全国名校数学试题分类汇编(12月 第四期)K单元概率(含解析)
- 格式:doc
- 大小:485.56 KB
- 文档页数:7
2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。
K单元概率目录K单元概率 (1)K1随事件的概率 (1)K2古典概型 (1)K3几何概型 (5)K4 互斥事件有一个发生的概率 (10)K5 相互对立事件同时发生的概率 (11)K6离散型随机变量及其分布列 (13)K7条件概率与事件的独立性 (17)K8离散型随机变量的数字特征与正态分布 (19)K9 单元综合 (32)K1随事件的概率K2古典概型【重庆一中高一期末·2014】4.(原创)口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为()A.15B.25C.13D.16【知识点】古典概型及其概率计算公式.【答案解析】C解析:解:从5个球中随机抽取两个球,共有24C=6种抽法.满足两球编号之和大于5的情况有(2,4),(3,4)共2种取法.所以取出的两个球的编号之和大于5的概率为21 63 .【思路点拨】由组合知识求出从4个球中随机抽取两个球的所有方法种数,由题意得到两球编号之和大于5的方法种数,然后直接利用古典概型概率计算公式求解.【典型总结】本题考查了古典概型及其概率计算公式,考查了组合及组合数公式.【文·四川成都高三摸底·2014】18.(本小题满分12分)某地区为了解高二学生作业量和玩电脑游戏的情况,对该地区内所有高二学生采用随机抽样的方法,得到一个容量为200的样本统计数据如下表:(I)已知该地区共有高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?(Ⅱ)在A,B.C,D,E,F六名学生中,但有A,B两名学生认为作业多如果从速六名学生中随机抽取两名,求至少有一名学生认为作业多的概率。
【知识点】抽样方法、古典概型【答案解析】(I)7650名;(Ⅱ)3 5解析:解:(I)42500×36200=7650(名);(Ⅱ)从这六名学生随机抽去两名的基本事件有:{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个,设事件G表示至少有一位学生认为作业多,符合要求的事件有{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共9个,所以()93 155P G==,所以至少有一名学生认为作业多的概率为3 5 .【思路点拨】求概率问题应先确定其概率模型,若总体个数有限为古典概型,利用古典概型计算公式计算,若总体个数无限为几何概型,利用几何概型计算公式计算.【文·黑龙江哈六中高二期末考试·2014】13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为______【知识点】相互独立事件的概率乘法公式.【答案解析】13解析:解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为31 93 =,故答案为:13.【思路点拨】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【理·四川成都高三摸底·2014】18.(本小题满分12分)某地区为了解高二学生作业量和玩电脑游戏的情况,对该地区内所有高二学生采用随机抽样的方法,得到一个容量为200的样本统计数据如下表:(I)已知该地区共有高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?(Ⅱ)在A,B.C,D,E,F六名学生中,但有A,B两名学生认为作业多如果从速六名学生中随机抽取两名,求至少有一名学生认为作业多的概率。
K 概率 K1 随事件的概率12.K1 从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是________. 12.25 从边长为1的正方形的中心和顶点这五点中,随机选取两点,共有10种取法,该两点间的距离为22的有4种,所求事件的概率为 P =410=25.K2 古典概型15.K2 某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答).15.15 6节课共有A 66=720种排法,相邻两节文化课间至少间隔1节艺术课排法有A 33A 34=144种排法,所以相邻两节文化课间至少间隔1节艺术课的概率为144720=15.18.K2 如图1-6,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率; (2)求这3点与原点O 共面的概率.图1-618.解:从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种; y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种; z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种;所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这个6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有:A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P =220=110.(2)选取的这3个点与原点O 共面的所有可能结果有:A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P =1220=35.10.K2 袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.4510.B 用列举法可得:从袋中任取两球有15种取法,其中一白一黑共有6种取法,由等可能事件的概率公式可得p =615=25.15.I1、K2 某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率.15.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种.所以P (B )=315=15.18.K2、B10、I2 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.18.解:(1)当日需求量n ≥17时,利润y =85. 当日需求量n <17时,利润y =10n -85. 所以y 关于n 的函数解析式为y =⎩⎪⎨⎪⎧10n -85,n <17,85,n ≥17(n ∈N ).(2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4. ②利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为p =0.16+0.16+0.15+0.13+0.1=0.7.17.I2、K2某校100名学生期中考试语文成绩的频率分布直方图如图1-4所示,其中成绩分组区间是:.图1-4(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在 在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.17.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2, 所以a n =n ,b n =2n -1.(2)分别从{a n },{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2). 故所求的概率P =29.6.K2 现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.6.35 本题考查等比数列的通项公式的运用以及古典概型的求解.解题突破口为等比数列通项公式的运用.由通项公式a n =1×(-3)n -1得,满足条件的数有1,-3,-33,-35,-37,-39,共6个,从而所求概率为P =35.19.I4、K2 电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:图1-6将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2,19.解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”为25人,从而完成2×2列联表如下:将2×2χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2=-275×25×45×55=10033≈3.030. 因为3.030<3.841,所以我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图可知,“超级体育迷”为5个,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}.其中a i 表示男性,i =1,2,3,b j 表示女性,j =1,2.Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.用A 表示“任选2人中,至少有1人是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)},事件A 由7个基本事件组成,因而P (A )=710.18.K2 袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.18.解:(1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E .从五张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ).共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为: (A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一张卡片被取到的机会均等,因此这此基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.19.I2、K2 假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:图1-8(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率. 19.解:(1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以,甲品牌产品寿命小于200小时的概率为14.(2)根据抽样结果,寿命大于200小时的产品有75+70=145(个),其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529. K3 几何概型11.K3 在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为( )A.16B.13C.23D.4511.C 本小题主要考查几何概型.解题的突破口为弄清是长度之比、面积之比还是体积之比.令AC =x ,CB =12-x ,这时的面积为S =x (12-x ),根据条件S =x (12-x )>20⇒x 2-12x +20<0⇒2<x <10,矩形面积大于20 cm 2的概率P =10-212=23,故而答案为C.10.K3 如图1-3,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )图1-3A.12-1πB.1π C .1-2π D.2π10.C 如下图所示,不妨设扇形的半径为2a ,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =14π(2a )2=πa 2①,而S 1+S 3与S 2+S 3的和恰好为一个半径为a 的圆的面积,即S 1+S 3+S 2+S 3=πa 2②. 由①-②得S 3=S 4;又由图可知S 3=S 扇形EOD +S 扇形COD -S 正方形OEDC =12πa 2-a 2,所以S 阴影=πa 2-2a 2.故由几何概型概率公式可得,所求概率P =S 阴影S 扇形OAB =πa 2-2a 2πa 2=1-2π.故选C. 3.E5、K3 设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4B.π-22 C.π6 D.4-π43.D 本题考查了线性规划、圆的概念、圆的面积公式以及几何概型公式等基础知识. 如图所示,P =S 2S =S -S 1S =4-π4.K4 互斥事件有一个发生的概率17.K4 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率) 17.解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P (A 1)=15100=320,P (A 2)=30100=310,P (A 3)=25100=14. 因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件,所以P (A )=P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=320+310+14=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.18.K4、K5 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.18.解:设A k ,B k 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3).(1)记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (C )=P (A 1B 1)+P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)P (B 3) =23×12+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫123 =1327. (2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (D )=P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3)=P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)·P (B 2)P (A 3)=⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫13=427. K5 相互对立事件同时发生的概率20.K5 乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16, P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P (A 0·A )+P (A 1·A ) =P (A 0)P (A )+P (A 1)P (A ) =0.16×0.4+0.48×(1-0.4) =0.352.(2)P (B 0)=0.62=0.36,P (B 1)=2×0.4×0.6=0.48,P (B 2)=0.42=0.16,P (A 2)=0.62=0.36.C =A 1·B 2+A 2·B 1+A 2·B 2 P (C )=P (A 1·B 2+A 2·B 1+A 2·B 2)=P (A 1·B 2)+P (A 2·B 1)+P (A 2·B 2) =P (A 1)P (B 2)+P (A 2)P (B 1)+P (A 2)P (B 2)=0.48×0.16+0.36×0.48+0.36×0.16 =0.307 2.18.K4、K5 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.18.解:设A k ,B k 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3).(1)记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (C )=P (A 1B 1)+P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)P (B 3) =23×12+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫123 =1327. (2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (D )=P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3)=P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)·P (B 2)P (A 3)=⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫13=427. K6 离散型随机变量及其分布列22.K6 设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).22.解:(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C 23对相交棱,因此P (ξ=0)=8C 23C 212=8×366=411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对, 故P (ξ=2)=6C 212=111,于是P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611,所以随机变量ξ的分布列是因此E (x )K7 条件概率与事件的独立性 K8 离散型随机变量的数字特征与正态分布17.K8、I1、I2 近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.注:s 2=1n,其中x 为数据x 1,x 2,…,x n 的平均数17.解:(1)厨余垃圾投放正确的概率约为 “厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601000=0.7,所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值. 因为x =13(a +b +c )=200, 所以s 2=13=80 000.K9 单元综合17.K9 某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率. 17.解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110·p =4950. 解得p =15.(2)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D ,那么P (D )=C 23110·⎝ ⎛⎭⎪⎫1-1102+⎝ ⎛⎭⎪⎫1-1103=9721000=243250. 答:系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为243250.。
【备考2015】2015届全国名校数学试题分类汇编(12月 第三期)K单元概率(含解析)目录K 单元概率 错误!未定义书签。
