变频器在起重机系统中的运用.docx
- 格式:docx
- 大小:19.90 KB
- 文档页数:4
变频技术在起重设备上的应用摘要:变频器在桥式起重机主卷中的应用,调速采用矢量控制,其过程是将交流变为直流,然后由直流变为交流(即交—直—交)。
变频器采用微处理器编程正弦脉宽调制为方式,使输出电压接近正弦波。
变频器用于异步电动机具有足够的调速硬度和良好的低频转矩特性。
同时具备齐全的系统防护,控制性能好,设备连线简单,是交流电动机调速的一种趋势。
关键词:变频器矢量控制;异步电动机调速控制故障处理各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz (50Hz)或100V/60Hz(50Hz),等等。
通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。
为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。
把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。
由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器。
他优越的性能使现在电机调速方式和使用性能得到了质的飞跃。
由于在企业的实际生产中电机需频繁起停,对电机稳定运行要求较高同时要减少电器设备的故障率降低企业运营成本,变频技术可以较好的解决上述问题。
下面简要介绍一下变频电机工作原理:我们知道,交流电动机的同步转速表达式为:n = 60 f(1 - s)/p (1)式中 n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。
由式 (1) 可知,转速 n 与频率 f 成正比,只要改变频率 f 即可改变电动机的转速,当频率 f 在 0 ~ 50Hz 的范围内变化时,电动机转速调节范围非常宽。
变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。
低压通用变频输出电压为 380 ~ 650V ,输出功率为 0.75 ~ 400kW ,工作频率为0 ~ 400Hz ,它的主电路都采用交—直—交电路。
试论变频器在门座式起重机控制系统中的应用门座式起重机是一种常见的大型起重设备,广泛应用于港口、码头、建筑工地等场所。
传统的门座式起重机控制系统中,通常使用电阻制动或液力制动等方式来实现起重机的控制,但这种方式存在一些问题,如能耗大、制动效果差、制动过程中的碰撞现象等。
为了解决这些问题,现在越来越多的门座式起重机控制系统开始采用变频器技术。
变频器是一种能够按照用户需求改变电动机的转速和输出电压的电力调节装置,具有调速范围广、精度高、能耗低等优点。
在门座式起重机控制系统中,变频器主要应用在起重机的驱动系统和制动系统中。
变频器在门座式起重机的驱动系统中发挥着重要的作用。
起重机的驱动系统通常由电动机和传动装置组成,传统的电动机通常是采用直接启动的方式,这样容易导致起重机在启动时产生冲击力和跳动现象,从而影响起重机的运行平稳性。
而使用变频器驱动起重机,可以通过调整变频器的频率和电压来实现电动机的缓慢起动和平稳停车,从而减少起重机在启动和停止过程中的冲击力,提高起重机操作的安全性和可靠性。
变频器还可以实现起重机的调速控制。
传统的起重机调速通常通过改变电动机的磁通或电压来实现,这种方式调速精度低,响应慢,调速范围有限。
而使用变频器控制起重机的调速,可以通过调整变频器的频率和电压来实现电动机的无级调速,调速精度高,调速范围广,响应速度快,能够满足起重机在不同工况下的需求,提高起重机操作的灵活性和效率。
变频器在门座式起重机控制系统中的应用非常广泛。
通过应用变频器技术,可以实现起重机驱动系统的平稳启动和停车,减少冲击力和跳动现象;实现制动系统的平稳减速和制动,减少碰撞力和碰撞现象;实现调速控制的精确调节,提高起重机操作的灵活性和效率。
变频器在门座式起重机控制系统中的应用将会越来越广泛,为起重机的安全性、可靠性和高效性的提升提供了有力的技术支持。
