高考物理一轮课时作业25带电粒子在复合场中的运动(含答案)
- 格式:doc
- 大小:285.50 KB
- 文档页数:7
图11-4-1例1.如图11-4-1绝缘直棒上的小球,其质量为m 、带电荷量是+q ,小球可在棒上滑动.将此棒竖直放在互相垂直且在水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小球与棒间的动摩擦因数为 ,求小球由静止沿棒下滑的最大加速度和最大速度(小球带电荷量不变)例2.如图11-4-3所示,水平放置的平行金属板,长为l =140cm ,两板之间的距离d =30cm ,板间有图示方向的匀强磁场,磁感应强度的大小为B =1.3×10-3T .两板之间的电压按图所示的规律随时间变化(上板电势高为正).在t =0时,粒子以速度v =4×103m/s 从两板(左端)正中央平行于金属板射入,已知粒子质量m =6.64×10-27kg ,带电量q =3.2×10-19C .试通过分析计算,看粒子能否穿越两块金属板间的空间,如不能穿越,粒子将打在金属板上什么地方?如能穿越,则共花多少时间?【益智演练】1.一个质量为m ,电量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷做匀速圆周运动,磁场方向垂直于它的运动平面,作用在负电荷上的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是:( )A .4qBmB .3qBmC .2qBmD .qB m2.如图11-4-5所示,足够长的光滑三角形绝缘槽,与水平面的夹角分别为α和β(α<β),加垂直于纸面向里的磁场.分别将质量相等、带等量正、负电荷的小球 a 、b 依次从两斜面的顶端由静止释放,关于两球在槽上运动的说法正确的是( ) A .在槽上,a 、b 两球都做匀加速直线运动,且a a >a b B .在槽上,a 、b 两球都做变加速运动,但总有a a >a bC .a 、b 两球沿直线运动的最大位移是s a <s bD .a 、b 两球沿槽运动的时间为t a 和t b ,则t a <t b3.一带正电的小球沿光滑水平桌面向右运动,飞离桌面后进入匀强磁场,如图11-4-6所示,若飞行时间t 1后落在地板上,水平射程为s 1,着地速度大小为v 1,撤去磁场,其他条件不变,小球飞行时间t 2,水平射程s 2,着地速度大小为v 2,则( ) A .s 2>s 1 B .t 1>t 2 C .v 1>v 2 D .v 1=v4.用绝缘细线悬挂一个质量为m 、带电量为+q 的小球,让它处于右图11-4-7所示的磁感应强度为B 的匀强磁场中.由于磁场的运动,小球静止在如图位置,这时悬线与竖直方向夹角为α,并被拉直,则磁场运动的速度和方向是( )A .v =mg /Bq ,水平向右B .v =mg /Bq ,水平向左C .v =mg tan α/Bq ,竖直向上D .v =mg tan α/Bq ,竖直向下5.如图11-4-8所示,有一电量为q ,质量为m 的小球,从两竖直的带等量 异种电荷的平行板上方高h 处自由下落,两板间有匀强磁场,磁场方向垂直纸面向里,那么带电小球在通过正交电磁场时( )图11-4-6图11-4-5B 图11-4-7t/10s3 54 1.图11-4-3C .可能做匀速直线运动D .可能做匀加速直线运动 6.如图11-4-9所示,带电平行板间匀强电场竖直向上,匀强磁场方向垂直纸面向里,某带电小球从光滑轨道上的a 点自由下落,经轨道端点P 进入板间后恰好沿水平方向做直线运动.现使小球从稍低些的b 点开始自由滑下,在经过P 点进入板间后的运动过程中,以下分析中正确的是( )A .其动能将会增大B .其电势能将会增大C .小球所受的洛伦兹力将会逐渐增大D .小球受到的电场力将会增大7.如图11-4-4-10所示,在长方形abcd 区域内有正交的电磁场,ab =bc /2=L ,一带电粒子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从b c 边的中点P 射出,若撤去磁场,则粒子从C点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出8.如图11-4-11所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,已知a 静止,b向右匀速运动,c 向左匀速运动,比较它们的质量应有( )A .a 油滴质量最大B .b 油滴质量最大C .c 油滴质量最大D .a 、b 、c 质量一样9.如图11-4-12中所示虚线所围的区域内,存在电场强度为E 的匀强电场和磁感应强度为B的匀强磁场,已知从左侧水平射入的电子,穿过这一区域时未发生偏转,设重力忽略不计,则在这个区域中的E 和B 的方向可能是( ) A .E 和B 都沿水平方向,并与电子运动方向相同 B .E 和B 都沿水平方向,并与电子运动方向相反C .E 竖直向上,B 垂直于纸面向外D .E 竖直向上,B 垂直于纸面向里10.设空间存在竖直向下的匀强电场和垂直纸面向内的匀强磁场,如图11-4-13所示.已知一离子在电场力和洛仑兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 时速度为零.C 是曲线的最低点,不计重力.以下说法正确的是( )A .离子一定带正电B .A 、B 两点位于同一高度C .离子在C 点速度最大D .离子到达B 点后将沿曲线返回A 点11.如图11-4-14所示,在真空中一个光滑的绝缘的水平面上,有直径相同的两个金属球A 、C .质量m A =0.01 kg ,m C =0.005 kg .静止在磁感应强度B =0.5 T 的匀强磁场中的C 球带正电,电量q C =1×10-2 C .在磁场外的不带电的A 球以速度v 0=20 m/s 进入磁场中与C 球发生正碰后,C 球对水平面压力恰好为零,则碰后A 球的速度为 ( )A .10 m/sB .5 m/sC .15 m/sD .-20 m/s12.三种粒子(均不计重力):质子、氘核和 粒子由静止开始在同一匀强电场中加速后,从同一位置沿水平方向射入图11-4-15中虚线框内区域,虚线框内区域加有匀强电场或匀强磁场,以下对带电粒子进入框内区域后运动情况分析正确的是:( )A .区域内加竖直向下方向的匀强电场时,三种带电粒子均可分离B .区域内加竖直向上方向的匀强电场时,三种带电粒子不能分离 A B 图11-4-13图图11-4-8图11-4-12d 图11-4-10v 图11-4-11图11-4-15aD .区域内加垂直纸面向里的匀强磁场时,三种带电粒子均不可以分离13.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O 在匀强磁场中做逆时针方向的水平匀速圆周运动,磁场方向竖直向下,其俯视图如图11-4-16所示,若小球运动到A 点时,由于某种原因,绳子突然断开,关于小球在绳断开后可能的运动情况,以下说法正确的是( )A .