K1 随事件的概率 - 1 - K2 古典概型 - 3 - K3 几何概型 - 6 -K4 互斥事件有一个发生的概率 - 7 - K5 相互对立事件同时发生的概率 - 7 - K6 离散型随机变量及其分布列 - 7 - K7 条件概率与事件的独立性 - 11 -K8 离散型随机变量的数字特征与正态分布 - 11 - K9 单元综合 - 12 -K1 随事件的概率【数学理卷·2015届湖北省八校高三第一次联考(201412)】18.(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,设随机变量ξ表示密码中所含不同数字的个数. (Ⅰ)求)2(=ξP ;(Ⅱ)求随机变量ξ的分布列和它的数学期望.【知识点】离散型随机变量的期望与方差;等可能事件的概率.K1 K6【答案】【解析】(Ⅰ)18;(Ⅱ)10132解析:(I )密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总1,2,即只能取表格第1,2列中的数字作为密码.3321(2).48P ξ∴===………4分 (II )由题意可知,ξ的取值为2,3,4三种情形.若3ξ=,注意表格的第一排总含有数字1,第二排总含有数字2则密码中只可能取数字1,2,3或1,2,4.2123332(221)19(3).324A CPξ++∴===若12223232394,(4)432A A A APξξ+====则(或用)3()2(1=-=-ξξPP求得). ……8分ξ∴的分布列为:.32101329432193812=⨯+⨯+⨯=∴ξE……………………………………12分【思路点拨】(Ⅰ)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码,由此可求P(ξ=2);(Ⅱ)取得ξ的取值,分别求出相应的概率,即可得到ξ的概率分布列和它的数学期望.【数学文卷·2015届湖南省长沙长郡中学高三上学期第四次月考(201412)word版】16.(本小题满分12分)已知某单位有50名职工,从中按系统抽样抽取10名职工.(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,现从这10名职工中随机抽取两名体重超过平均体重的职工,求体重为76公斤的职工被抽取到的概率.【知识点】随事件的概率K1【答案】(1)2,7,12,17,22,27,32,37,42,47(2)45【解析】(1)由题意,第5组抽出的号码为22.因为22=5×(5-1)+2所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47(2)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).故所求概率为:P=45.【思路点拨】(1)利用系统抽样的特点,可确定其抽样比,第1组抽出的号码,得所有被抽出职工的号码.(2)通过列举,利用古典概型概率公式,可得结果K2 古典概型【数学理卷·2015届河北省唐山一中高三上学期期中考试(201411)】18.(本题满分12分)某市,,,A B C D四所中学报名参加某高校今年自主招生的学生人数如下表所示:中学A B C D人数30402010为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.(1)问,,,A B C D四所中学各抽取多少名学生?(2)从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;(3)在参加问卷调查的50名学生中,从来自,A C两所中学的学生当中随机抽取两名学生,用ξ表示抽得A中学的学生人数,求ξ的分布列.【知识点】随机抽样古典概型离散型随机变量以及分布列I1 K2 K6【答案】(1);(2) 27;(3) .【解析】解析:(1)由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名,抽取的样本容量与总体个数的比值为.∴应从四所中学抽取的学生人数分别为.…………… 4分(2)设“从50名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件M,从50名学生中随机抽取两名学生的取法共有2501225C=种,… 5分来自同一所中学的取法共有22221520105350C C C C+++=.…………… 6分∴3502 ()12257P M==.答:从50名学生中随机抽取两名学生来自同一所中学的概率为27.… 7分(3)由(1)知,50名学生中,来自,A C 两所中学的学生人数分别为15,10. 依题意得,ξ的可能取值为0,1,2, ………… 8分2102253(0)20C P C ξ===,1115102251(1)2C C P C ξ===,2152257(2)20C P C ξ===.…… 11分∴ξ的分布列为: … 12分【思路点拨】(1)由题意知抽取的样本容量与总体个数的比值为,由此能求出应从A ,B ,C ,D 四所中学抽取的学生人数;(2)利用组合的意义分别计算出从参加问卷调查的50名学生中随机抽取两名学生的方法和这两名学生来自同一所中学的取法,再利用古典概型的概率计算公式即可得出;(3)由(1)知,在参加问卷调查的50名学生中,来自A ,C 两所中学的学生人数分别为15,10.可得ξ的可能取值为0,1,2.利用超几何分布的概率计算公式21015225.012k k C C P k k C ξ-===()(,,),即可得到分布列,利用数学期望的概率计算公式即可得出.【数学理卷·2015届云南省部分名校高三12月统一考试(201412)】9.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是()A .49B .13C .29D .19【知识点】古典概型K2 【答案】D【解析】个位数与十位数之和为奇数的两位数中,其个位数与十位数有一个为奇数,一个为偶数,共有15C 15C +15C 14C =45记:“个位数与十位数之和为奇数的两位数中,其个位数为0”为事件A ,则A 包含的结果:10,30,50,70,90共5个由古典概率的求解公式可得,P (A )=19【思路点拨】先求个位数与十位数之和为奇数的两位数的个数n ,然后再求个位数与十位数之和为奇数的两位数的个数,由古典概率的求解公式可求.【数学文卷·2015届重庆市重庆一中高三上学期期中考试(201411)word 版】17. (本题满分13分)从某校高三学生中抽取n 名学生参加数学竞赛,根据成绩(单位:分)的分组及各数据绘制的频率分布直方图如图所示,已知成绩的范围是区间 [40, 100),且成绩在区间[70, 90)的学生人数是27人.⑴求n 的值;⑵若从数学成绩(单位:分)在[40,60)的学生中随机选取2人进行成绩分析,求至少有1人成绩在[40, 50)内的概率.【知识点】用样本估计总体;古典概型. I2 K2【答案】【解析】(1)50;(2)107.解析:⑴成绩在区间[)9070,的频率是: 1-(0.02+0.016+0.006+0.004)×10=0.54,∴27500.54n ==人.⑵成绩在区间[)4050,的学生人数是:50×0.04=2人,成绩在区间[)5060,的学生人数是:50×0.06=3人, 设成绩在区间[)4050,的学生分别是A1,A2,成绩在区间[)5060,的学生分别是B1,B2,B3,从成绩在[)6040,的学生中随机选取2人的所有结果有:(A1,A2),(A1,B1), (A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3)共10种情况.至少有1人成绩在[)5040,内的结果有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3)共7种情况.∴至少有1人成绩在[)5040,内的概率P=107. 【思路点拨】(1)先求成绩在区间[)9070,的频率,由频率=n 频数得n 值;(2)分别求出成绩在区间[)4050,的学生人数2人,和成绩在区间[)5060,的学生人数3人,用列举法写出从这5人中随机选取2人的所有情况共10种,其中至少有1人成绩在[)5040,内的结果有7种,从而得所求概率.K3 几何概型【数学理卷·2015届湖北省武汉华中师范大学第一附属中学高三上学期期中考试(201411)】5.已知(){}1,1,≤≤=Ωy x y x ,A 是曲线2x y =与y =围成的区域,若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为()A. 31B. 41C. 81D. 121【知识点】几何概型K3【答案】【解析】D解析:联立得2y x y ==⎧⎪⎨⎪⎩,解得1 1x y ==⎧⎨⎩或00x y ==⎧⎨⎩,设曲线与曲线围成的面积为S ,则1013S dx =⎰=2(x-x ),而(){}1,1,≤≤=Ωy x y x ,表示的区域是一个边长为2的正方形,∴Ω上随机投一点P ,则点P 落入区域A (阴影部分)中的概率1322112S P S ===⨯阴影,故选D .【思路点拨】本题利用几何概型求解.欲求恰好落在阴影范围内的概率,只须求出阴影范围内的面积与正方形的面积比即可.为了求出阴影部分的面积,联立由曲线2x y =和曲线y =01x ∈(,))区间上利用定积分的方法求出围成的面积即可.【数学理卷·2015届河北省唐山一中高三上学期期中考试(201411)】4. 已知实数[]1,9x ∈,执行如右图所示的流程图,则输出的x 不小于55的概率为( )【知识点】程序框图几何概型L1 K3 【答案】【解析】B 解析:设实数[]1,9x ∈,经过第一次循环得到x=2x+1,n=2经过第二循环得到x=2(2x+1)+1,n=3经过第三次循环得到x=2[2(2x+1)+1]+1,n=3此时输出x 输出的值为8x+7令8x+7≥55,得x≥6由几何概型得到输出的x 不小于55的概率为=963918-=-,故选择B.【思路点拨】由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于55得到输入值的范围,利用几何概型的概率公式求出输出的x 不小于55的概率.【数学文卷·2015届湖北省八校高三第一次联考(201412)word 版】14.随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是____. 【知识点】几何概型的概率求法. K3【答案】【解析】241π-解析:分别以三角形三个顶点为圆心,1为半径作圆,则在三角形内部且在三圆外部的区域,即为与三角形三个顶点距离不小于1 的部分,即211211124642P ππ⨯=-=-⨯⨯.【思路点拨】求出三角形中,到三顶点距离都大于1的点构成的区域面积,此面积除以三角形面积,即为所求概率.K4 互斥事件有一个发生的概率K5 相互对立事件同时发生的概率K6 离散型随机变量及其分布列【数学理卷·2015届湖北省武汉华中师范大学第一附属中学高三上学期期中考试(201411)】20.(本小题满分12分)节日期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如下图所示的频率分布直方图.(Ⅰ)此调查公司在采样中用到的是什么抽样方法? (Ⅱ)求这40辆小型车辆车速的众数和中位数的估计值. (Ⅲ)若从车速在[80,90)的车辆中任抽取2辆,求抽出 的2辆车中车速在[85,90)的车辆数ξ的分布列及 数学期望.【知识点】频率分布直方图,分布列与数学期望I2 K6 【答案】【解析】(Ⅰ)系统抽样(Ⅱ)中位数的估计值为97.5(Ⅲ)ξ的分布列为均值864()01215153E ξ=+⨯+⨯=.解析:(I )系统抽样……………………2分(II )众数的估计值为最高的矩形的中点,即众数的估计值等于97.5, 设图中虚线所对应的车速为x ,则中位数的估计值为0.0150.0250.0450.06(95)0.5x ⨯+⨯+⨯+⨯-=,解得97.5x =即中位数的估计值为97.5……………………6分 (Ⅲ)从图中可知,车速在[)80,85的车辆数为10.015402m =⨯⨯=(辆).车速在[)85,90的车辆数为20.025404m =⨯⨯=(辆),0,1,2ξ∴=()()()2011022424242226661860,1,2,151515C C C C C C P P P C C C ξξξ=========ξ的分布列为均值864()01215153E ξ=+⨯+⨯=. ……………………12分【思路点拨】(II )众数的估计值为最高的矩形的中点(Ⅲ)由题意求出()()()2011022424242226661860,1,2,151515C C C C C C P P P C C C ξξξ=========即可求得分布列与期望.【数学理卷·2015届湖北省八校高三第一次联考(201412)】18.(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一组组成.设随机变量ξ表示密码中所含不同数字的个数. (Ⅰ)求)2(=ξP ;(Ⅱ)求随机变量ξ的分布列和它的数学期望.【知识点】离散型随机变量的期望与方差;等可能事件的概率.K1 K6【答案】【解析】(Ⅰ)18;(Ⅱ)10132解析:(I )密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总1,2,即只能取表格第1,2列中的数字作为密码.3321(2).48P ξ∴===………4分 (II )由题意可知,ξ的取值为2,3,4三种情形.若3ξ=,注意表格的第一排总含有数字1,第二排总含有数字2则密码中只可能取数字1,2,3或1,2,4.2123332(221)19(3).324A C P ξ++∴=== 若12223232394,(4)432A A A A P ξξ+====则(或用)3()2(1=-=-ξξP P 求得). ……8分 ξ∴的分布列为:.32101329432193812=⨯+⨯+⨯=∴ξE ……………………………………12分【思路点拨】(Ⅰ)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码,由此可求P (ξ=2); (Ⅱ)取得ξ的取值,分别求出相应的概率,即可得到ξ的概率分布列和它的数学期望.【数学理卷·2015届河北省唐山一中高三上学期期中考试(201411)】18.(本题满分12分) 某市,,,A B C D 四所中学报名参加某高校今年自主招生的学生人数如下表所示:中学 AB C D 人数30 40 20 10为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查. (1)问,,,A B C D 四所中学各抽取多少名学生?(2)从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率; (3)在参加问卷调查的50名学生中,从来自,A C 两所中学的学生当中随机抽取两名学生,用ξ表示抽得A 中学的学生人数,求ξ的分布列.【知识点】随机抽样古典概型离散型随机变量以及分布列I1 K2 K6【答案】(1);(2) 27;(3).【解析】解析:(1)由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名,抽取的样本容量与总体个数的比值为.∴应从四所中学抽取的学生人数分别为. …………… 4分(2)设“从50名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件M ,从50名学生中随机抽取两名学生的取法共有2501225C =种,… 5分来自同一所中学的取法共有22221520105350C C C C+++=.…………… 6分∴3502()12257P M==.答:从50名学生中随机抽取两名学生来自同一所中学的概率为27.… 7分(3)由(1)知,50名学生中,来自,A C两所中学的学生人数分别为15,10.依题意得,ξ的可能取值为0,1,2,………… 8分2102253(0)20CPCξ===,1115102251(1)2C CPCξ===,2152257(2)20CPCξ===.…… 11分∴ξ的分布列为:… 12分【思路点拨】(1)由题意知抽取的样本容量与总体个数的比值为,由此能求出应从A,B,C,D四所中学抽取的学生人数;(2)利用组合的意义分别计算出从参加问卷调查的50名学生中随机抽取两名学生的方法和这两名学生来自同一所中学的取法,再利用古典概型的概率计算公式即可得出;(3)由(1)知,在参加问卷调查的50名学生中,来自A,C两所中学的学生人数分别为15,10.可得ξ的可能取值为0,1,2.利用超几何分布的概率计算公式21015225.012k kC CP k kCξ-===()(,,),即可得到分布列,利用数学期望的概率计算公式即可得出.K7 条件概率与事件的独立性K8 离散型随机变量的数字特征与正态分布【数学文卷·2015届重庆市重庆一中高三上学期期中考试(201411)word版】6.甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如下表:从这四人中选择一人参甲乙丙丁平均成绩x89 89 86 85方差2S 2.1 3.5 2.1 5.6加国际奥林匹克数学竞赛,最佳人选是()A.甲 B.乙 C.丙 D.丁【知识点】均值与方差的意义. K8【答案】【解析】A解析:均值反映一组数据的平均水平,其越大越好;方差反映一组数据波动程度,其越小越好.故选A.【思路点拨】根据均值与方差的意义得正确选项.K9 单元综合。
历年(2019-2024)全国高考数学真题分类(事件与概率)汇编考点01 古典概率一、单选题1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.232.(2023∙全国乙卷∙高考真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.133.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.234.(2022∙全国甲卷∙高考真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.235.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.236.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.87.(2019∙全国∙高考真题)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A.16B.14C.13D.128.(2019∙全国∙高考真题)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23 B.35C.25D.15二、填空题21.(2024∙全国新Ⅰ卷∙高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 .22.(2024∙全国甲卷∙高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为 .23.(2024∙全国新Ⅱ卷∙高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .24.(2023∙天津∙高考真题)把若干个黑球和白球(这些球除颜色外无其它差异)放进三个空箱子中,三个箱子中的球数之比为5:4:6.且其中的黑球比例依次为40%,25%,50%.若从每个箱子中各随机摸出一球,则三个球都是黑球的概率为 ;若把所有球放在一起,随机摸出一球,则该球是白球的概率为 . 25.(2022∙浙江∙高考真题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ== ,()E ξ= .26.(2022∙全国甲卷∙高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 . 27.(2022∙全国乙卷∙高考真题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 .28.(2021∙浙江∙高考真题)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -= ,()E ξ= .29.(2020∙江苏∙高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 .30.(2019∙江苏∙高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .考点02 条件概率1.(2024∙天津∙高考真题),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.甲选到A 的概率为 ;已知乙选了A 活动,他再选择B 活动的概率为 .2.(2023∙全国甲卷∙高考真题)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A .0.8B .0.6C .0.5D .0.43.(2022∙天津∙高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为 ;已知第一次抽到的是A ,则第二次抽取A 的概率为考点03 全概率公式与贝叶斯公式1.(2024∙上海∙高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 .2.(2023∙全国新Ⅰ卷∙高考真题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n n i i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .考点04 正态分布指定区间的概率1.(2024∙全国新Ⅰ卷∙高考真题)(多选)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N μσ,()0.8413P Z μσ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><2.