变频器在起重机系统中的运用随着近年来经济的快速发展和工业技术的不断提升,起重机在工业领域中的应用越来越广泛。
为了满足工业对起重机的不断需求,起重机控制技术也在不断进步。
其中,变频器在起重机系统中的运用越来越广泛,成为提高起重机性能和工作效率的重要控制技术之一。
一、变频器的基本原理与分类变频器通过改变电机的转速和电压大小来调节其输出功率,其基本工作原理是将交流电转换成直流电,再通过逆变器将直流电转换成可变的交流电,控制电机不同的电压、频率和相数来实现调速和控制。
变频器可以广泛应用于各种类型的电机,如三相异步机、双馈风力发电机、永磁同步机等,其流行原因在于:通过改变电机转速的同时,降低了电机的功率损耗,提高了工作效率,同时使得系统更稳定、更智能化。
根据电机的类型不同,变频器也有不同的分类。
一般来说,它可以被划分为以下几种类型:1. 低压变频器低压变频器指的是输出电压低于1000V的变频器,广泛应用于各种工业领域,如工厂生产线、机床、空调、水泵等领域。
2. 中压变频器中压变频器指的是输出电压在1000V~10000V之间的变频器,主要应用于大型机械设备,如铸造机、起重机、重型机床等。
3. 高压变频器高压变频器输出电压高于10kV,主要应用于大型电机和轻轨、地铁等领域。
二、变频器在起重机控制系统中的应用变频器在起重机控制系统中的应用非常广泛。
其主要功用有:1. 调速:变频器根据传感器或用户工作的要求,通过控制电机的转速、输出频率和电压等参数,从而实现起重机的调速功能,具有同步运行、提高效率、减少噪音和节约能源等优势。
2. 过载保护:起重机在工作过程中容易出现负载波动和故障,变频器监控系统可以利用先进的保护元件有效地保护电机、变频器和起重机,使其在工作过程中更加稳定、可靠。
3. 能量回收:变频器能够利用电机的转动惯量和动能,在起重机制动、减速时将能量回收,从而提高起重机系统的能效,降低能源消耗。
4. 控制精度:变频器可以根据需要通过PWM等先进的控制技术,实现对电机的精确控制,使得起重机的运动更加准确、平稳,从而提高起重机的使用效率和精度。
变频器在起重机械中的应用和挑战在现代工业领域,起重机械被广泛应用于各种场合,如港口、建筑工地和物流中心等。
起重机械的运行受到电力控制系统的影响,而变频器作为现代电力控制技术的重要组成部分,其应用在提升起重机械的性能和效率方面起着重要作用。
本文将探讨变频器在起重机械中的应用及相关挑战。
一、变频器的基本原理与应用变频器是一种能够将电源频率转换为可调的交流电压和频率的电力调节设备。
其基本原理是通过改变输出电压的频率和幅值来实现电机的转速调节。
在起重机械中,变频器广泛用于各种类型的起重机械设备,如桥式起重机、门式起重机和塔式起重机等。
1.1 桥式起重机中的变频器应用桥式起重机是一种常见的重型起重机械,广泛应用于港口和建筑工地等场合。
在桥式起重机中,变频器可通过调整起重机电机的转速,实现起重机械的平稳起重、精确定位和高效运行。
同时,变频器还可以通过减速装置与电机相结合,实现载荷起重降速和减速卸载等功能,提高起重操作的安全性和效率。
1.2 门式起重机中的变频器应用门式起重机是一种适用于大型物流中心和油田等场合的起重机械。
与桥式起重机相比,门式起重机受限于结构和作业空间的限制,对于电机速度的调节要求更为精确。
变频器在门式起重机中的应用可以实现更高的速度调节范围和更佳的运行精度,从而满足门式起重机的特殊工况要求。
二、变频器应用的挑战尽管变频器在起重机械中的应用效果显著,但也面临一些挑战。
2.1 环境适应性挑战起重机械通常工作于恶劣的外部环境条件下,如高温、低温、潮湿和多尘等。
变频器在这些特殊环境中的长期可靠运行受到限制。
因此,为了确保变频器正常工作,需要采取相应的防护措施和散热设计,以提高其环境适应能力。
2.2 过载能力挑战起重机械在运行过程中经常面临变载荷,变频器需要具备强大的过载能力,以应对突发的超负荷情况。
因此,变频器的设计和选择必须考虑到起重机械的额定负荷和过载要求,确保其能够安全可靠地工作。
2.3 控制精度挑战起重机械对于位置和速度的控制要求较高,变频器的控制精度直接影响到起重机械的工作效果。
安川变频器在抓斗起重机应用1. 引言抓斗起重机是一种常见的用于重量货物搬运和抓取的起重设备。