小球仍做逆时针匀速圆周运动,半径不变B .小球仍做逆时针匀速圆周运动,但半径减小C .小球做顺时针匀速圆周运动,半径不变D .小球做顺时针匀速圆周运动,半径减小14.质量为m ,带正电为q 的小物块放在斜面上,斜面倾角为α,物块与斜面间动摩擦因数为μ,整个斜面处在磁感应强度为B 的匀强磁场中,如图11-4-17所示,物块由静止开始沿斜面下滑,设斜面足够长,物块在斜面上滑动能达到的最大速度为多大?若物块带负电量为q ,则物块在斜面上滑动能达到的最大速度又为多大?15.如图11-4-18所示,套在很长的绝缘直棒上的小圆环,其质量为m ,带电量是+q ,小圆环可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小圆环与棒的动摩擦因数为μ,求小圆环由静止沿棒下落的最大加速度和最大速度.E 图11-4-18图11-4-1716.如图11-4-19所示,一带电液滴在相互垂直的匀强电场和匀强磁场中运动,已知电场强度的大小为E ,方向竖直向下,磁感应强度为B ,方向垂直纸面向里.若此液滴在垂直于磁感应强度的平面内做半径为R 的匀速圆周运动,设液滴的质量为m ,求:(1)液滴的速度大小和绕行方向;(2)若液滴运行到轨迹最低点A 时,分裂成大小相同的两滴,其中一个液滴仍在原来的平面内做半径为3R 的圆周运动,绕行方向不变,且此圆周的最低点也是A ,另一滴将如何运动?17.质量为m ,带电量为q 的液滴以速度v 沿与水平成45 角斜向上进入正交的匀强电场和匀强磁场叠加区域,电场强度方向水平向右,磁场方向垂直纸面向里,如图11-4-20所示.液滴带正电荷,在重力、电场力及磁场力共同作用下在场区做匀速直线运动.试求:(1)电场强度E 和磁感应强度B 各多大?(2)当液滴运动到某一点A 时,电场方向突然变为竖直向上,大小不改变,不考虑因电场变化而产生的磁场的影响,此时液滴加速度多少?说明此后液滴的运动情况.18.如图11-4-21所示,匀强磁场垂直纸面向里,磁感应强度B =1T ,匀强电场水平向右,电场强度E =103N/C ,有一带正电的微粒m =2×10-6kg ,电量q =2×10-6C ,在纸面内做匀速直线运动.g 取10m/s 2,问: (1)微粒的运动方向和速率如何?(2)若微粒运动到P 电时突然撤去磁场,经过时间t 后运动到Q 点,P 、Q 连线与电场线平行,那么t 为多少?图11-4-19 P图11-4-2019.如图11-4-22所示,一质量为m ,带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E 、方向沿与x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方的c 点,如图15-76所示.粒子的重力不计,试求: (1)圆形匀强磁场区域的最小面积;(2)c 点到b 点的距离s .20.如图11-4-23所示,置于光滑水平面上的绝缘小车A 、B 质量分别为m A =3kg 、m B =0.5kg ,质量为m C =0.1kg 、带电量为q =+1/75 C 、可视为质点的绝缘物体C 位于光滑小车B 的左端.在A 、B 、C 所在的空间有一垂直纸面向里的匀强磁场,磁感强度B =10T ,现小车B 静止,小车A 以速度v 0=10m/s 向右运动和小车B 碰撞,碰后物体C 在A 上滑动.已知碰后小车B 的速度为9m/s ,物体C 与小车A 之间有摩擦,其他摩擦均不计,小车A 足够长,全过程中C 的带电量保持不变,求:(1)物体C 在小车A 上运动的最大速率和小车A 运动的最小速度.(g 取10m/s 2) (2)全过程产生的热量.21.如图11-4-24所示,在空间有水平方向的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,在磁场中有一长为L 、内壁光滑且绝缘的细筒MN 竖直放置,筒的底部有一质量为m 、带电荷量为+q 的小球,现使细筒MN 沿垂直磁场的方向水平向右匀速运动,设小球带电荷量不变.(1)若使小球能沿筒壁上升,则细筒运动速度v 应满足什么条件?(2)当细筒运动速度为v 0(v 0>v )时,试求小球在沿细筒上升高度h 时小球的速度大小.v 图11-4-22图11-4-2322.如图11-4-25所示,一质量为0.4kg 的足够长且粗细均匀的绝缘的细管置于水平地面上,细管内表面粗糙,外表面光滑;有一质量为0.1kg ,电量为0.1C 的带正电小球沿管的水平向右的速度进入管内,细管内径略大于小球直径,已知细管所在处有沿水平方向且与细管相垂直的匀强磁场,磁感应强度为1T ,g 取10m/s 2. (1)当细管被固定时,小球在管内运动的末速度的可能值为多少?(2)若细管未被固定时,带电小球以20m/s 的初速度进入管内,且整个运动过程中细管没有离开水平地面,则系统最终产生的内能是多少?23.如图11-4-26所示,水平方向的匀强电场的场强为E (场区宽度为L ,竖直方向足够长),紧挨着电场的是垂直纸面向外的两个匀强磁场区,其磁感应强度分别为B 和2B .一个质量为m 、电量为q 的带正电粒子(不计重力),从电场的边界MN 上的a 点由静止释放,经电场加速后进入磁场,经过t=qBm6π时间穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b (虚线为场区的分界面).求: (1)中间磁场的宽度d ;(2)粒子从a 点到b 点共经历的时间t ab ;(3)当粒子第n 次到达电场的边界MN时与出发点a 之间的距离S n .24.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图11-4-27所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴O 1O 的方向进入到两块水平正对放置的平行金属极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点,O '与O 点的竖直间距为d ,水平间距可以忽略不计.此时,在P 点和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为L 1,极板间距为b ,极板右端到荧光屏的距离为L 2(如图所示).(1)求打在荧光屏O 点的电子速度的大小.(2)推导出电子比荷的表达式.2B图11-4-26图11-4-2525.如图11-4-28所示,在直角坐标xoy 的第一象限中分布着指向-y 轴方向的匀强电场,在第四象限中分布着垂直纸面向里方向的匀强磁场,一个质量为m 、带电+q 的粒子(不计重力)在A 点(0,3)以初速v 0=120m/s 平行x 轴射入电场区域,然后从电场区域进入磁场,又从磁场进入电场,并且只通过x 轴上的P 点(6,0)和Q 点(8,0)各一次,已知该粒子的荷质比为q/m =108C/kg .