(2022∙全国新Ⅱ卷∙高考真题)已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >= .3.(2021∙全国新Ⅱ卷∙高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( ) A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大 B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等参考答案考点01 古典概率一、单选题 1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国乙卷∙高考真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )6323【答案】A【详细分析】对6个主题编号,利用列举列出甲、乙抽取的所有结果,并求出抽到不同主题的结果,再利用古典概率求解作答.【答案详解】用1,2,3,4,5,6表示6个主题,甲、乙二人每人抽取1个主题的所有结果如下表:甲 1234 5 61 (1,1) (1,2) (1,3) (1,4)(1,5) (1,6) 2 (2,1)(2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3)(3,4) (3,5)(3,6) 4 (4,1)(4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3)(5,4) (5,5) (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36个不同结果,它们等可能,其中甲乙抽到相同结果有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6个, 因此甲、乙两位参赛同学抽到不同主题的结果有30个,概率305366P ==. 故选:A3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2022∙全国甲卷∙高考真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )5353【答案】C【详细分析】方法一:先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【答案详解】[方法一]:【最优解】无序 从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=. [方法二]:有序从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6,(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(6,5)30种情况,其中数字之积为4的倍数有(1,4),(2,4),(2,6),(3,4),(4,1),(4,2),(4,3),(4,5),(4,6),(5,4),(6,2),(6,4)12种情况,故概率为122305=. 故选:C.【整体点评】方法一:将抽出的卡片看成一个组合,再利用古典概型的概率公式解出,是该题的最优解; 方法二:将抽出的卡片看成一个排列,再利用古典概型的概率公式解出;5.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.6.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3 B .0.5C .0.6D .0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610, 故选:C.7.(2019∙全国∙高考真题)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14 C .13D .12【答案】D【解析】男女生人数相同可利用整体发详细分析出两位女生相邻的概率,进而得解.【答案详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【名师点评】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.8.(2019∙全国∙高考真题)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25D .15【答案】B【详细分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【答案详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为63105,选B . 【名师点评】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.二、填空题 21.(2024∙全国新Ⅰ卷∙高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 . 【答案】12/0.5 【详细分析】将每局的得分分别作为随机变量,然后详细分析其和随机变量即可. 【答案详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==. 从而()()()441234113382k k k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==; 如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==. 而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==. 所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=. 故答案为:12.【名师点评】关键点名师点评:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.22.(2024∙全国甲卷∙高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为 . 【答案】715【详细分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【答案详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤, 故2()3c a b -+≤,故32()3c a b -≤-+≤, 故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种, 若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种, 当5c =,则713a b ≤+≤,同理有10种, 当6c =,则915a b ≤+≤,同理有2种, 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=, 故所求概率为56712015=. 故答案为:71523.(2024∙全国新Ⅱ卷∙高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .【答案】 24 112【详细分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【答案详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中, 则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选, 所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,ab c d ,,,分别表示第一、二、三、四列的数字, 则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42), (12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40), (13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40), (15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=. 故答案为:24;112【名师点评】关键点名师点评:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.24.(2023∙天津∙高考真题)把若干个黑球和白球(这些球除颜色外无其它差异)放进三个空箱子中,三个箱子中的球数之比为5:4:6.且其中的黑球比例依次为40%,25%,50%.若从每个箱子中各随机摸出一球,则三个球都是黑球的概率为 ;若把所有球放在一起,随机摸出一球,则该球是白球的概率为 . 【答案】 0.0535/0.6 【详细分析】先根据题意求出各盒中白球,黑球的数量,再根据概率的乘法公式可求出第一空; 根据古典概型的概率公式可求出第二个空.【答案详解】设甲、乙、丙三个盒子中的球的个数分别为5,4,6n n n ,所以总数为15n , 所以甲盒中黑球个数为40%52n n ⨯=,白球个数为3n ; 乙盒中黑球个数为25%4n n ⨯=,白球个数为3n ; 丙盒中黑球个数为50%63n n ⨯=,白球个数为3n ;记“从三个盒子中各取一个球,取到的球都是黑球”为事件A ,所以,()0.40.250.50.05P A =⨯⨯=;记“将三个盒子混合后取出一个球,是白球”为事件B , 黑球总共有236n n n n ++=个,白球共有9n 个, 所以,()93155n P B n ==. 故答案为:0.05;35.25.(2022∙浙江∙高考真题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ== ,()E ξ= . 【答案】1635,127/517【详细分析】利用古典概型概率公式求(2)P ξ=,由条件求ξ分布列,再由期望公式求其期望.【答案详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P ξ+===, 由已知可得ξ的取值有1,2,3,4,2637C 15(1)C 35P ξ===,16(2)35P ξ==,,()()233377C 31134C 35C 35P P ξξ======所以15163112()1234353535357E ξ=⨯+⨯+⨯+⨯=, 故答案为:1635,127. 26.(2022∙全国甲卷∙高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 . 【答案】635. 【详细分析】根据古典概型的概率公式即可求出.【答案详解】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===. 故答案为:635. 27.(2022∙全国乙卷∙高考真题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 . 【答案】310/0.3 【详细分析】根据古典概型计算即可【答案详解】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法; 其中,甲、乙都入选的选法有3种,故所求概率310P =. 故答案为:310. 解法二:从5名同学中随机选3名的方法数为35C 10=甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P =故答案为:31028.(2021∙浙江∙高考真题)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -= ,()E ξ= .【答案】 189【详细分析】根据古典概型的概率公式即可列式求得,m n 的值,再根据随机变量ξ的分布列即可求出()E ξ. 【答案详解】2244224461(2)366m n m n m n C P C CCξ++++++====⇒=,所以49m n ++=, ()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=, 所以2n =, 则1m n -=.由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯========== 155158()2106918399E ξ∴=⨯+⨯+⨯=+=.故答案为:1;89.29.(2020∙江苏∙高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 . 【答案】19【详细分析】分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可. 【答案详解】根据题意可得基本事件数总为6636⨯=个. 点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个.∴出现向上的点数和为5的概率为41369P ==. 故答案为:19.【名师点评】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题. 30.(2019∙江苏∙高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 【答案】710. 【详细分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【答案详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C=种情况,若选出的2名学生都是女生,有221C=种情况,所以所求的概率为617 1010 +=.【名师点评】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.考点02 条件概率1.(2024∙天津∙高考真题),,,,A B C D E五种活动,甲、乙都要选择三个活动参加.甲选到A的概率为;已知乙选了A活动,他再选择B活动的概率为.【答案】 3512【详细分析】结合列举法或组合公式和概率公式可求甲选到A的概率;采用列举法或者条件概率公式可求乙选了A活动,他再选择B活动的概率.【答案详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE,共10种情况,其中甲选到A有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE,则甲选到A得概率为:63105P==;乙选A活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE, 其中再选则B有3种可能性:,,ABC ABD ABE,故乙选了A活动,他再选择B活动的概率为31 = 62.解法二:设甲、乙选到A为事件M,乙选到B为事件N,则甲选到A的概率为()2435C3 C5P M==;乙选了A活动,他再选择B活动的概率为()()()133524351C2CCP MN CP N MP M===故答案为:35;122.(2023∙全国甲卷∙高考真题)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A .0.8 B .0.6C .0.5D .0.4【答案】A【详细分析】先算出同时爱好两项的概率,利用条件概率的知识求解. 【答案详解】同时爱好两项的概率为0.50.60.70.4+-=, 记“该同学爱好滑雪”为事件A ,记“该同学爱好滑冰”为事件B , 则()0.5,()0.4P A P AB ==,所以()0.4()0.8()0.5P AB P B A P A ===∣. 故选:A .3.(2022∙天津∙高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为 ;已知第一次抽到的是A ,则第二次抽取A 的概率为 【答案】1221 117【详细分析】由题意结合概率的乘法公式可得两次都抽到A 的概率,再由条件概率的公式即可求得在第一次抽到A 的条件下,第二次抽到A 的概率.【答案详解】由题意,设第一次抽到A 的事件为B ,第二次抽到A 的事件为C ,则()()()()1431411221,(),|1525122152131713BC P BC P B P C B P B P =⨯======. 故答案为:1221;117.考点03 全概率公式与贝叶斯公式1.(2024∙上海∙高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 .【答案】0.85【详细分析】求出各题库所占比,根据全概率公式即可得到答案. 【答案详解】由题意知,,,A B C 题库的比例为:5:4:3, 各占比分别为543,,121212, 则根据全概率公式知所求正确率5430.920.860.720.85121212p =⨯+⨯+⨯=.故答案为:0.85.(附加)2.(2023∙全国新Ⅰ卷∙高考真题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n n i i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 【答案】(1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【详细分析】(1)根据全概率公式即可求出;(2)设()i i P A p =,由题意可得10.40.2i i p p +=+,根据数列知识,构造等比数列即可解出; (3)先求出两点分布的期望,再根据题中的结论以及等比数列的求和公式即可求出. 【答案详解】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B , 所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+ ()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+, 构造等比数列{}i p λ+, 设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭, 又11111,236p p =-=,所以13i p ⎧⎫-⎨⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭. (3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 【名师点评】本题第一问直接考查全概率公式的应用,后两问的解题关键是根据题意找到递推式,然后根据数列的基本知识求解.考点04 正态分布指定区间的概率1.(2024∙全国新Ⅰ卷∙高考真题)(多选)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N μσ,()0.8413P Z μσ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><【答案】BC【详细分析】根据正态分布的3σ原则以及正态分布的对称性即可解出. 【答案详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误; 因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<, 而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误, 故选:BC .2.(2022∙全国新Ⅱ卷∙高考真题)已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >= .【答案】0.14/750. 【详细分析】根据正态分布曲线的性质即可解出.【答案详解】因为()22,X N σ ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=.故答案为:0.14.3.(2021∙全国新Ⅱ卷∙高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( ) A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大 B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【答案】D【详细分析】由正态分布密度曲线的特征逐项判断即可得解.【答案详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误. 故选:D.。
.