在抓斗起重机应用中,电力控制系统起着至关重要的作用。
而安川变频器作为一种先进的电力控制设备,广泛应用于各类抓斗起重机中,为其提供高效、稳定的动力输出。
本文将介绍安川变频器在抓斗起重机应用中的工作原理、优势以及适用场景,以及如何正确使用安川变频器来提高抓斗起重机的性能和效率。
2. 安川变频器的工作原理安川变频器通过控制电源频率和电压,来实现对电动机的转速和转矩的精确控制。
具体来说,安川变频器会将输入的电源信号进行整流和滤波,然后经过逆变器将直流信号转换为交流信号。
最后,经过PWM控制技术,安川变频器通过调整高频脉冲的宽度和占空比,来控制输出的交流电压和频率。
安川变频器的工作原理使之能够根据实际需求来调整电动机的转速和转矩,从而实现抓斗起重机的精确控制。
3. 安川变频器在抓斗起重机应用中的优势3.1 能耗节约安川变频器采用了先进的PWM技术,可以实现对电动机的精确控制,避免了由于电机滑差带来的额外能量损耗。
同时,安川变频器还可以根据实际负载需求进行快速响应和调整,进一步提高了能源利用率,降低了能源消耗。
3.2 精确控制由于安川变频器的精确控制能力,抓斗起重机可以实现精确的起重操作。
通过调整电动机的转速和转矩,可以实现对抓斗的运行速度、提升高度、旋转角度等参数的精确控制,提高了抓斗起重机的操作精度和效率。
3.3 适应性强安川变频器具有较大的输入电压范围和输出频率范围,可以适应不同的电源供应和工作环境。
同时,安川变频器还具备较高的过载能力和短时过载能力,可以应对启动和峰值负载时的冲击电流,保证抓斗起重机的正常运行。
4. 如何正确使用安川变频器4.1 安装和配置在使用安川变频器前,需要正确安装和配置设备。
首先,根据抓斗起重机的实际需求选择合适的安川变频器型号和额定功率。
然后,按照安川变频器的安装说明,进行适当的电气连接和机械安装。
变频器在起重机系统中的运用一、概述随着我国建筑业的不断发展,建筑施工机械化水平的不断提高,对塔机的制造质量和整机技术水平的要求也越来越高。
塔机的各个传动机构所采用的方式、控制系统的技术水平、用户的可操作性和可维护性基本上就体现了整个塔机的技术水平和档次。
而在这几个机构中,最为重要也是最具有技术代表性的是起升机构,它控制功率最大、调速范围最宽、出故障后的维修难度也最大。
而且该系统在变速过程所产生的机械冲击的大小将直接影响塔机结构件的疲劳损伤程度。
为了改进其性能,国内各主机生产商在起升机构的调速控制技术上已花了许多工夫,得到了长足的进步。
从整体上看,绝大多数采用的是传统的单电机传动,以带涡流制动器的绕线式电机和多极电机调速的方案为主。
这些传统的调速方案,要想达到较宽的调速范围,其途径不外乎设计制造大功率、宽调速范围的非标电机,如:采用带涡流制动器的多极绕线式电机或制作大极差的多速电机等。
由于塔机起升机构所需要的较高调速要求不但给电机生产厂商带来了较多的质量控制难题,而且也增加了控制回路和电机的制造成本,降低了系统可靠性。
更有甚者,随着用户对塔机的起吊能力要求越来越大,传统控制方式已经越来越感觉到力不从心,不论是上述技术的可实现性,其制造成本以及使用性能等方面也存在一些问题。
所以,我们不得不寻求更理想的新的调速控制技术。
鉴于以上的原因,国内外的专业生产商在塔机的起升调速方式上进行了较多的新技术应用尝试,比如:采用多极电机的调压调速,引进变频调速等。
逐渐地,随着变频技术的不断发展,不断地被人们认识,它以绝对的优势超越了其他的任何调速方案,其优点数不胜数,如:零速抱闸,对制动器无磨损;任意低的就位速度,可用于精确吊装;速度的平滑过渡,对机构和结构件无冲击,提高了塔机的运行安全性;极低的起动电流,减轻了用户电网扩容的负担;几乎任意宽的调速范围,提高了塔机的工作效率;节能的调速方式,减少了系统运行能耗;单速的鼠笼电动机保证了机构的运行可靠性厖。
安川变频器在门座起重机电气控制系统中的调速应用摘要门座起重机械作为企业厂矿、海口码头装卸货物的机械产品,在企业提高生产效率发挥着重要作用,门座起重机械电气系统控制调速以前多采用定子调压、转子切换电阻调速等类型的调速方式,这些调速方式相对投入经费不大,但线路繁琐,电机机械特性较软而且故障率高,调速效果差,能耗高,效率低。