(1)画出带电粒子在电场和磁场中的运动轨迹.(2)求磁感强度B 的大小.26.如图11-4-29所示,oxyz 坐标系的y 轴竖直向上,在坐标系所在的空间存在匀强电场和匀强磁场,电场方向与x 轴平行.从y 轴上的M 点(0,H ,0)无初速释放一个质量为m 、电荷量为q 的带负电的小球,它落在xz 平面上的N (c ,0,b )点(c >0,b >0).若撤去磁场则小球落在xy 平面的P (l ,0,0)点(l >0).已知重力加速度为g. (1)已知匀强磁场方向与某个坐标轴平行,试判断其可能的具体方向;(2)求电场强度E 的大小;(3)求小球落至N 点时的速率v .图11-4-29f图11-4-21.分析与解:在带电小球下滑的过程中,小球受重力、电场力、支持力、摩擦力和f 洛,受力分析如图11-4-2所示. 在y 方向 ma =f mg 摩擦力N μ=f ,压力Eq +Bqv =N 解得:m )qE +qvB (μmg =a随着小球速度v 增加时,小球加速度减小.所以,小球向下做加速度逐渐减小的加速运动,最后加速度减小到零,小球做匀速直线运动.开始时0=v 时,此时加速度最大,mqEμg=a m ; 匀速时,0=a 时,速度最大,m mg (qv B qE)0-m += 所以BE qB μmg=v m . 2分析与解:根据题意可知,两金属板间的匀强电场是间断存在的.有电场时,电场方向由上板指向下板,场强大小为E =U /d =1.56V/0.3m=5.2V/m .粒子进入板间在0~1.0×104s 内受向下的电场力Eq 和向下的磁场力Bqv 作用,由于电场力与磁场力之比1=10×4×10×3.12.5=Bqv qE 33 粒子作匀速直线运动,它的位移34s vt 410110m 0.4m -==创?在接着的1.0×104s ~2.0×10-4s 时间内,电场撤消,α粒子只受磁场力作用,将作匀速圆周运动,轨道半径为273319mv 6.6410410R cm 6.38cm Bq 1.310 3.210---创?===创? 轨道直径d ′=2R =12.76cm<d /2, 可见,粒子在作圆周运动时不会打到金属板上,粒子作匀速圆周运动的周期为2432r 2 3.14 6.3810T s 1.010s v 410--p 创?¢===?´由于粒子作匀速圆周运动的周期恰好等于板间匀强电场撤消的时间,所以粒子的运动将是匀速直线运动与匀速圆周运动交替进行,其运动轨迹如图11-4-4所示,经过时间443l 3s 1.430.4t 3T 3210 6.510s v 410----?=+=创+=?´从两板的正中央射离. 【参考答案】1.AC 2.ACD 3.BD 4.BC 5.A 6.ABC 7.C 8.C 9.ABC 10.ABC 11.A 12.B 13.ACD 14.qB μ)αcos μα(sin mg ,qB αcos mg . 15.g ;qB μEq μ+mg . 16.(1)ERB,顺时针方向;(2)顺时针方向,R ′=R17.(1)qvmg 2=B ,q /mg =E ;(2)a ,2v R a ==,gvπ2=v R π2=T 18.(1)v =20m/s ,θ=60°;(2)t =23s 19.(1)22202q B 4v m π3;(2)Eqmv 2034 20.(1)7.5m/s 和8.25m/s ;(2)24.84J 21.v >Bq m g;v ′=20v +m )mg B qv (h 2 22.(1)v 0≥10m/s 时,v =10m/s , v 0<10m/s 时,v =0;(2)Q =13.75J 23.d =qmEL B 21,t ab =2qE L m2+qB 3m π2,s n =q 2mEL B n )34( 24.Bb U ,m e =)2/L +L (bL B Ud 1212 25.(1)略;(2)1.2×1010T 26.(1)图11-4-4mgl=E;(3)v=磁场方向为-x方向或-y方向;(2)qH。
带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。
3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。
(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。
考点规范练30带电粒子在复合场中的运动一、单项选择题1.如图所示,虚线区域空间内存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁复合场上方的某一高度自由落下,那么带电小球可能沿直线通过的是()A.①②B.③④C.①③D.②④答案:B解析:①图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定变化,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动;②图中小球受重力、向上的电场力、垂直向外的洛伦兹力,合力与速度一定不共线,故一定做曲线运动;③图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动;④图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动。
故选项B正确。
2.如图所示,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法正确的是()A.组成A束和B束的离子都带负电B.组成A束和B束的离子质量一定不同C.A束离子的比荷大于B束离子的比荷D.速度选择器中的磁场方向垂直于纸面向外答案:C解析:由左手定则知,A、B离子均带正电,A错误;两束离子经过同一速度选择器后的速度相同,在偏转磁场可知,半径大的离子对应的比荷小,但离子的质量不一定相同,故选项B错误,C正确;速度选择中,由R=mmmm器中的磁场方向应垂直纸面向里,D错误。
3.右图是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。
现分别加速氘核(12H)和氦核(24He)。
下列说法正确的是( )A.它们的最大速度相同B.它们的最大动能相同C.两次所接高频电源的频率可能不相同D.仅增大高频电源的频率可增大粒子的最大动能 答案:A 解析:根据qvB=m m 2m ,得v=mmm m 。
压轴题08带电粒子在复合场、组合场中的运动1.本专题是电磁场的典型题型之一,包括应用电场力洛伦兹力的知识解决实际问题。
高考中经常在选择题中命题,更是在在计算题中频繁出现。