12.36
(1)求图中a的值;
(2)假设同组中的每个数据都用该组区间的中点值代替,请估计全市关注此问题的市民年龄的平均数;
(3)现在要从第一组和第二组中用分层抽样的方法抽取
从第二组中恰好抽到2人的概率.
【答案】(1)0.035
(2)41.5岁
(3)3 10
【分析】(1)由频率分布直方图即可求出a的值
(2)由图得出同组中的每个数据所在组区间的中点值,即可求出全市关注此问题的市民年龄的平均数(3)求出第一组和第二组分层抽样的人数,再列出从这
得出第二组中恰好抽到2人的方法总数,即可求出从第二组中恰好抽到
X=,求乙组同学单位时间内引体向上次数的平均数;
(1)如果7
(2)如果8
X=,分别从甲、
率.
(1)请根据图1简要描述我国2018年至2022年农产品网络零售额的变化趋势;
(2)从A市2022年网络零售农产品中随机抽取一件,估计抽取的产品是粮油或茶叶的概率;
(3)已知某农产品带货主播每天零售额超过1万元的概率为0.6
意两天中至少有一天零售额超过1万元的概率.
【答案】(1)2018年至2022年农产品网络零售额逐渐增大
2。
历年(2020‐2023)全国高考数学真题分类(概率统计)汇编【2023年真题】1.(2023·新课标II 卷 第3题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有 A. 4515400200C C ⋅种B. 2040400200C C ⋅种C. 3030400200C C ⋅种D. 4020400200C C ⋅种2. (2023·新课标I 卷 第9题)(多选)一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差3.(2023·新课标II 卷 第12题)(多选)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1;α-发送1时,收到0的概率为(01)ββ<<,收到1的概率为1.β-考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次;三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A. 采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)αβ--B. 采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C. 采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D. 当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率4. (2023·新课标I 卷 第21题)甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为0.5.(1)求第2次投篮的人是乙的概率. (2)求第i 次投篮的人是甲的概率.(3)已知:若随机变量i X 服从两点分布,且111(1)1(0)P X P X q ==-==,1i =,2, ,n ,则11().nni i i i E X q ===∑∑记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求().E Y5.(2023·新课标II 卷 第19题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为().q c 假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)设函数()()().f c p c q c =+当[95,105]c ∈时,求()f c 的解析式,并求()f c 在区间[95,105]的最小值.【2022年真题】6.(2022·新高考I 卷 第5题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A.16B.13C.12D.237.(2022·新高考II 卷 第13题)随机变量X 服从正态分布2(2,)N σ,若(2 2.5)0.36P x <=…,则( 2.5)P X >=__________.8.(2022·新高考I 卷 第20题)一支医疗团队研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好 病例组 40 60 对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为.R()i 证明:(|)(|.;(|)(|)P A B P A B R P A B P A B =()ii 利用该调查数据,给出(|)P A B ,(|)P A B 的估计值,并利用()i 的结果给出R 的估计值.附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k …0.050 0.010 0.001 k 3.8416.63510.8289.(2022·新高考II 卷 第19题)在某地区进行某种疾病调查,随机调查了100位这种疾病患者的年龄,得到如下样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄;(同一组数据用该区间的中点值作代表) (2)估计该地区以为这种疾病患者年龄位于区间[20,70)的概率;(3)已知该地区这种疾病患者的患病率为0.1%,该地区年龄位于区间[40,50)的人口数占该地区总人口数的16%,从该地区选出1人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(精确到0.0001).【2021年真题】10.(2021·新高考I 卷 第8题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球、甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立11.(2021·新高考II 卷 第6题)某物理量的测量结果服从正态分布,下列结论中不正确的是( )A. σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B. σ越小,该物理量在一次测量中大于10的概率为0.5C. σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等12.(2021·新高考I 卷 第9题)(多选)有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中(1,2,,)i i y x c i n =+= ,c 为非零常数,则A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样本数据的样本极差相同13.(2021·新高考II 卷 第9题)(多选)下列统计量中,能度量样本12,,,n x x x 的离散程度的是( ) A. 样本12,,,n x x x 的标准差 B. 样本12,,,n x x x 的中位数 C. 样本12,,,n x x x 的极差D. 样本12,,,n x x x 的平均数14.(2021·新高考I 卷 第18题)某学校组织“一带一路”知识竞赛,有A ,B 两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分。
K 概率 K1 随事件的概率19.K1、K5、K6 已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.(1)求X 的分布列; (2)求X 的数学期望E (X ).19.解:(1)由题意得X 取3,4,5,6,且 P (X =3)=C 35C 39=542,P (X =4)=C 14·C 25C 39=1021,P (X =5)=C 24·C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为E (X )=3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.K2 古典概型15.K2 某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).15.35 6节课共有A 66=720种排法,相邻两节文化课间最多间隔1节艺术课排法分两类: (1)两节相邻文化课之间没有艺术课间隔:可将三节文化课捆绑为一个元素,然后再与另三节艺术课进行全排列,排法有A 33A 44=144种;(2)三节文化课间都有1节艺术课间隔:有“文艺文艺文艺”与“艺文艺文艺文” 两种形式,其排法有2A 33A 33=72种;(3)三节文化课中有两节之间有一节艺术课,而另一节文化课与前两节文化课之一无间隔,可先对文化课进行全排,然后从3节艺术课选一节放入排好的3节文化课之间,再将此4节课看作一个元素与余下的2节艺术课进行全排,其排法有:A 33C 13C 12A 33=216种.综上可知,相邻两节文化课间最多间隔1节艺术课排法有144+72+216=432种, 所以课表上的相邻两节文化课之间最多间隔1节艺术课的概率为432720=35.11.K2 三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).11.23 考查古典概率和组合问题,关键是把情况分析清楚,不要漏掉或者重复情况. 所有的可能情况有C 23C 23C 23,满足条件有且仅有两人选择的项目完全相同的情况有 C 23C 23C 12,由古典概率公式得P =C 23C 23C 12C 23C 23C 23=23.6.K2 现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.6.35 本题考查等比数列的通项公式的运用以及古典概型的求解.解题突破口为等比数列通项公式的运用.由通项公式a n =1×(-3)n -1得,满足条件的数有1,-3,-33,-35,-37,-39,共6个,从而所求概率为P =35.16.K2、K6 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A . 则P (A )=2+350=110.(2)依题意得,X 1的分布列为X 2(3)由(2)得,E (X 1)=1×25+2×50+3×10=50=2.86(万元),E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2),所以应生产甲品牌轿车.7.K2、J1 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13 C.29 D.197.D 本题考查利用古典概型求解概率以及两个基本计数原理,解决本题的突破口是首先确定符合条件的两位数的所有个数,再找到个位是0的个数,利用公式求解,设个位数与十位数分别为y ,x ,则如果两位数之和是奇数,则x ,y 分别为一奇数一偶数:第一类x 为奇数,y 为偶数共有:C 15×C 15=25; 另一类x 为偶数,y 为奇数共有:C 14×C 15=20.两类共计45个,其中个位数是0,十位数是奇数的两位数有10,30,50,70,90这5个数,所以个位数是0的概率为:P (A )=545=19.K3 几何概型10.K3 在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A.16B.13C.23D.4510.C 本小题主要考查几何概型.解题的突破口为弄清是长度之比、面积之比还是体积之比.令AC =x ,CB =12-x ,这时的面积为S =x (12-x ),根据条件S =x (12-x )<32⇒x 2-12x +32>0⇒0<x <4或8<x <12,矩形面积小于32 cm 2的概率P =4-0+-12=23,故而答案为C.2.E5、K3 设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4B.π-22C.π6D.4-π42.D 设事件A :点到坐标原点的距离大于2. 如图1-1,P (A )=S 2S =S -S 1S =4-π4.图1-16.K3、B13 如图1-1所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为()图1-1A.14B.15C.16D.176.C 本题考查几何概型的计算与求解以及定积分的计算,解决本题的关键是利用定积分求出阴影部分的面积,再利用几何概型公式求解.阴影部分的面积是:S 阴影=⎠⎛01(x -x)d x =⎝ ⎛⎭⎪⎫23x 32-12x 2⎪⎪ 10=23-12=16,利用几何概型公式得:P =S 阴影S 正方形=161=16. 8.K3 如图1-3所示,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是()图1-3A .1-2π B.12-1πC.2πD.1π8.A 如下图所示,不妨设扇形的半径为2a ,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =14π(2a )2=πa 2①,而S 1+S 3与S 2+S 3的和恰好为一个半径为a 的圆的面积,即S 1+S 3+S 2+S 3=πa 2②. 由①-②得S 3=S 4;又由图可知S 3=S 扇形EOD +S 扇形COD -S 正方形OEDC =12πa 2-a 2,所以S 阴影=πa 2-2a 2.故由几何概型概率公式可得,所求概率P =S 阴影S 扇形OAB =πa 2-2a 2πa 2=1-2π.故选A.15.C3、K3 函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图1-5所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.(1)若φ=π6,点P 的坐标为⎝⎛⎭⎪⎫0,332,则ω=________;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.图1-515.(1)3 (2) π4 考查三角函数f (x )=sin(ωx +φ)的图象与解析式,结合导数和几何概型,在陈题上有了不少的创新.作为填空题,第二问可在第一问的特殊情况下求解.(1)函数f (x )=sin(ωx +φ)求导得,f ′(x )=ωcos(ωx +φ),把φ=π6和点⎝⎛⎭⎪⎫0,332代入得ωcos ⎝ ⎛⎭⎪⎫0+π6=332解得ω=3.(2)取特殊情况,在(1)的条件下,导函数f ′(x )=3cos ⎝ ⎛⎭⎪⎫3x +π6,求得A ⎝ ⎛⎭⎪⎫π9,0,B ⎝⎛⎭⎪⎫5π18,-3,C ⎝ ⎛⎭⎪⎫4π9,0,故△ABC 的面积为S △ABC=12×3π9×3=π2,曲线段与x 轴所围成的区域的面积S =-⎪⎪f x 4π9π9=-sin ⎝ ⎛⎭⎪⎫4π3+π6+sin ⎝ ⎛⎭⎪⎫3π9+π6=2,所以该点在△ABC 内的概率为P =S △ABC S =π4. 10.L1、K3 图1-3是用模拟方法估计圆周率π值的程序框图,P 表示估计结果,则图中空白框内应填入( )图1-3A .P =N 1000B .P =4N1000 C .P =M1000 D .P =4M100010.D 本题主要考查循环结构的程序框图的应用,同时要兼顾考查学习概率的模拟方法中圆周率π的模拟,通过阅读题目和所给数据可知试验了1000次,M 代表落在圆内的点的个数,根据几何概型,π4=M 1000,对应的圆周率π为P =4M 1 000.K4 互斥事件有一个发生的概率16.B11、B12、E3 设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.16.解:(1)因f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32. 由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=x +x -2x2.令f ′(x )=0,解得x 1=1,x 2=-13(因x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3,无极大值.K5 相互对立事件同时发生的概率16.B11、B12、E3 设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.16.解:(1)因f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32. 由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=x +x -2x2.令f ′(x )=0,解得x 1=1,x 2=-13(因x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3,无极大值.17.K5、K6 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率)17.