
C .0.36
D .0.312 答案 A
解析 根据二项分布,由题意得所求概率P =C 2
3×0.62×(1-0.6)+C 3
3×0.63=0.648.
2.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A .0.8
B .0.75
C .0.6
D .0.45 答案 A
解析 设某天空气质量为优良为事件A ,随后一天空气质量为优良为事件B ,由已知得P (A )=0.75,P (AB )=0.6,所求事件的概率为P (B |A )=P (AB )P (A )=0.60.75
=0.8,故选A.
3.已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.
答案 13
解析 根据二项分布的期望与方差.
由题知⎩⎨
⎧
np =30np (1-p )=20
得p =13.
4.
某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如图所示.
(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;
(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.
解 (1)x 甲=1
8(7+9+11+13+13+16+23+28)=15, x 乙=1
8(7+8+10+15+17+19+21+23)=15,
s 2
甲=18
[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=
44.75,
s 2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82
]=32.25. 甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.
所以乙同学做解答题相对稳定些.
(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12,
两人失分均超过15分的概率为P 1P 2=3
16, X 的所有可能取值为0,1,2.依题意,X ~B ⎝ ⎛
⎭
⎪⎫2,316,
P (X =k )=C k 2
⎝ ⎛⎭⎪⎫316k ⎝ ⎛⎭
⎪⎫1316
2-k
,k =0,1,2, 则X 的分布列为
X 的均值E (X )=2×316=3
8.
5.在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
(1)设X X 的分布列; (2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
解 (1)设A 表示事件“作物产量为300 kg ”,B 表示事件“作物市场价格为6元/kg ”,
由题设知P (A )=0.5,P (B )=0.4, ∵利润=产量×市场价格-成本, ∴X 所有可能的取值为
500×10-1000=4000,500×6-1000=2000, 300×10-1000=2000,300×6-1000=800.
P (X =4000)=P (A )P (B )=(1-0.5)×(1-0.4)=0.3,
P (X =2000)=P (A )P (B )+P (A )P (B )=(1-0.5)×0.4+0.5×(1-0.4)=0.5,
P (X =800)=P (A )P (B )=0.5×0.4=0.2,所以X 的分布列为
(2)设C i 表示事件“第i 季利润不少于2000元”(i =1,2,3), 由题意知C 1,C 2,C 3相互独立,由(1)知,
P (C i )=P (X =4000)+P (X =2000)=0.3+0.5=0.8(i =1,2,3), 3季的利润均不少于2000元的概率为 P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512; 3季中有2季利润不少于2000元的概率为
P (C 1C 2C 3)+P (C 1C 2C 3)+P (C 1C 2C 3)=3×0.82×0.2=0.384, 所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896.
6.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为1
2,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
解 (1)X 可能的取值为10,20,100,-200. 根据题意,有
P (X =10)=C 1
3×⎝ ⎛⎭
⎪⎫121×⎝
⎛⎭
⎪⎫1-122=38
,
P (X =20)=C 2
3×⎝ ⎛⎭
⎪⎫122×⎝
⎛⎭
⎪⎫1-121=38
,
P (X =100)=C 3
3×⎝ ⎛⎭
⎪⎫123×⎝
⎛⎭
⎪⎫1-120=18
,
P (X =-200)=C 0
3×⎝ ⎛⎭
⎪⎫120×⎝
⎛⎭
⎪⎫1-123=18.
所以X 的分布列为
(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=1
8.
所以,“三盘游戏中至少有一次出现音乐”的概率为
1-P (A 1A 2A 3)=1-⎝ ⎛⎭
⎪⎫183=1-1512=511
512.
因此,玩三盘游戏至少有一盘出现音乐的概率是511
512.
(3)X 的数学期望为E (X )=10×38+20×38+100×18-200×1
8=-54.
这表明,获得的分数X 的均值为负.
因此,多次游戏之后分数减少的可能性更大.。