2024年高考对于复合场、组合场的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:电场的知识,磁场的知识等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型带电粒子在复合场中的运动,组合场中的运动等。
考向一:带电体在磁场中的运动1.带电体在匀强磁场中速度变化时洛伦兹力往往随之变化,并进一步导致弹力、摩擦力等的变化,带电体将在变力作用下做变加速运动。
2.利用牛顿运动定律和平衡条件分析各物理量的动态变化时要注意弹力为零的临界状态,此状态是弹力方向发生改变的转折点。
考向二:带电粒子在叠加场中的运动1.三种场的比较力的特点功和能的特点重力场大小:G =mg 方向:竖直向下重力做功与路径无关;重力做功改变物体的重力势能电场大小:F =qE方向:正电荷受力方向与场强方向相同,负电荷受力方向与电强方向相反电场力做功与路径无关;W =qU ;电场力做功改变电势能磁场大小:f =qvB (v ⊥B )方向:可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能2.分析的基本思路(1)弄清叠加场的组成。
(2)进行受力分析,确定带电粒子的运动状态,注意运动情况和受力情况的结合。
(3)画出粒子的运动轨迹,灵活选择不同的运动规律。
①由于洛伦兹力的大小与速度有关,带电粒子在含有磁场的叠加场中的直线运动一定为匀速直线运动,根据平衡条件列式求解。
②当带电粒子在叠加场中做匀速圆周运动时,一定是电场力和重力平衡,洛伦兹力提供向心力,应用平衡条件和牛顿运动定律分别列方程求解。
③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解。
考向三:带电粒子在组合场中的运动带电粒子在电场、磁场组合场中的运动是指粒子从电场到磁场或从磁场到电场的运动。
2021年高考物理一轮复习考点全攻关专题 ——带电粒子在复合场中运动的实例分析(解析版)专题解读:1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现.2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力.针对性的专题训练,可以提高同学们解决难题、压轴题的信心.3.用到的知识有:动力学观点(牛顿运动定律)、运动学观点、能量观点(动能定理、能量守恒定律)、电场的观点(类平抛运动的规律)、磁场的观点(带电粒子在磁场中运动的规律). 命题热点一:质谱仪的原理和分析 1.作用测量带电粒子质量和分离同位素的仪器. 2.原理如图所示(1)加速电场:qU =12mv 2;(2)偏转磁场:qvB =mv 2r ,l =2r ;由以上两式可得r =1B 2mUq, m =qr 2B 22U ,q m =2U B 2r 2.例1 质谱仪可利用电场和磁场将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示,虚线上方有两条半径分别为R 和r (R >r )的半圆形边界,分别与虚线相交于A 、B 、C 、D 点,圆心均为虚线上的O 点,C 、D 间有一荧光屏.虚线上方区域处在垂直纸面向外的匀强磁场中,磁感应强度大小为B .虚线下方有一电压可调的加速电场,离子源发出的某一正离子由静止开始经电场加速后,从AB 的中点垂直进入磁场,离子打在边界上时会被吸收.当加速电压为U 时,离子恰能打在荧光屏的中点.不计离子的重力及电、磁场的边缘效应.求: (1)离子的比荷;(2)离子在磁场中运动的时间;(3)离子能打在荧光屏上的加速电压范围.【答案】 (1)8UB 2R +r2(2)πB R +r28U(3)U R +3r 24R +r2≤U ′≤U 3R +r 24R +r2【解析】(1)由题意知,加速电压为U 时,离子在磁场区域做匀速圆周运动的半径r 0=R +r2洛伦兹力提供向心力,qvB =m v 2r 0在电场中加速,有qU =12mv 2解得:q m =8UB 2R +r2(2)离子在磁场中运动的周期为T =2πmqB在磁场中运动的时间t =T2解得:t =πBR +r 28U(3)由(1)中关系,知加速电压和离子轨迹半径之间的关系为U ′=4U R +r2r ′2若离子恰好打在荧光屏上的C 点,轨道半径r C =R +3r4U C =U R +3r 24R +r2若离子恰好打在荧光屏上的D 点,轨道半径r D =3R +r4U D =U 3R +r 24R +r2即离子能打在荧光屏上的加速电压范围:U R +3r24R +r 2≤U ′≤U 3R +r 24R +r2.变式1】 (2019·福建龙岩市5月模拟)质谱仪的原理如图所示,虚线AD 上方区域处在垂直纸面向外的匀强磁场中,C 、D 间有一荧光屏.同位素离子源产生a 、b 两种电荷量相同的离子,无初速度进入加速电场,经同一电压加速后,垂直进入磁场,a 离子恰好打在荧光屏C 点,b 离子恰好打在D 点.离子重力不计.则( )A .a 离子质量比b 的大B .a 离子质量比b 的小C .a 离子在磁场中的运动时间比b 的长D .a 、b 离子在磁场中的运动时间相等 【答案】B【解析】设离子进入磁场的速度为v ,在电场中qU =12mv 2,在磁场中Bqv =m v 2r ,联立解得:r =mv Bq =1B2mUq,由题图知,b 离子在磁场中运动的轨道半径较大,a 、b 为同位素,电荷量相同,所以b 离子的质量大于a 离子的质量,所以A 错误,B 正确;在磁场中运动的时间均为半个周期,即t =T 2=πmBq ,由于b 离子的质量大于a 离子的质量,故b 离子在磁场中运动的时间较长,C 、D 错误.命题热点二:回旋加速器的原理和分析1.构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.2.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次. 3.最大动能:由qv m B =mv m 2R 、E km =12mv m 2得E km =q 2B 2R 22m ,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关. 4.总时间:粒子在磁场中运动一个周期,被电场加速两次,每次增加动能qU ,加速次数n =E kmqU ,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 22U.例2 (多选)(2019·山东烟台市第一学期期末)如图所示是回旋加速器的示意图,其核心部分是两个D 形金属盒,分别与高频交流电源连接,两个D 形金属盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D 形金属盒处于垂直于盒底的匀强磁场中,下列说法中正确的是( )A .加速电压越大,粒子最终射出时获得的动能就越大B .