解:(1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P (X =1)=15100=320,P (X =1.5)=30100=310, P (X =2)=25100=14,P (X =2.5)=20100=15, P (X =3)=10100=110. X 的分布列为X E (X )=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1).由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1)=320×320+320×310+310×320=980. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 17.K5、K6 某单位招聘面试,每次从试题库中随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类型试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n +m 道试题,其中有n 道A 类型试题和m 道B 类型试题.以X 表示两次调题工作完成后,试题库中A 类型试题的数量.(1)求X =n +2的概率;(2)设m =n ,求X 的分布列和均值(数学期望).17.解:以A i 表示第i 次调题调用到A 类型试题,i =1,2.(1)P (X =n +2)=P (A 1A 2)=nm +n ·n +1m +n +2=n n +1m +n m +n +2.(2)X 的可能取值为n ,n +1,n +2.P (X =n )=P (A 1A 2)=n n +n ·nn +n =14,P (X =n +1)=P (A 1A 2)+P (A 1A 2)=nn +n ·n +1n +n +2+n n +n ·n n +n =12,P (X =n +2)=P (A 1A 2)=n n +n ·n +1n +n +2=14,从而X 的分布列是EX =n ×14+(n +1)×2+(n +2)×4=n +1.15.K5、I3 某一部件由三个电子元件按图1-4方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为________.图1-415. 38解法一:设该部件的使用寿命超过1000小时的概率为P (A ).因为三个元件的使用寿命均服从正态分布N (1 000,502),所以元件1,2,3的使用寿命超过1 000小时的概率分别为P 1=12,P 2=12,P 3=12.因为P (A )=P 1P 2P 3+P 3=12×12×12+12=58,所以P (A )=1-P (A )=38. 解法二:设该部件的使用寿命超过1000小时的概率为P (A ).因为三个元件的使用寿命均服从正态分布N (1000,502),所以元件1,2,3的使用寿命超过1000小时的概率分别为P 1=12,P 2=12,P 3=12.故P (A )=P 1P 2P 3+P 1P 2P 3+P 1P 2P 3=12×⎝ ⎛⎭⎪⎫1-12×12+⎝ ⎛⎭⎪⎫1-12×12×12+12×12×12=38. 19.K1、K5、K6 已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.(1)求X 的分布列; (2)求X 的数学期望E (X ).19.解:(1)由题意得X 取3,4,5,6,且 P (X =3)=C 35C 39=542,P (X =4)=C 14·C 25C 39=1021,P (X =5)=C 24·C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为E (X )=3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.K6 离散型随机变量及其分布列22.K6 设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).22.解:(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C 23对相交棱,因此P (ξ=0)=8C 23C 212=8×366=411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对, 故P (ξ=2)=6C 212=111,于是P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611,所以随机变量ξ的分布列是因此E (x )18.K6 如图1-4,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).(1)求V =0的概率;(2)求V 的分布列及数学期望EV .18.解:(1)从6个点中随机取3个点总共有C 36=20种取法,选取的3个点与原点在同一个平面内的取法有C 13C 34=12种,因此V =0的概率为P (V =0)=1220=35.(2)V 的所有可能取值为0,16,13,23,43,因此V 的分布列为EV =0×35+16×120+13×320+23×320+43×120=940.19.K6 乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)ξ表示开始第4次发球时乙的得分,求ξ的期望.19.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2.(1)B =A 0·A +A 1·A -,P (A )=0.4,P (A 0)=0.42=0.16, P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A -)=P (A 0·A )+P (A 1·A -) =P (A 0)P (A )+P (A 1)P (A -) =0.16×0.4+0.48×(1-0.4) =0.352.(2)P (A 2)=0.62=0.36. ξ的可能取值为0,1,2,3.P (ξ=0)=P (A 2·A )=P (A 2)P (A )=0.36×0.4=0.144, P (ξ=2)=P (B )=0.352,P (ξ=3)=P (A 0·A -)=P (A 0)P (A -)=0.16×0.6=0.096,P (ξ=1)=1-P (ξ=0)-P (ξ=2)-P (ξ=3)=1-0.144-0.352-0.096 =0.408.E ξ=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=0.408+2×0.352+3×0.096 =1.400.16.B11、B12、E3 设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.16.解:(1)因f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32. 由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=x +x -2x2.令f ′(x )=0,解得x 1=1,x 2=-13(因x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3,无极大值.20.K6、K8 某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.20.解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:(1)A A对应三种情形:①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)解法一:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟.所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01.所以X的分布列为EX解法二:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;P (X =1)=1-P (X =0)-P (X =2)=0.49.所以X 的分布列为EX19.I2、I4、K6、K8 电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.图1-6将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2,19.解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:将2×2χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2=-275×25×45×55=10033≈3.030. 因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为E (X )=np =3×4=4.D (X )=np (1-p )=3×14×34=916.18.K6、B10 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.18.解:(1)当日需求量n ≥16时,利润y =80. 当日需求量n <16时,利润y =10n -80. 所以y 关于n 的函数解析式为y =⎩⎪⎨⎪⎧10n -80,n <16,80,n ≥16(n ∈N ).(2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7. X 的分布列为X 的数学期望为EX =60×0.1+70×0.2+80×0.7=76. X 的方差为DX =(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.②答案一:花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4. Y 的方差为DY =(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,DX <DY ,即购进16枝玫瑰花时利润波动相对较小. 另外,虽然EX <EY ,但两者相差不大.故花店一天应购进16枝玫瑰花. 答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,EX <EY ,即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.17.K5、K6 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率)17.解:(1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P (X =1)=15100=320,P (X =1.5)=30100=310, P (X =2)=25100=14,P (X =2.5)=20100=15, P (X =3)=10100=110. X 的分布列为XE(X)=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为980.20.K6、K7根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:0.3,0.7,0.9.求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.20.解:(1)由已知条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2.P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为于是,E(Y)D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P X <P X=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.17.I2、K6某班50位学生期中考试数学成绩的频率分布直方图如图1-4所示,其中成绩分组区间是:.(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.图1-417.解:(1)由题设可知(3×0.006+0.01+x +0.054)×10=1, 解之得x =0.018.(2)由题设可知,成绩在区间内的人数为0.006×10×50=3,所以不低于80分的学生人数为9+3=12,ξ的所有可能取值为0,1,2. P (ξ=0)=C 29C 212=611,P (ξ=1)=C 19C 13C 212=922,P (ξ=2)=C 23C 212=122.所以ξ的数学期望E ξ=0×611+1×922+2×122=12.17.K5、K6 某单位招聘面试,每次从试题库中随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类型试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n +m 道试题,其中有n 道A 类型试题和m 道B 类型试题.以X 表示两次调题工作完成后,试题库中A 类型试题的数量.(1)求X =n +2的概率;(2)设m =n ,求X 的分布列和均值(数学期望).17.解:以A i 表示第i 次调题调用到A 类型试题,i =1,2.(1)P (X =n +2)=P (A 1A 2)=nm +n ·n +1m +n +2=n n +1m +n m +n +2.(2)X 的可能取值为n ,n +1,n +2.P (X =n )=P (A 1A 2)=n n +n ·nn +n =14,P (X =n +1)=P (A 1A 2)+P (A 1A 2)=nn +n ·n +1n +n +2+n n +n ·n n +n =12,P (X =n +2)=P (A 1A 2)=n n +n ·n +1n +n +2=14,从而X 的分布列是EX =n ×14+(n +1)×2+(n +2)×4=n +1.16.K2、K6 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A . 则P (A )=2+350=110.(2)依题意得,X 1的分布列为X 2(3)由(2)得,E (X 1)=1×25+2×50+3×10=50=2.86(万元),E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2),所以应生产甲品牌轿车.19.K6、K7 现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .19.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23,由于A =B C -D -+B -C D -+B -C -D , 根据事件的独立性和互斥性得P (A )=P (B C -D -+B -C D -+B -C -D )=P (B C -D -)+P (B -C D -)+P (B -C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D ) =34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736, (2)根据题意,X 的所有可能取值为0,1,2,3,4,5. 根据事件的独立性和互斥性得P (X =0)=P (B -C -D -)==⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =136, P (X =1)=P (B C -D -)=P (B )P (C -)P (D -)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =112, P (X =2)=P (B -C D -+B -C -D )=P (B -C D -)+P (B -C -D )=⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19, P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D )=34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23 =13, P (X =4)=P (B -CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19, P (X =5)=P (BCD )=34×23×23=13. 故X 的分布列为所以EX =0×36+1×12+2×9+3×3+4×9+5×3=12.16.K6,K7 现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E ξ.16.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+C 44⎝ ⎛⎭⎪⎫134=19.