随着电子技术日益发展,起重机械调速控制无论在安全可靠性、控制精准性等方面大大提高。
本文工控网小编通过详细阐述安川H1000系列的重载高性能变频器在门座起重机电气系统调速的应用,希望给同行工作中有所启发。
一、系统概述变频器和制动单元本机的电气系统主要包括:主起升机构、副起升机构、旋转机构、变幅机构和大车运行机构,以及电源系统、超载超速、超行程保护、控制系统、照明、讯响和电缆卷筒等组成。
主起升机构、副起升机构、旋转机构、变幅机构和大车运行机构采用全变频控制调速,由于机构动作工艺要求,考虑主起升机构、副起升机构和大车行走机构采用一套变频器控制;旋转机构、变幅机构采用一台变频器控制,变频器输出各机构电源采用接触器隔离供给。
各机构电器设备配置如下:1、起升机构+大车行走机构:变频器是,CIMR-HB4A0260,制动单元是,CDBR-4220B,配置一套。
通讯采用Profibus-dp卡和PLC通讯模块链接。
起升机构是实行闭环矢量控制,起升电机轴和变幅电机轴都装有经弹性连轴节连接的光电编码器,构成矢量闭环调速。
2、旋转+变幅机构:变频器是,CIMR-HB4A0180,制动单元是,CDBR-4045B,配置2套。
通讯采用Profibus-dp卡和PLC通讯模块链接。
安川H1000系列变频器属于重负载高性能变频器,其具有出色的过载能力,变频器选型是按照超重负荷特性选取,其承受150%的负荷持续时间为3分钟,在闭环式时只有0.3赫兹频率输出的情况下都有2倍力矩输出,闭环矢量控制精度可达1:1500.3、变频器选取计算变频器选取必须满足变频器容量选择公式:PCN≥K1 *K*PM/η*cosΦ其中:K1—容量过载系数,一般选取1.1-1.2倍;K—电流波形修正系数,PWM方式选取1.05-1.1;η—电动机效率,通常选取约0.85;cosΦ—电动机功率因数,一般选取0.75.;PM—负载所需求的电动机轴的输出功率(KW)。
变频调速技术在起重机调速系统中的应用-管理资料交流变频调速技术在工业企业的广泛应用,为交流异步电动机驱动的起重机大范围、高质量调速提供了全新方案,。
它具有和直流调速系统相媲美的高性能调速指标,可采用结构简单、工作可靠、维护方便的鼠笼异步电动机进行调速,并且变频调速系统的效率高于传统的交流调速,其外围控制线路简单,维护工作量小,保护监测功能完善,运行可靠性较传统交流调速系统有较大的提高。
一、变频调速系统主要特点1. 明显改善结构受力状态。
由于变频器具有软启动、软停止的功能,所以起重机启动、制动相对平稳,对起重机的传动机构、钢结构的冲击明显减小。
经检测证实,变频调速控制系统的应用可大大改善起重机结构的受力状态。
2.调速范围宽,性能好。
起重机专用的变频器一般具有很强的环境适应性,由于变频器内部进行了模块化设计,集成度高,可靠性强。
系统实现闭环控制,具有很强的限速、防失速和力矩控制能力,并具有优良的伺服响应特性,对急速的负载波动有很强的适应性。
操作者可根据作业要求,随时修改各挡速度值,也可选择操作电位器实现无级调速。
3.结构简单、可靠性高、易维护。
变频调速控制系统采用独立的控制柜,系统设计合理,外观结构简单,检修方便。
尤其是起升系统用一套装置即可实现原两套起升控制装置的功能,既减轻了小车的自重,改善了钢结构的受力状况,又增加了小车的维修空间,便于日常保养和维护。
系统还具有过流保护、过压保护、欠压保护、短路保护、接地保护等功能,确保了控制、保护动作的准确性和可靠性。
变频调速控制系统还具有自诊断功能,通过同PLC的通信来实现故障实时显示及处理对策,便于查找故障和维修。
4.提高工作效率和减小机械磨损。
起重机起升系统可根据负荷大小自动切换实现空钩、副钩、主钩等多挡不同的工作速度,减少了速度切换交替的辅助时间,降低了司机劳动强度,可大大提高起重机的作业效率。
同时由于变频器采用软启动和软制动,不仅减小了对钢结构的冲击,还减轻了制动轮与刹车片间的磨损。
(作者单位:湖南省特种设备检验检测研究院)◎邱红勇变频器在起重机上的应用一、变频调速工作原理由异步电动机的转速公式:n=60f (1-s )/p,(式中n、f、s、p 分别表示转速、输入频率、电机转差率、电机磁极对数)通过改变电动机工作电源频率达到改变电机转速的目的。