粒子射出时的最大动能与加速电压无关,与D 形金属盒的半径和磁感应强度有关C .若增大加速电压,粒子在金属盒间的加速次数将减少,在回旋加速器中运动的时间将减小D .粒子第5次被加速前、后的轨道半径之比为5∶ 6 【答案】BC【解析】粒子在磁场中做圆周运动,由牛顿第二定律得:qv m B =m v m 2R ,解得:v m =qBRm ,则粒子获得的最大动能为:E km =12mv m 2=q 2B 2R 22m ,知粒子获得的最大动能与加速电压无关,与D 形金属盒的半径R 和磁感应强度B 有关,故A 错误,B 正确;对粒子,由动能定理得:nqU =q 2B 2R 22m ,加速次数:n =qB 2R 22mU ,增大加速电压U ,粒子在金属盒间的加速次数将减少,粒子在回旋加速器中运动的时间:t =n 2T =n πmqB 将减小,故C正确;对粒子,由动能定理得:nqU =12mv n 2,解得v n =2nqUm,粒子在磁场中做圆周运动,由牛顿第二定律得:qv n B =m v n 2r n ,解得:r n =1B 2nmU q ,则粒子第5次被加速前、后的轨道半径之比为:r 4r 5=45,故D 错误.变式2 (多选)(2019·福建龙岩市3月质量检查)回旋加速器是加速带电粒子的装置,如图所示.其核心部件是分别与高频交流电源两极相连接的两个D 形金属盒(D 1、D 2),两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,D 形盒的半径为R .质量为m 、电荷量为q 的质子从D 1半盒的质子源(A 点)由静止释放,加速到最大动能E km 后经粒子出口处射出.若忽略质子在电场中的加速时间,且不考虑相对论效应,则下列说法正确的是( )A .质子加速后的最大动能E km 与交变电压U 大小无关B .质子在加速器中的运行时间与交变电压U 大小无关C .回旋加速器所加交变电压的周期为πR2mE kmD .D 2盒内质子的轨道半径由小到大之比为1∶3∶5∶… 【答案】ACD【解析】质子在回旋加速器中做圆周运动,洛伦兹力提供向心力,有qvB =m v 2r ,则v =qBrm ,当r =R 时,质子有最大动能:E km =12mv m 2=q 2B 2R 22m ,知质子加速后的最大动能E km 与交变电压U 大小无关,故A 正确;质子离开回旋加速器时的动能是一定的,与加速电压无关,由T =2πmqB 可知相邻两次经过电场加速的时间间隔不变,获得的动能为qU ,故电压越大,加速的次数n 越少,在加速器中的运行时间越短,故B 错误;回旋加速器所加交变电压的周期与质子在D 形盒中运动的周期相同,由T =2πm qB ,R =mv m qB ,E km =12mv m 2知,T=πR2mE km,故C 正确;质子每经过1次加速电场动能增大qU ,知D 2盒内质子的动能由小到大依次为qU 、3qU 、5qU …,又r =mv qB =2mE kqB ,则半径由小到大之比为1∶3∶5∶…,故D 正确.命题热点四:电场与磁场叠加的应用实例共同特点:当带电粒子(不计重力)在复合场中做匀速直线运动时,qvB =qE .1.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.如图所示(2)带电粒子能够沿直线匀速通过速度选择器的条件是qvB =qE ,即v =EB .(3)速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量、质量. (4)速度选择器具有单向性.例3 如图所示是一速度选择器,当粒子速度满足v 0=EB 时,粒子沿图中虚线水平射出;若某一粒子以速度v 射入该速度选择器后,运动轨迹为图中实线,则关于该粒子的说法正确的是( )A .粒子射入的速度一定是v >EBB .粒子射入的速度可能是v <EBC .粒子射出时的速度一定大于射入速度D .粒子射出时的速度一定小于射入速度 【答案】B 2.磁流体发电机(1)原理:如图所示,等离子体喷入磁场,正、负离子在洛伦兹力的作用下发生偏转而聚集在B 、A 板上,产生电势差,它可以把离子的动能通过磁场转化为电能.(2)电源正、负极判断:根据左手定则可判断出图中的B 是发电机的正极.(3)电源电动势U :设A 、B 平行金属板的面积为S ,两极板间的距离为l ,磁场磁感应强度为B ,等离子体的电阻率为ρ,喷入气体的速度为v ,板外电阻为R .当正、负离子所受电场力和洛伦兹力平衡时,两极板间达到的最大电势差为U (即电源电动势),则q Ul =qvB ,即U =Blv .(4)电源内阻:r =ρlS .(5)回路电流:I =Ur +R.例4 (2019·福建三明市期末质量检测)磁流体发电机的原理如图所示.将一束等离子体连续以速度v 垂直于磁场方向喷入磁感应强度大小为B 的匀强磁场中,可在相距为d 、面积为S 的两平行金属板间产生电压.现把上、下板和电阻R 连接,上、下板等效为直流电源的两极.等离子体稳定时在两极板间均匀分布,电阻率为ρ.忽略边缘效应及离子的重力,下列说法正确的是( )A .上板为正极,a 、b 两端电压U =BdvB .上板为负极,a 、b 两端电压U =Bd 2vρS RS +ρdC .上板为正极,a 、b 两端电压U =BdvRSRS +ρdD .上板为负极,a 、b 两端电压U =BdvRSRd +ρS【答案】C【解析】根据左手定则可知,等离子体射入两极板之间时,正离子偏向a 板,负离子偏向b 板,即上板为正极;稳定时满足U ′d q =Bqv ,解得U ′=Bdv ;根据电阻定律可知两极板间的电阻为r =ρdS ,根据闭合电路欧姆定律:I =U ′R +r ,a 、b 两端电压U =IR ,联立解得U =BdvRSRS +ρd ,故选C.3.电磁流量计。
带电粒子在复合场中的运动一、带电粒子在复合场中运动的轨迹欣赏例1、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。
在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。
一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。
如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)例2、如图所示,在x轴上方有垂直于xy平面的匀强磁场,磁感应强度为B,在x 轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不记)例3、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=√33m,外半径为R2=1.0m,区域内有垂直纸面向外的匀强磁场,已知磁感应强度B=1.0 T,被束缚粒子的比荷qm=4×107C/kg。