所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是随机变量ξ的数学期望E ξ=0×27+2×81+4×81=81.图1-419.K1、K5、K6 已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.(1)求X 的分布列; (2)求X 的数学期望E (X ).19.解:(1)由题意得X 取3,4,5,6,且 P (X =3)=C 35C 39=542,P (X =4)=C 14·C 25C 39=1021,P (X =5)=C 24·C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为E (X )=3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.K7 条件概率与事件的独立性16.K6,K7 现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E ξ.16.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+C 44⎝ ⎛⎭⎪⎫134=19.所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1)+P (A 3)=4081, P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是随机变量ξ的数学期望Eξ=0×827+2×4081+4×1781=14881.图1-4s20.K6、K7根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:0.3,0.7,0.9.求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.20.解:(1)由已知条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2.P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为于是,E(Y)D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的均值为3,方差为9.8.(2)由概率的加法公式,P(X≥300)=1-P(X<300)=0.7,又P(300≤X<900)=P(X<900)-P(X<300)=0.9-0.3=0.6.由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P X <P X=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.19.K6、K7 现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .19.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23,由于A =B C -D -+B -C D -+B -C -D , 根据事件的独立性和互斥性得P (A )=P (B C -D -+B -C D -+B -C -D )=P (B C -D -)+P (B -C D -)+P (B -C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D ) =34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736, (2)根据题意,X 的所有可能取值为0,1,2,3,4,5. 根据事件的独立性和互斥性得P (X =0)=P (B -C -D -)==⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =136, P (X =1)=P (B C -D -)=P (B )P (C -)P (D -)。
2024全国高考真题数学汇编概率与统计章节综合一、单选题1.(2024上海高考真题)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A .气候温度高,海水表层温度就高B .气候温度高,海水表层温度就低C .随着气候温度由低到高,海水表层温度呈上升趋势D .随着气候温度由低到高,海水表层温度呈下降趋势2.(2024天津高考真题)下列图中,线性相关性系数最大的是()A .B .C .D .二、多选题3.(2024全国高考真题)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x ,样本方差20.01s ,已知该种植区以往的亩收入X 服从正态分布 21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布 2N x s,则()(若随机变量Z 服从正态分布 2,N,()0.8413P Z )A .(2)0.2P XB .(2)0.5P XC .(2)0.5P Y D .(2)0.8P Y 三、填空题4.(2024上海高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,已知小申完成A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是.5.(2024天津高考真题),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.甲选到A 的概率为;已知乙选了A 活动,他再选择B 活动的概率为.6.(2024全国高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.四、解答题7.(2024全国高考真题)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p ,设p 为升级改造后抽取的n 件产品的优级品率.如果p p 150件产品的数据,能否认为生12.247 )附:22()()()()()n ad bc K a b c d a c b d2P K k0.0500.0100.001k3.8416.63510.8288.(2024上海高考真题)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩0,0.50.5,11,1.51.5,22,2.5优秀5444231不优秀1341471374027(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:22(),n ad bc a b c d a c b d 其中n a b c d , 2 3.8410.05P .)9.(2024北京高考真题)某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望 E X ;(ⅱ)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中 E X 估计值的大小.(结论不要求证明)10.(2024全国高考真题)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成绩为0分;若至少投中一次,则该队进入第二阶段.第二阶段由该队的另一名队员投篮3次,每次投篮投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q (1)若0.4p ,0.5q 5分的概率.(2)假设0p q ,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?参考答案1.C【分析】根据相关系数的性质可得正确的选项.【详解】对于AB ,当气候温度高,海水表层温度变高变低不确定,故AB 错误.对于CD ,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C 正确,D 错误.故选:C.2.A【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A 3.BC【分析】根据正态分布的3 原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ,所以 2.1,0.1Y N ,故 2 2.10.1 2.10.10.84130.5P Y P Y P Y ,C 正确,D 错误;因为 1.8,0.1X N ,所以 2 1.820.1P X P X ,因为 1.80.10.8413P X ,所以 1.80.110.84130.15870.2P X ,而 2 1.820.1 1.80.10.2P X P X P X ,B 正确,A 错误,故选:BC .4.0.85【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,,,A B C 题库的比例为:5:4:3,各占比分别为543,,121212,则根据全概率公式知所求正确率5430.920.860.720.85121212p .故答案为:0.85.5.3512【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为 2435C 3C 5P M ;乙选了A 活动,他再选择B 活动的概率为 133524351C 2C C P MN C P N M P M故答案为:35;126.12/0.5【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .该轮得分的概率 631448k P X,所以 31,2,3,48k E X k .从而 441234113382k k k E X E X X X X E X .记 0,1,2,3k p P X k k .如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p .而X 的所有可能取值是0,1,2,3,故01231p p p p , 1233232p p p E X .所以121112p p,1213282p p ,两式相减即得211242p,故2312p p .所以甲的总得分不小于2的概率为2312p p .故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.7.(1)答案见详解(2)答案见详解【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p ,根据题意计算p .【详解】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得2215026302470754.687550100965416K,因为3.841 4.6875 6.635,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64 150,用频率估计概率可得0.64p ,又因为升级改造前该工厂产品的优级品率0.5p ,则0.50.50.5 1.650.56812.247p ,可知p p所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 8.(1)12500(2)0.9h(3)有【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【详解】(1)由表可知锻炼时长不少于1小时的人数为占比17943282558058,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为25 290001250058.(2)估计该地区初中生的日均体育锻炼时长约为10.50.511 1.5 1.522 2.51391911794328580222220.9 .则估计该地区初中学生日均体育锻炼的时长为0.9小时.(3)由题列联表如下:1,2其他合计优秀455095不优秀177308485合计222358580提出零假设0H :该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中0.05 .22580(4530817750) 3.976 3.84195485222358.则零假设不成立,即有95%的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.9.(1)110(2)(i)0.122万元;(ii)这种情况下一份保单毛利润的数学期望估计值大于(i )中 E X 估计值【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(ⅰ)设 为赔付金额,则 可取0,0.8,0.1.6,2.4,3,用频率估计概率后可求 的分布列及数学期望,从而可求 E X .(ⅱ)先算出下一期保费的变化情况,结合(1)的结果可求 E Y ,从而即可比较大小得解.【详解】(1)设A 为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得 603010180010060301010P A.(2)(ⅰ)设 为赔付金额,则 可取0,0.8,1.6,2.4,3,由题设中的统计数据可得 800410010,0.810005100010P P ,603( 1.6)100050P ,303( 2.4)1000100P ,101(3)1000100P,故 4133100.8 1.6 2.430.27851050100100E故 0.40.2780.122E X (万元).(ⅱ)由题设保费的变化为410.496%0.4 1.20.403255,故 0.1220.40320.40.1252E Y (万元),从而 E X E Y .10.(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q 甲,331(1)Pq p 乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,比赛成绩不少于5分的概率 3310.610.50.686P .(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q 甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p 乙,0p q ,3333()()P P q q pq p p pq 甲乙2222()()()()()()q p q pq p p q p pq q pq p pq q pq2222()333p q p q p q pq 3()()3()[(1)(1)1]0pq p q pq p q pq p q p q ,P P 甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,比赛成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q, 3213511C 1P X p q q ,3223(10)1(1)C (1)P X p q q ,33(15)1(1)P X p q ,332()151(1)1533E X p q p p p q记乙先参加第一阶段比赛,比赛成绩Y 的所有可能取值为0,5,10,15,同理 32()1533E Y q q q p()()15[()()3()]E X E Y pq p q p q pq p q 15()(3)p q pq p q ,因为0p q ,则0p q ,31130p q ,则()(3)0p q pq p q ,应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.。
专题06概率概率的基本性质1.(19-20高一下·安徽蚌埠·期末)从一批产品中随机抽取3件产品进行质量检测,记“3件产品都是次品”为事件A,“3件产品都不是次品”为事件B,“3件产品不都是次品”为事件C,则下列说法正确的是()A.任意两个事件均互斥B.任意两个事件均不互斥C.事件A与事件C对立(多选)2.(20-21高一下·广东广州·期末)口袋里装有1红,2白,3黄共6个形状大小完全相同的小球,从中任取2球,事件A =取出的两球同色,B =取出的2球中至少有一个黄球,C =取出的2球中至少有一个白球,D =取出两个球不同色,E =取出的2球中至多有一个白球.下列判断中正确的是()A .事件A 与D 为对立事件B .事件B 与C 是互斥事件C .事件C 与E 为对立事件D .事件()1P C E = 【答案】AD【详解】设Ω是样本空间,A 选项,由于,A D A D ⋃=Ω⋂=∅,所以A 与D 是对立事件,A 选项正确.B 选项,由于BC ⋂=“取出的2球中,一个黄球一个白球”,所以B 与C 不是互斥事件,B 选项错误.C 选项,由于C E ⋂=“取出的2球中,恰好有1个白球”,所以C 与E 不是对立事件,C 选项错误.D 选项,由于CE ⋃=Ω,所以()1P C E = ,所以D 选项正确.故选:AD(多选)3.(22-23高一下·甘肃·期末)某饮料厂商开发了一种新的饮料,为了促销,每箱装的6瓶饮料中有2瓶瓶盖上分别印有“一等奖”,“二等奖”,其余4瓶印有“谢谢惠顾”.甲从新开的一箱中任选2瓶购买,设事件A 表示“”,事件B 表示“甲获得一等奖”,事件C 表示“甲中奖”,则()A .事件A 和事件B 是对立事件B .事件A 和事件C 是对立事件C .()()P B C P C +=D .()()P BC P C =【答案】BC【详解】因为A B ⋃表示“甲没有中奖或甲获得一等奖”,但甲可能获得二等奖,即事件A 和事件B 不是对立事件,A 错误,事件A 表示“甲没有中奖”,事件C 表示“甲中奖”,则事件A 和事件C 是互斥且和事件为全集,事件A 和事件C 是对立事件,B 正确.又因为B C ⊆,所以()()P B C P C +=,C 选项正确;()()P BC P B =,D 选项错误;故选:BC .(多选)4.(22-23高一下·广西·期末)下列说法正确的是()A .抛掷一枚硬币1000次,一定有500次“正面朝上”B .若甲组数据的方差是0.03,乙组数据的方差是0.1.则甲组数提比乙组数据稳定C .一组数据1、2、5、5、5、3、3的中位数是3,众数是5D .为了解我国中学生的视力情况,应采取全面调查的方式【答案】BC【详解】对于A ,因为每次抛掷硬币都是随机事件,所以不一定有500次“正面朝上”,故A 错误;对于B ,因为方差越小越稳定,故B 正确;对于C ,数据1、2、5、5、5、3、3按从小到大排列后为1、2、3、3、5、5、5,则其中位数为3,众数为5,故C 正确;对于D ,为了解我国中学生的视力情况,应采取抽样调查的方式,故D 错误.故选:BC.(多选)5.(22-23高一下·甘肃临夏·期末)下列说法正确的是()A .若A ,B 为两个事件,则“A 与B 互斥”是“A 与B 相互对立”的充分不必要条件B .若A ,B 为两个互斥事件,则()()()P A B P A P B =+C .若事件A 与B 相互对立,则()()1P A P B +=D .若事件A ,B ,C 两两互斥,则()()()1P A P B P C ++=古典概型(多选)1.(23-24高一上·河南南阳·期末)甲乙两人约定玩一种游戏,把一枚均匀的骰子连续抛掷两次,游戏规则有如下四种,其中对甲有利的规则是()A.若两次掷出的点数之和是2,3,4,5,6,10,12其中之一,则甲获胜,否则乙获胜B.若两次掷出的点数中最大的点数大于4,则甲获胜,否则乙获胜C.若两次掷出的点数之和是偶数,则甲获胜;若两次掷出的点数之和是奇数,则乙获胜D.若两次掷出的点数是一奇一偶,则甲获胜;若两次掷出的点数均是奇数或者偶数﹐则乙获胜(多选)2.(23-24高一上·河南南阳·期末)下列情境适合用古典概型来描述的是()A.向一条线段内随机地投射一个点,观察点落在线段上不同位置B.五个人站一排,观察甲乙两人相邻的情况C .从一副扑克牌(去掉大、小王共52张)中随机选取1张,这张牌是红色牌D .某同学随机地向靶心进行射击,这一试验的结果只有有限个:命中10环,命中9环,命中1环和脱靶【答案】BC【详解】对于A ,实验结果有无数个,显然不是古典概型,故错误,对于B ,实验结果有限且等可能,故正确,对于C ,实验结果有限且等可能,故正确,对于D ,显然实验并非等可能,故错误.故选:BC3.(21-22高一下·全国·期末)天气预报7月1日后连续四天,每天下雨的概率为0.7,现用随机模拟的方法估计四天中恰有三天下雨的概率:在0~9十个整数值中,假定0,1,2,3,4,5,6表示当天下雨,7,8,9表示当天不下雨.在随机数表中从某位置按从左到右的顺序读取如下20组四位随机数:32819522001874720129387958692436846039909533798026928280075384258935388278905987据此估计四天中恰有三天下雨的概率为.4.(23-24高一上·河南漯河·期末)掷一枚骰子,记事件A :掷出的点数为偶数;事件B :掷出的点数大于2.下面说法正确的是.(1)()()P A P B >(2)()()P AB P AB >(3)()()P AB P AB >AB 5.(22-23高一下·山西大同·期末)某校高二年级共有800名学生参加2021年全国高中数学联赛初赛,为了解学生成绩,现随机抽取40名学生的成绩(单位:分),并列出频数分布表如下:分组[0,30)[30,60)[60,90)[90,120)[120,150)频数5713105(1)试估计该年级成绩不低于90分的学生人数;(2)成绩在区间[]120150,上的5名学生中有3名男生,2名女生,现从中随机选出2名学生参加访谈,求恰好选中一名男生和一名女生的概率.6.(23-24高一上·江西南昌·期末)如图,数轴上O 为原点,点A 对应实数6,现从1,2,3,4,5中随机取出两个数,分别对应数轴上的点B ,C (点B 对应的实数小于点C 对应的实数).(1)记事件E 为:线段OB 的长小于等于2,写出事件E 的所有样本点;(2)记事件F 为:线段OB ,BC ,CA 能围成一个三角形,求事件F 发生的概率.互斥事件与对立事件1.(22-23高一下·广东阳江·期末)从装有2件正品和2件次品的盒子内任取2件产品,下列选项中是互斥而不对立的两个事件的是()A.“至少有1件正品”与“都是次品”B.“恰好有1件正品”与“恰好有1件次品”C.“至少有1件次品”与“至少有1件正品”D.“都是正品”与“都是次品”2.(22-23高一下·山西朔州·期末)从装有2个红色乒乓球和3个白色乒乓球的口袋内任取3个球,那么是互斥事件而不是对立事件的两个事件是()A.恰有1个白色乒乓球与至少2个白色乒乓球B.至少2个白色乒乓球与都是白色乒乓球C.至少1个白色乒乓球与至少1个红色乒乓球D.恰有1个红色乒乓球与恰有1个白色乒乓球【答案】D【详解】恰有1个白色乒乓球与至少2个白色乒乓球是对立事件,故A错误;至少2个白色乒乓球与都是白色乒乓球可以同时发生,不是互斥事件,故B错误;至少1个白色乒乓球与至少1个红色乒乓球可以同时发生,不是互斥事件,故C错误;恰有1个红色乒乓球与恰有1个白色乒乓球是互斥事件而不是对立事件,故D正确.故选:D.3.(22-23高一上·山东潍坊·期末)“韦神”数学兴趣小组有4名男生和2名女生,从中任选2名同学参加数学公式推导比赛,下列各对事件中互斥而不对立的是()A.至少有1名男生与全是男生;B.至少有1名男生与全是女生;C.恰有1名男生与恰有2名男生;D.至少有1名男生与至少有1名女生.【答案】C【详解】对于A项,事件至少有1名男生包括恰有1名男生和全是男生两种情况,故A项错误;对于B项,事件至少有1名男生包括恰有1名男生和全是男生两种情况,与事件全是女生是互斥对立事件,故B项错误;对于C项,事件恰有1名男生指恰有1名男生和1名女生,与事件恰有2名男生是互斥事件,但不是对立事件,故C项正确;对于D项,事件至少有1名男生包括恰有1名男生和全是男生两种情况,事件至少有1名女生包括恰有1名女生和全是女生两种情况,两个事件有交事件恰有1名男生和1名女生,故D项错误.故选:C.(多选)4.(22-23高一下·河北承德·期末)将一枚质地均匀的骰子抛掷一次,记下骰子面朝上的点数,设事件A=“点数为4”,事件B=“点数为奇数”,事件C=“点数小于4”,事件D=“点数大于3”,则()A.A与B互斥B.A与C互斥C.B与D对立D.C与D对立【答案】ABD【详解】事件“点数为4”与“点数为奇数”不能同时发生,所以A与B互斥,A正确.事件“点数为4”与“点数小于4”不能同时发生,所以A与C互斥,B正确.事件“点数为奇数”的对立事件是“点数为偶数”,不是“点数大于3”,C错误.事件“点数小于4”的对立事件是“点数不小于4”,即“点数大于3”,C与D对立,D正确.故选:ABD.事件的相互独立性1.(23-24高一上·河南南阳·期末)甲、乙、丙三人参加县里的英文演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为123,,234且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17242.(21-22高一下·全国·期末)袋中有5张卡片,分别写有数字1,2,3,4,5,有放回的摸出两张卡片.事件M=“第一次摸得偶数”,N=“第二次摸得2”,Q=“两次摸得数字之和大于8”,R=“两次摸得数字之和是6”,则()A.M与Q相互独立B.N与R相互独立C.N与Q相互独立D.Q与R相互独立(多选)3.(22-23高一下·湖南长沙·期末)下列说法中正确的是()A .在频率分布直方图中,中位数左边和右边的直方图的面积相等.B .若A B 、为互斥事件,则A 的对立事件与B 的对立事件一定互斥.C .设样本数据123910,,,,,x x x x x ⋅⋅⋅的平均数和方差分别为2和8,若()211,2,3,,9,10i i y x i =+=⋅⋅⋅,则123910,,,,,y y y y y ⋅⋅⋅的平均数和方差分别为5和32D .高一和高二两个年级的同学参加了数学竞赛,高一年级有450人,高二年级有350人,通过分层随机抽样的方法抽取了容量为160的样本,得到两年级的竞赛成绩的平均分分别为80分和90分,则高一和高二数学竞赛的平均分约为84.375分(多选)4.(23-24高一下·辽宁·期末)同时拋郑两个质地均匀的四面分别标有1,2,3,4的正四面体一次,记事件{A =第一个四面体向下的一面出现偶数};事件{B =第二个四面体向下的一面出现奇数};事件{C =两个四面体向下的一面或同时出现奇数,或者同时出现偶数},则()A .()12P A =B .()13PC =C .()14P AB =D .()18P ABC =5.(21-22高一下·全国·期末)某高校的入学面试中有4道题目,第1题2分,第2题3分,第3题4分,第4题4分,每道题目答对得满分,答错得0分,小明答对第1,2,3,4题的概率分别为34,12,13,14,且每道题目是否答对相互独立.(1)求小明4道题目至少答错1道题的概率;(2)若该高校规定学生的面试分数不低于8分则面试成功,求小明面试成功的概率.频率与概率1.(23-24高一上·陕西汉中·期末)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1534石(古代容量单位),验得米内夹谷(假设一粒米与一粒谷的体积相等),抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A .213石B .152石C .169石D .196石2.(23-24高一上·河南·期末)下列说法中,正确的是()A .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖B .做7次拋硬币的试验,结果3次出现正面,因此,抛一枚硬币出现正面的概率是37C .若事件,,A B C 两两互斥,则()()()1P A P B P C ++=D .任意投掷两枚质地均匀的骰子,则点数和是3的倍数的概率是133.(22-23高一下·新疆喀什·期末)下列说法正确的是()①频数和频率都能反映一个对象在试验总次数中出现的频繁程度;②每个试验结果出现的频数之和等于试验的总次数;③每个试验结果出现的频率之和不一定等于1;④概率就是频率.A.0B.1C.2D.34.(22-23高一下·新疆喀什·期末)给出下列四个命题:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;②做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是51 100;③随机事件发生的频率就是这个随机事件发生的概率;④抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是9 50 .其中正确命题有()A.①B.②C.③D.④【答案】D【详解】对于①,实验中,出现的某种事件的频率总在一个固定的值的附近波动,并不是一个确定的值,一批产品次品率为0.05,则从中任取200件,次品的件数在10件左右,而不一定是10件,①错误;次试验出现正面朝上的频率为(多选)5.(2024·全国·模拟预测)某校高三年级有(1),(2),(3)三个班,一次期末考试,统计得到每班学生的数学成绩的优秀率(数学成绩在120分以上的学生人数与该班学生总人数之比)如表所示:班级(1)(2)(3)优秀率80%85%75%则下列说法一定正确的是()A.(2)班学生的数学成绩的优秀率最高B.(3)班的学生人数不一定最少C.该年级全体学生数学成绩的优秀率为80%D.若把(1)班和(2)班的数学成绩放在一起统计,得到优秀率为83%,则(1)班人数多于(2)班人数独立事件的乘法公式1.(23-24高一上·江西南昌·期末)给出下列说法,其中不正确的是()A .若事件A 的对立事件为B ,则A 与B 为互斥事件B .若事件A 和B 的概率都不为0,且()()()P A B P A P B ⋂=,则事件A 与B 相互独立C .若将一组数据的每个数都加上同一个正数,则平均数和方差都会发生改变D .若一组数据的方差2s 为0,则这组数据的众数唯一2.(23-24高一上·北京延庆·期末)甲同学进行投篮练习,每次投中的概率都是3,连续投3次.每次投篮互不影响.则该同学恰好只有第3次投中的概率为:该同学至少两次投中的概率为.3.(23-24高一上·河南驻马店·期末)如图,用,,A B C 三个不同的元件连接成一个系统N .当元件C 正常工作且元件,A B 至少有一个正常工作时,系统N 正常工作.已知元件,,A B C 正常工作的概率依次为0.8,0.7,0.9,则系统N 能正常工作的概率为.4.(23-24高一上·浙江绍兴·期末)某班学生分A ,B ,C ,D 四组参加数学知识竞答,规则如下:四组之间进行单循环(每组均与另外三组进行一场比赛);每场比赛胜者积3分,负者0分;若出现平局,则比赛双方各积1分.现假设四个组战胜或者负于对手的概率均为14,出现平局的概率为12,每场比赛相互独立.(1)求A 组在参加两场比赛后得分为3分的概率;(2)一轮单循环结束后,求四组总积分一样的情况种数,并计算四组总积分一样的概率.5.(23-24高一上·安徽·期末)与国家安全有关的问题越来越受到社会的关注和重视.为了普及国家安全教育,某校组织了一次国家安全知识竞赛,已知甲、乙、丙三位同学答对某道题目的概率分别为3 5,25,p,且三人答题互不影响.(1)求甲、乙两位同学恰有一个人答对的概率;(2)若甲、乙、丙三个人中至少有一个人答对的概率为2225,求p的值.6.(23-24高一上·山东潍坊·期末)甲、乙两台机床各自独立地加工同一种零件,已知甲、乙两台机床加工的零件都是一等品的概率为12,乙机床加工的零件是一等品且甲机床加工的零件不是一等品的概率是1 4 .(1)分别求甲、乙两台机床各自加工的零件是一等品的概率;(2)从甲加工的零件中取两个,从乙加工的零件中取一个检验,求至少有一个一等品的概率.互斥事件的概率加法公式1.(23-24高一上·江西吉安·期末)已知事件A ,B 是互斥事件,()16P A =,()23P B =,则()P A B =()A .118B .49C .12D .232.(22-23高一下·福建宁德·期末)设,A B 为两个互斥事件,且()0P A >,()0P B >,则下列各式一定正确的是()A .()()()P AB P A P B =B .()()()⋃=+P A B P A P BC .()()()P AB P A P B =+D .()()()P A B P A P B = 【答案】B【详解】因为,A B 为两个互斥事件,()0P A >,()0P B >,所以A B ⋂=∅,即()0P AB =,且()()()⋃=+P A B P A P B .故选:B .3.(18-19高一下·辽宁沈阳·期末)一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是A .0.3B .0.55C .0.7D .0.75【答案】D【详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是1(0.450.25)0.3-+=,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率0.30.450.75P =+=,故选D.4.(23-24高一上·山东潍坊·期末)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为23,乙发球时乙得分的概率为12,各球的结果相互独立.在某局打成10:10后,甲先发球,则甲以13:11获胜的概率为.5.(2024高一下·全国·专题练习)在数学考试中,小明的成绩(取整数)不低于90分的概率是0.18,在[80,89]的概率是0.51,在[70,79]的概率是0.15,在[60,69]的概率是0.09,在60分以下的概率是0.07,计算:(1)小明在数学考试中成绩不低于70分的概率;(2)小明数学考试及格(60分及以上)的概率.【答案】(1)0.84(2)0.93【详解】(1)分别记小明的成绩“不低于90分”“[80,89]”“[70,79]”“[60,69]”为事件B ,C ,D ,E ,这四个事件彼此互斥.则小明的成绩不低于70分的概率是()()()()0.180.510.150.84P B C D P B P C P D ⋃⋃=++=++=.(2)解法一:小明数学考试及格的概率是()()()()()0.180.510.150.090.93P B C D E P B P C P D P E ⋃⋃⋃=+++=+++=.解法二:小明数学考试不及格的概率是0.07,所以小明数学考试及格的概率是10.070.93-=.6.