(1)若中空区域中的带电粒子沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度V0.(2)若中空区域中的带电粒子以(1)中的最大速度V0沿圆环半径方向射入磁场,求带电粒子从进入磁场开始到第一次回到该点所需要的时间t。
例4、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,由磁场将高温、高密等离子体约束在有限的范围内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=a,外半径为R2=(2√2−1)a,环形区域内有垂直纸面向外的匀强磁场,磁感应强度为B。
高考回归复习一电学选择之带电微粒在复合场中的运动1如图所示,两平行金属板水平放置,板长和板间距均为L ,两板间接有直流电源,极板间有垂直纸面向外的匀强磁场。
一带电微粒从板左端中央位置以速度v 0gL 垂直磁场方向水平进入极板,微粒恰好做匀动,则该微粒在极板间做匀速圆周运动的时间为( )做匀速圆周运动,b 在纸面内向右做匀速直线运动,e 在纸面内向左做匀速直线运动, 下列选项正确的是( )速直线运动。
若保持 a 板不动,让b 板向下移动 0.5L ,微粒从原位置以相同速度进入,恰好做匀速圆周运ngL 3gngL2•如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为 动,现将此棒竖直放入沿水平方向的且互相垂直的匀强磁场和匀强电场 小球由棒的下端以某一速度上滑的过程中一定有 ( )m 、带电荷量为q ,小球可在棒上滑 (图示方向)中.设小球带电荷量不Xx iXXX s JXX -X X' 5 Ef XX XXXX LA •小球加速度一直减小B. 小球的速度先减小,直到最后匀速C. 杆对小球的弹力一直减小 D .小球受到的洛伦兹力一直减小3•如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上 (与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为 m a 、m b 、m e ,已知在该区域内,a 在纸面内C .X1X JX 1 」 X 1X左只X X X X右XXXXXB . m b m a m eD . m e m b m a4.如图所示,环形塑料管半径为R ,竖直放置,且管的内径远小于环的半径,ab 为该环的水平直径,环的mgab 及其以下部分有水平向左的匀强电场,电场强度的大小E,管的内壁光滑。
现将一质量为 m ,电q荷量为+q 的小球从管中a 点由静止开始释放,则()A .小球到达b 点时速度为零,并在 adb 间往复运动 B. 小球每周的运动过程中最大速度在圆弧 ad 之间的某一位置C.小球第一次和第二次经过最高点 e 时对管壁的压力之比为 1:5D .小球第一次经过最低点 d 和最高点e 时对管壁的压力之比为 4:15. 如图所示,质量为 m ,带电荷量为q 的微粒以速度v 与水平方向成45。
课时规范练31带电粒子在复合场中的运动基础对点练1.(感应加速器)(2022安徽宣城期末)无论周围空间是否存在闭合回路,变化的磁场都会在空间激发涡旋状的感应电场,电子感应加速器便应用了这个原理。
电子在环形真空室被加速的示意图如图所示,规定垂直于纸面向外的磁场方向为正,用电子枪将电子沿图示方向注入环形室。
它们在涡旋电场的作用下被加速。
同时在磁场内受到洛伦兹力的作用,沿圆形轨道运动。
下列变化规律的磁场能对注入的电子进行环向加速的是()2.(等离子体发电)下图为等离子体发电机的示意图。
高温燃烧室产生的大量的正、负离子被加速后垂直于磁场方向喷入发电通道的磁场中。
在发电通道中有两块相距为d的平行金属板,两金属板外接电阻R。
若磁场的磁感应强度为B,等离子体进入磁场时的速度为v,系统稳定时发电通道的电阻为r。
则下列表述正确的是()A.上金属板为发电机的负极,电路中电流为BdvRB.下金属板为发电机的正极,电路中电流为BdvR+rC.上金属板为发电机的正极,电路中电流为BdvR+rD.下金属板为发电机的负极,电路中电流为BdvR3.(电磁流量计)有一种污水流量计原理可以简化为如图所示模型:废液内含有大量正、负离子,从直径为d的圆柱形容器右侧流入,左侧流出。
流量值等于单位时间通过横截面的液体的体积。
空间有垂直纸面向里的磁感应强度为B的匀强磁场,下列说法正确的是()A.M点的电势高于N点的电势B.负离子所受洛伦兹力方向竖直向下C.MN两点间的电势差与废液的流量值成正比D.MN两点间的电势差与废液流速成反比4.(霍尔效应)右图为霍尔元件的工作原理示意图,导体的宽度为h、厚度为d,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,CD两侧面会形成电势差U,其,式中比例常数k为霍尔系数,设载流子的大小与磁感应强度B和电流I的关系为U=k IBd电荷量的数值为q,下列说法正确的是()A.霍尔元件是一种重要的电传感器B.C端的电势一定比D端的电势高C.载流子所受静电力的大小F=q UdD.霍尔系数k=1,其中n为导体单位体积内的电荷数nq5.(回旋加速器)右图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场的电场强度大小恒定,且被限制在AC板间,虚线中间不需加电场,如图所示,带电粒子从P0处以速度v0沿电场线方向射入加速电场,经加速后再进入D形盒中的匀强磁场做匀速圆周运动,对这种改进后的回旋加速器,下列说法正确的是()A.加速粒子的最大速度与D形盒的尺寸无关B.带电粒子每运动一周被加速一次C.带电粒子每运动一周P1P2等于P2P3D.加速电场方向需要做周期性的变化6.(多选)(组合场)如图所示,在第二象限内有水平向右的匀强电场,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等。
第3讲带电粒子在复合场中的运动基础巩固1.地面附近水平虚线MN的下方存在着正交的匀强电场和匀强磁场,电场强度为E,磁感应强度为B,如图所示。
一带电微粒自距MN为h的高处由静止下落,从P点进入场区,沿半圆圆弧POQ运动,经圆弧的最低点O从Q点射出。
重力加速度为g,忽略空气阻力的影响。
下列说法中错误的是( )A.微粒进入场区后受到的电场力的方向一定竖直向上B.微粒进入场区后做圆周运动,半径为C.从P点运动到Q点的过程中,微粒的电势能先增大后减小D.从P点运动到O点的过程中,微粒的电势能与重力势能之和越来越小2.(2016北京西城期末,16)(多选)如图所示,两个半径相同的半圆形光滑轨道置于竖直平面内,左右两端点等高,分别处于沿水平方向的匀强电场和匀强磁场中。
两个相同的带正电小球同时从两轨道左端最高点由静止释放。
M、N为轨道的最低点。