(23-24高一上·江西赣州·期末)我省从2024年开始,高考不分文理科,实行“312++”模式,其中“3”指的是语文、数学,外语这3门必选科目,“1”指的是考生需要在物理、历史这2门首选科目中选择1门,“2”指的是考生需要在思想政治、地理、化学、生物这4门再选科目中选择2门.已知某高校临床医学类招生选科要求是首选科目为物理,再选科目为化学、生物至少1门.(1)从所有选科组合中任意选取1个,求该选科组合符合某高校临床医学类招生选科要求的概率;(2)假设甲、乙两人每人选择任意1个选科组合是等可能的且相互独立,求这两人中恰好有一人的选科组合符合某高校临床医学类招生选科要求的概率.频率分布直方图1.(17-18高一下·河南商丘·期末)某班同学利用春节进行社会实践,对本地[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图.(一)人数统计表(二)各年龄段人数频率分布直方图(1)在答题卡给定的坐标系中补全频率分布直方图,并求出n 、p 、a 的值;(2)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动.若将这6个人通过抽签分成甲、乙两组,每组的人数相同,求[45,50)岁中被抽取的人恰好又分在同一组的概率.结合人数统计表与频率分布直方图,可知第一组的人数为20010000.2n ==;因为第二组的频率为0.3,所以第二组的人数为10000.3⨯因为第四组的频率为0.0350.15⨯=,所以第四组的人数为602.(21-22高一下·湖北鄂州·期末)2022年2月4日,第24届冬季奥林匹克运动会开幕式在北京国家体育场(鸟巢)举行,某调研机构为了了解人们对“奥运会”相关知识的认知程度,针对本市不同年龄和不同职业的人举办了一次“奥运会”知识竞赛,满分100分(95分及以上为认知程度高),结果认知程度高的有m 人,按年龄分成5组,其中第一组[)20,25,第二组[)25,30,第三组[)30,35,第四组[)35,40,第五组[]40,45,得到如图所示的频率分布直方图,已知第一组有10人.(1)根据频率分布直方图,估计这m 人的平均年龄;现从以上各组中用分层随机抽样的方法选取20人,担任本市的“奥运会”宣传使者.(2)若有甲(年龄38),乙(年龄40)两人已确定入选,现计划从第四组和第五组被抽到的使者中,再随机抽取2名作为组长,求甲、乙两人至少有一人被选上的概率;(3)若第四组宣传使者的年龄的平均数与方差分别为36和52,第五组宣传使者的年龄的平均数与方差分别为42和1,据此估计这m 人中35~45岁所有人的年龄的方差.【答案】(1)31.753.(23-24高一下·辽宁·期末)某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[)70,80的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的中位数(同一组中的数据用该组区间中点值为代表).(3)采用分层抽样的方法从甲样本数据中分数在[)60,70和[)70,80的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[)70,80中的概率.人和4.(23-24高一上·北京延庆·期末)为了了解某校高一学生一次体育健康测试的得分情况,一位老师采用分层抽样的方法选取了20名学生的成绩作为样本,来估计本校高一学生的得分情况,并以[)75,80,[)80,85,[)85,90,[)90,95,[]95,100分组,作出了如图所示的频率分布直方图,规定成绩不低于90分为“优秀”.(1)从该学校高一学生中随机选取一名学生,估计这名学生本次体育健康测试成绩“优秀”的概率;(2)从样本成绩优秀的[)90,95,[]95,100两组学生中任意选取2人,记为{},i j a b ,[)90,95中的学生为()1,2i a i = ,[]95,100中的学生为()1,2j b j = ,求这2人来自同一组的概率;(3)从成绩在[)80,85的学生中任取3名学生记为A 组,从成绩在[)85,90的学生它任取3名学生记为B 组,这两组学生的得分记录如下:A 组:82,83,a ;B 组:85,86,87.写出a 为何值时,A 、B 两组学生得分的方差相等(结论不要求证明).【答案】(1)0.35.(23-24高一上·河南驻马店·期末)2024年入冬以来,为了减少甲流对师生身体健康的影响,某学1000位师生一周的口罩使用数量统计如下表所示,其中每周的口罩使用数量在6只以上(包含6只)的有700人.口罩使用数量[)2,4[)4,6[)6,8[)8,10[]10,12频率0.2m 0.3n 0.1(1)求,m n 的值,根据表中数据,完善上面的频率分布直方图(不要求写出过程,画图即可);(2)根据频率分布直方图估计该学校师生一周口罩使用数量的75%分位数和平均数(每组数据用每组中间值代替);(3)按分层抽样的方法在前三组中抽取一个容量为6的样本,记第一组抽取的2人为12,a a .第二组抽取的1人为b ,第三组抽取的3人为123,,c c c ,从这6人中随机抽取两人检查其健康状况记为事件M ,请列出事件M 的样本空间,并求这两人恰好来自同一组的概率.(2)由(1)知0.20.10.30.60.75++=<,又因为口罩使用数量在0.60.30.90.75+=>,所以假设75%分位数为x ,则0.750.68290.3x -=+⨯=,由频率分布直方图得一周内使用口罩的平均数为:30.250.170.390.3110.1x =⨯+⨯+⨯+⨯+⨯=故估计所求75%分位数为9个,平均数估计为(3)可知样本空间:()()()()()({121111213,,,,,,,,,,M a a a b a c a c a c a =()()()()()()(231231213,,,,,,,,,,,,a c b c b c b c c c c c c 共含有15个样本点,可以认为这15个样本点出现的可能性是相等的.记“这两个人来自同一组”为事件,则({D a =。
【备考2015】2015届全国名校数学试题分类汇编(12月第四期)K单元概率(含解析)目录K单元概率 .................................................. 错误!未定义书签。
K1 随事件的概率....................................................... - 1 - K2 古典概型........................................................... - 2 - K3 几何概型........................................................... - 4 - K4 互斥事件有一个发生的概率 ........................................... - 5 - K5 相互对立事件同时发生的概率 ......................................... - 5 - K6 离散型随机变量及其分布列 ........................................... - 5 - K7 条件概率与事件的独立性 ............................................. - 7 - K8 离散型随机变量的数字特征与正态分布.................................. - 7 - K9 单元综合............................................................ - 7 -K1 随事件的概率【数学文卷·2015届黑龙江省大庆市铁人中学高三12月月考(期中)(201412)】19. (本小题12分)某次的一次测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求参加测试的总人数及分数在[80,90)之间的人数;(Ⅱ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,恰有一份分数在[90,100)之间的概率.【知识点】用样本估计总体随事件的概率I2 K1【答案】(Ⅰ)4(Ⅱ)()158=M P 【解析】(Ⅰ)成绩在[50,60)内的频数为2,由频率分布直方图可以看出,成绩在[90,100]内同有2人.由,解得n=25.成绩在[80,90)之间的人数为25﹣(2+7+10+2)=4人∴参加测试人数n=25,分数在[80,90)的人数为4人(Ⅱ)设“在[80,100]内的学生中任选两人,恰有一人分数在[90,100]内”为事件M , 将[80,90)内的4人编号为a ,b ,c ,d ;[90,100]内的2人编号为A ,B在[80,100]内的任取两人的基本事件为:ab ,ac ,ad ,aA ,aB ,bc ,bd ,bA ,bB ,cd ,cA ,cB ,dA ,dB ,AB 共15个.其中,恰有一人成绩在[90,100]内的基本事件有 aA ,aB ,bA ,bB ,cA ,cB ,dA ,dB 共8个. ∴所求的概率得()158=M P 。
【思路点拨】根据频率分布直方图求出人数,列出基本事件求出概率。
K2 古典概型【数学理卷·2015届四川省成都外国语学校高三12月月考(201412)】16.(本题满分12分)一个袋中装有大小相同的黑球和白球共9个,从中任取2个球,记随机变量X 为取出2球中白球的个数,已知125)2(==X P . (Ⅰ)求袋中白球的个数;(Ⅱ)求随机变量X 的分布列及其数学期望. 【知识点】古典概型 离散型随机变量及其分布列K2 K6 【答案】【解析】(Ⅰ)6;(Ⅱ)()43E X =解析:(Ⅰ)设袋中有白球n 个,则()2295212n C P X C ===, 解得n=6.(Ⅱ)因为()()236290,1,2K KC C P X k K C -===,所以随机变量X 的分布列如下:X 0 1 2P得()1154012122123E X =⨯+⨯+⨯=. 【思路点拨】一般遇到求随机变量的分布列与数学期望,通常先确定随机变量的取值,再计算各个取值的概率,即可列表得分布列,用公式求期望.【数学文卷·2015届山西省山大附中高三上学期期中考试(201411)】18.(本题满分12分)已知集合{}31A x x =-<<,203x B xx ⎧+⎫=<⎨⎬-⎩⎭.(Ⅰ)在区间(4,4)-上任取一个实数x ,求“x A B ∈I ”的概率;(Ⅱ)设(,)a b 为有序实数对,其中a 是从集合A 中任取的一个整数,b 是从集合B 中任取的一个整数,求“b a A B -∈U ”的概率.【知识点】几何概型,古典概型K2 K3【答案】【解析】(Ⅰ)138P =(Ⅱ)3()4P E = 解析:(Ⅰ)由已知{23}B x x =-<<,{21}A B x x =-<<I ,…………2分设事件“x A B ∈I ”的概率为1P ,这是一个几何概型,则138P =.…………………6分 (Ⅱ)因为,a b ∈Z ,且,a A b B ∈∈,所以,基本事件共12个:(2,1)--,(2,0)-,(2,1)-,(2,2)-,(1,1)--,(1,0)-,(1,1)-,(1,2)-,(0,1)-,(0,0),(0,1),(0,2). …………………2分设事件E 为“b a A B -∈U ”,则事件E 中包含9个基本事件,…………10分 事件E 的概率93()124P E ==.…………………12分 【思路点拨】由题意得{21}A B x x =-<<I ,根据几何概型的概率公式即可求解;需要列出符合题意的基本事件的个数以及满足题意的基本事件的个数,再按公式代入求解.【数学文卷·2015届四川省成都外国语学校高三12月月考(201412)】16. (本小题满分12分)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段75,80),80,85),[85,90),[90,95),[95,100][[(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.【知识点】用样本估计总体 古典概型I2 K2 【答案】【解析】(Ⅰ)6人;(Ⅱ)715解析:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人), 参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人). 所以参加社区服务时间不少于90小时的学生人数为 4+26=(人). (Ⅱ)设所选学生的服务时间在同一时间段内为事件A .由(Ⅰ)可知, 参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d ; 参加社区服务在时间段5,100[9]的学生有2人,记为,A B .从这6人中任意选取2人有,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB 共15种情况.事件A 包括,,,,,,ab ac ad bc bd cd AB 共7种情况. 所以所选学生的服务时间在同一时间段内的概率7()15P A =. 【思路点拨】在频率分布直方图中,注意纵坐标是频率/组距,在求概率时,一般通过列举法寻求所求事件包含的基本事件的个数.K3 几何概型【数学文卷·2015届山西省山大附中高三上学期期中考试(201411)】18.(本题满分12分)已知集合{}31A x x =-<<,203x B xx ⎧+⎫=<⎨⎬-⎩⎭.(Ⅰ)在区间(4,4)-上任取一个实数x ,求“x A B ∈I ”的概率;(Ⅱ)设(,)a b 为有序实数对,其中a 是从集合A 中任取的一个整数,b 是从集合B 中任取的一个整数,求“b a A B -∈U ”的概率.【知识点】几何概型,古典概型K2 K3【答案】【解析】(Ⅰ)138P =(Ⅱ)3()4P E = 解析:(Ⅰ)由已知{23}B x x =-<<,{21}A B x x =-<<I ,…………2分设事件“x A B ∈I ”的概率为1P ,这是一个几何概型,则138P =.…………………6分(Ⅱ)因为,a b ∈Z ,且,a A b B ∈∈,所以,基本事件共12个:(2,1)--,(2,0)-,(2,1)-,(2,2)-,(1,1)--,(1,0)-,(1,1)-,(1,2)-,(0,1)-,(0,0),(0,1),(0,2). …………………2分设事件E 为“b a A B -∈U ”,则事件E 中包含9个基本事件,…………10分 事件E 的概率93()124P E ==.…………………12分 【思路点拨】由题意得{21}A B x x =-<<I ,根据几何概型的概率公式即可求解;需要列出符合题意的基本事件的个数以及满足题意的基本事件的个数,再按公式代入求解.【数学文卷·2015届四川省成都外国语学校高三12月月考(201412)】3. 在区间上随机取一个数,则事件:“”的概率为( ) A .B .C .D .【知识点】几何概型K3 【答案】【解析】C解析:对于[-π, π],由cosx ≥0,得x ∈,22ππ⎡⎤-⎢⎥⎣⎦,所以所求的概率为122ππ=,则选C.【思路点拨】先判断出是几何概型,归纳为所求概率为长度之比,即可解答.K4 互斥事件有一个发生的概率K5 相互对立事件同时发生的概率K6 离散型随机变量及其分布列【数学理卷·2015届山西省山大附中高三上学期中考试试题(201411)】18.(本小题满分12分)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选. (1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率. 【知识点】概率离散型随机变量及分布列K6【答案】【解析】解析:解:(Ⅰ)设乙答题所得分数为X ,则X 的可能取值为15,0,15,30-.………………1分5分乙得分的分布列如下:………………6分7分(Ⅱ)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .9分 11分12分【思路点拨】(Ⅰ)确定乙答题所得分数的可能取值,求出相应的概率,即可得到乙得分的分布列和数学期望;(Ⅱ)由已知甲、乙至少答对2题才能入选,求出甲、乙入选的概率,利用对立事件,即可求得结论.【数学理卷·2015届四川省成都外国语学校高三12月月考(201412)】16.(本题满分12分)一个袋中装有大小相同的黑球和白球共9个,从中任取2个球,记随机变量X 为取出2球中白球的个数,已知125)2(==X P . (Ⅰ)求袋中白球的个数;(Ⅱ)求随机变量X 的分布列及其数学期望. 【知识点】古典概型 离散型随机变量及其分布列K2 K6 【答案】【解析】(Ⅰ)6;(Ⅱ)()43E X =解析:(Ⅰ)设袋中有白球n 个,则()2295212n C P X C ===, 解得n=6.(Ⅱ)因为()()236290,1,2K KC C P X k K C -===,所以随机变量X 的分布列如下:X 0 1 2P得()1154012122123E X =⨯+⨯+⨯=. 【思路点拨】一般遇到求随机变量的分布列与数学期望,通常先确定随机变量的取值,再计算各个取值的概率,即可列表得分布列,用公式求期望.K7 条件概率与事件的独立性K8 离散型随机变量的数字特征与正态分布K9 单元综合。