则下列分析正确的是( )A.两个小球到达轨道最低点的速度< v NB.两个小球第一次经过轨道最低点时对轨道的压力> F NC.小球第一次到达M点的时间小于小球第一次到达N点的时间D.磁场中小球能到达轨道另一端最高处,电场中小球不能到达轨道另一端最高处3.(多选)在如图所示的空间直角坐标系所在的区域内,同时存在匀强电场E和匀强磁场B。
已知从坐标原点O沿x轴正方向射入的质子,穿过此区域时未发生偏转,则可以判断此区域中E和B的方向可能是( )A.E和B都沿y轴的负方向B.E和B都沿x轴的正方向C.E沿y轴正方向,B沿z轴负方向D.E沿z轴正方向,B沿y轴负方向4.显像管原理的示意图如图所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转。
设垂直纸面向里的磁场方向为正方向,若使电子打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是( )5.(2017北京海淀一模,22,16分)如图所示,分界线MN左侧存在平行于纸面水平向右的有界匀强电场,右侧存在垂直于纸面向里的有界匀强磁场。
带电粒子在复合场中的运动(建议用时40分钟)1.如图所示的坐标系中,第一象限存在与y 轴平行的匀强电场,方向沿y 轴负方向,第二象限存在垂直纸面向里的匀强磁场。
P 、Q 两点在x 轴上,Q 点横坐标是C 点纵坐标的2倍。
一带电粒子(不计重力)若从C 点以垂直于y 轴的速度v 0向右射入第一象限,恰好经过Q 点。
若该粒子从C 点以垂直于y 轴的速度v 0向左射入第二象限,恰好经过P 点,经过P 点时,速度方向与x 轴正方向成90°角,则电场强度E 与磁感应强度B 的比值为( )A .v 0B .12 v 0C .13 v 0D .14v 0 【解析】选B 。
画出粒子运动轨迹如图所示,O 点为粒子在磁场中运动轨迹的圆心;则∠POC =90°,粒子在磁场中做圆周运动的半径为r =mv 0qB,OC =r ,粒子在电场中做类平抛运动,有:OQ =2OC =2r ,粒子在电场中运动的时间为t =OQ v 0 =2r v 0 =2m qB ,OC =12 at 2=12 ×qE m×t 2,联立解得E =12 Bv 0,故E ∶B =v 02,故B 正确,A 、C 、D 错误。
2.如图所示,在xOy 平面内,匀强电场的方向沿x 轴正向,匀强磁场的方向垂直于xOy 平面向里。
一电子在xOy 平面内运动时,速度方向保持不变。
则电子的运动方向沿( )A.x 轴正向 B .x 轴负向C .y 轴正向D .y 轴负向【解析】选C 。
电子受电场力方向一定水平向左,所以需要受向右的洛伦兹力才能做匀速运动,根据左手定则进行判断可得电子应沿y 轴正向运动,则C 正确,A 、B 、D 错误。
【加固训练】如图所示,一束粒子(不计重力,初速度可忽略)缓慢通过小孔O 1进入极板间电压为U 的水平加速电场区域Ⅰ,再通过小孔O 2射入相互正交的恒定匀强电场、磁场区域Ⅱ,其中磁场的方向如图所示,收集室的小孔O 3与O 1、O 2在同一条水平线上。
【高考核动力】2016届高考物理一轮复习 课时作业25 带电粒子在复合场中的运动(时间:45分钟 满分:100分)一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后括号内)1.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )A .可能做直线运动B .可能做匀减速运动C .一定做曲线运动D .可能做匀速圆周运动【解析】 带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C 正确.【答案】 C2.如图所示,两导体板水平放置,两板间电势差为U ,带电粒子以某一初速度v 0沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 和v 0的变化情况为( )A .d 随v 0增大而增大,d 与U 无关B .d 随v 0增大而增大,d 随U 增大而增大C .d 随U 增大而增大,d 与v 0无关D .d 随v 0增大而增大,d 随U 增大而减小【解析】 设粒子从M 点进入磁场时的速度大小为v ,该速度与水平方向的夹角为θ,故有v =v 0cos θ.粒子在磁场中做匀速圆周运动半径为r =mvqB .而MN 之间的距离为d =2r cosθ.联立解得d =2mv 0qB,故选项A 正确. 【答案】 A 3.如图所示,空间的某个复合场区域内存在着方向相互垂直的匀强电场和匀强磁场.质子由静止开始经一加速电场加速后,垂直于复合场的界面进入并沿直线穿过场区,质子从复合场区穿出时的动能为E k .那么氘核同样由静止开始经同一加速电场加速后穿过同一复合场后的动能E k ′的大小是( )A .E k ′=E kB .E k ′>E kC .E k ′<E kD .条件不足,难以确定【解析】 设质子的质量为m ,则氘核的质量为2m .在加速电场里,由动能定理可得:eU =12mv 2,在复合场里有:Bqv =qE v =EB ,同理对于氘核由动能定理可得其离开加速电场的速度比质子的速度小,所以当它进入复合场时所受的洛伦兹力小于电场力,将往电场力方向偏转,电场力做正功,故动能增大,B 选项正确.【答案】 B4.磁流体发电机可以把气体的内能直接转化为电能,是一种低碳环保发电机,有着广泛的发展前景.其发电原理如图所示,将一束等离子体(即高温下电离的气体,含有大量带正电和负电的微粒,整体上呈电中性)喷射入磁感应强度为B 的匀强磁场中,磁场区域有两块面积为S ,相距为d 的平行金属板与外电阻R 相连构成一电路,设气流的速度为v ,气体的电导率(电阻率的倒数)为g .则( )A .两板间电势差为U =BdvB .上板是电源的正极,下板是电源的负极C .流经R 的电流强度为I =Bdv RD .流经R 的电流强度为I =BdvSgSR +d【解析】 等离子体喷射入磁场后,在洛伦兹力F 1=qBv 的作用下正离子向上偏转,负离子向下偏转,则上板是电源的正极,下板是电源的负极,B 正确;两板间形成向下的电场,正、负离子将受到电场力F 2=q U d 阻碍其偏转,假设外电路断路,则qBv =q U d,即U =Bdv 为电源电动势,不是两极间的电势差,A 错误;电源内阻为r =ρ d S =d gS,由闭合电路欧姆定律得I =Bdv R +r =BdvSggSR +d,C 、D 错误. 【答案】 B5.如图所示,一个质量为m 、电荷量为+q 的带电粒子,不计重力,在a 点以某一初速度水平向左射入磁场区域Ⅰ,沿曲线abcd 运动,ab 、bc 、cd 都是半径为R 的圆弧,粒子在每段圆弧上运动的时间都为t .规定垂直于纸面向外的磁感应强度为正,则磁场区域Ⅰ、Ⅱ、Ⅲ三部分的磁感应强度B 随x 变化的关系可能是下图中的( )【解析】 由左手定则可判断出磁感应强度B 在磁场区域Ⅰ、Ⅱ、Ⅲ内磁场方向分别为向外、向里和向外,在三个区域中均运动1/4圆周,故t =T /4,由于T =2πm Bq ,求得B =πm2qt ,只有选项C 正确.【答案】 C6.(2015·铜陵高三质检)如图所示,粗糙的足够长的竖直木杆上套有一个带电的小球,整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中小球的vt 图象如图所示,其中正确的是( )【解析】 小球下滑过程中,qE 与qvB 反向,开始下落时qE >qvB ,所以a =mg -μqE -qvB m,随下落速度v 的增大a 逐渐增大;当qE <qvB 之后,其a =mg -μqvB -qEm,随下落速度v 的增大a 逐渐减小;最后a =0小球匀速下落,故图C正确,A 、B 、D 错误.【答案】 C7.(2013·重庆卷,5)如图所示,一段长方体形导电材料,左右两端面的边长都为a 和b ,内有带电荷量为q 的某种自由运动电荷.导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B .当通以从左到右的稳恒电流I 时,测得导电材料上、下表面之间的电压为U ,且上表面的电势比下表面的低.由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为( )A.IB |q |aU ,负B.IB|q |aU ,正 C.IB |q |bU ,负 D.IB|q |bU,正 【解析】 假设粒子带正电,根据左手定则可知,粒子受的洛伦兹力向上,上表面聚集正电荷,则上表面电势高,与题意不符,所以粒子带负电;达到稳定状态后,粒子受的电场力与洛伦兹力平衡,q U a =qvB ,且I =n |q |Sv =n |q |abv ,解得,n =IB|q |bU ,C 项正确.【答案】 C8.地球大气层外部有一层复杂的电离层,既分布有地磁场,也分布有电场.假设某时刻在该空间中有一小区域存在如图所示的电场和磁场;电场的方向在纸面内斜向左下方,磁场的方向垂直纸面向里.此时一带电宇宙粒子恰以速度v 垂直于电场和磁场射入该区域,不计重力作用,则在该区域中,有关该带电粒子的运动情况可能的是( )A .仍做直线运动B .立即向左下方偏转C .立即向右上方偏转D .可能做匀速圆周运动【解析】 比较Eq 与Bqv ,因二者开始时方向相反,当二者相等时,A 正确;当Eq >Bqv 时,向电场力方向偏,当Eq <Bqv 时,向洛伦兹力方向偏,B 、C 正确;有电场力存在,粒子不可能做匀速圆周运动,D 错.【答案】 ABC9.利用如图所示的方法可以测得金属导体中单位体积内的自由电子数n ,现测得一块横截面为矩形的金属导体的宽为b ,厚为d ,并加有与侧面垂直的匀强磁场B ,当通以图示方向电流I 时,在导体上、下表面间用电压表可测得电压为U .已知自由电子的电荷量为e ,则下列判断正确的是( )A .上表面电势高B .下表面电势高C .该导体单位体积内的自由电子数为I edbD .该导体单位体积内的自由电子数为BI eUb【解析】画出平面图如图所示,由左手定则可知,自由电子向上表面偏转,故下表面电势高,B 正确,A 错误.再根据e U d =evB ,I =neSv =nebdv 得n =BIeUb,故D 正确,C 错误.【答案】 BD 10.如图所示,虚线空间中存在由匀强电场E 和匀强磁场B 组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q ,质量为m )从正交或平行的电磁混合场上方的某一高度自由落下,那么,带电小球可能沿直线通过的是( )【解析】 带电小球进入复合场时受力情况:其中只有C 、D 两种情况下合外力可能为零或与速度的方向相同,所以有可能沿直线通过复合场区域,A 项中力qvB 随速度v 的增大而增大,所以三力的合力不会总保持在竖直方向,合力与速度方向将产生夹角,做曲线运动,所以A 错.【答案】 CD二、综合应用(本题共2小题,共30分,解答时应写出必要的文字说明,方程式和演算步骤,有数值计算的要注明单位)11.(14分)如图所示,空间存在着垂直纸面向外的水平匀强磁场,磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静电力忽略不计.(1)求两液滴相撞后共同运动的速度大小;(2)求液滴b 开始下落时距液滴a 的高度h . 【解析】 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q , 液滴a 平衡时有qE =mg ①a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态,重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上,因此满足qvB +qE =2mg ②由①、②两式,可得相撞后速度v =E B.(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE +mg )h =12mv 20③a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2E B再代入③式得h =mv 204qE +2mg =v 206g =2E 23gB 2.【答案】 (1)E B (2)2E23gB212.(16分)如图所示,第四象限内有互相正交的匀强电场E 与匀强磁场B 1,E 的大小为1.5×103V/m ,B 1大小为0.5 T ;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场,磁场的下边界与x 轴重合.一质量m =1×10-14 kg ,电荷量q =2×10-10C 的带正电微粒以某一速度v 沿与y 轴正方向60°角从M 点射入,沿直线运动,经P 点后即进入处于第一象限内的磁场B 2区域.一段时间后,微粒经过y 轴上的N 点并与y 轴正方向成60°角的方向飞出.M 点的坐标为(0,-10),N 点的坐标为(0,30),不计微粒重力,g 取10 m/s 2.则求:(1)微粒运动速度v 的大小; (2)匀强磁场B 2的大小; (3)B 2磁场区域的最小面积.【解析】 (1)带正电微粒在电场和磁场复合场中沿直线运动,qE =qvB 1,解得v =E /B 1=3×103m/s.(2)画出微粒的运动轨迹如图,粒子做圆周运动的半径为R =315m. 由qvB 2=mv 2/R ,解得B 2=33/4 T.(3)由图可知,磁场B 2的最小区域应该分布在图示的矩形PACD 内,由几何关系易得PD =2R sin 60°=20 cm =0.2 m ,PA =R (1-cos 60°)=3/30 m.所以,所求磁场的最小面积为S =PD ·PA =3150m 2. 【答案】 (1)3×103m/s (2)334 T (3)3150m2。