变频器调速就是通过改变电源频率从而实现调速的,要使异步电机的电源频率发生变化,就必须有一整套变频电源,变频调速就是将恒电压、恒频电源转换为变压、调速的变频电源装置.变频器的控制方式一般有以下几种:1.V/f 控制,变频器的V/f=c,V 为变频器的输出电压,f 为电变器的基本频器,c 为一个常数,当电动机的运行频率f 不高于fb 时,变频器的输出电压和输出频率是成正比,而且比值是一个定值c,我们就将该特定频率为基本运行频率,用fb 表示。
与基本运行频率对应的变频器输出电压称之为最大输出电压,用vmax 表示。
一般来说我们所说的基本运行频率就是变频器输出最高电压时对应的最小频率。
在通常情况下,基本运行频率是电动机的额定频率,如电动机铭牌上标识的50hz 或60hz。
这种控制方式结构简单,成本低,而且机械特性硬也比较好,基本上能满足一般的工况使用要求,但它也有不足之处,在低频率时,由于输出的电压比较小,所以转子受定子电压降的影响比较大,从而使输出的力矩比较小。
2.转差频率控制,转差频率控制是一种直接控制转矩的控制方式,电机的转矩的公式:T≈KφW/R (T-转矩,K-电机的结构常数,φ-气隙磁通,W-转差角频率,R-电阻)。
通过个公式,我们可以知道,如果能够保持气隙磁通φ不变,且在电机转差率s 值较小的稳定运行范围内,异步电动机的转矩T 就近似与转差角频率W 成正比。
也就是说,在保持气隙磁通不变的前提下,可以通过控制转差角频率来控制转矩,这就是转差频率的控制基本思想。
控制转差频率需要知道电机的转速。
所以这种控制一种闭环控制方式,必须在电机上加装速度传感器,从而确保变频器工作的稳定运行。
变频器在起重机系统中的运用
一、概述
随着我国建筑业的不断发展,建筑施工机械化水平的不断提高,对塔机的制造质量和整机技术水平的要求也越来越高。
塔机的各个传动机构所采用的方式、控制系统的技术水平、用户的可操作性和可维护性基本上就体现了整个塔机的技术水平和档次。
而在这几个机构中,最为重要也是最具有技术代表性的是起升机构,它控制功率最大、调速范围最宽、出故障后的维修难度也最大。
而且该系统在变速过程所产生的机械冲击的大小将直接影响塔机结构件的疲劳损伤程度。
为了改进其性能,国内各主机生产商在起升机构的调速控制技术上已花了许多工夫,得到了长足的进步。
从整体上看,绝大多数采用的是传统的单电机传动,以带涡流制动器的绕线式电机和多极电机调速的方案为主。
这些传统的调速方案,要想达到较宽的调速范围,其途径不外乎设计制造大功率、宽调速范围的非标电机,如:采用带涡流制动器的多极绕线式电机或制作大极差的多速电机等。
由于塔机起升机构所需要的较高调速要求不但给电机生产厂商带来了较多的质量控制难题,而且也增加了控制回路和电机的制造成本,降低了系统可靠性。
更有甚者,随着用户对塔机的起吊能力要求越来越大,传统控制方式已经越来越感觉到力不从心,不论是上述技术的可实现性,其制造成本以及使用性能等方面也存在一些问题。
所以,我们不得不寻求更理想的新的调速控制技术。
鉴于以上的原因,国内外的专业生产商在塔机的起升调速方式上进行了较多的新技术应用尝试,比如:采用多极电机的调压调速,引进变频调速等。
逐渐地,随着变频技术的不断发展,不断地被人们认识,它以绝对的优势超越了其他的任何调速方案,其优点数不胜数,如:零速抱闸,对制动器无磨损;任意低的就位速度,可用于精确吊装;速度的平滑过渡,对机构和结构件无冲击,提高了塔机的运行安全性;极低的起动电流,减轻了用户电网扩容的负担;几乎任意宽的调速范围,提高了塔机的工作效率;节能的调速方式,减少了系统运行能耗;单速的鼠笼电动机保证了机构的运行可靠性厖。
正是因为这些明显的特点和优势,国外的塔机制造商所推出的新一代塔机的起升机构也大多采用变频调速方案,如POTAIN,LIEBHERR 等世界著名公司。
同时我们认为,随着变频器价格的不断降低,可靠性不断提高,变频技术
一定能在塔机上得到广泛应用,这将对产品的安全运行和减少运行能耗都有重要的意义。
为了普及变频技术,加深对变频调速方案的了解,本文将对变频技术在塔机起升机构上的应用作一探讨。
二、常规变频起升机构
1.结构介绍
变频调速技术在塔机各传动机构的应用在我国已经有近10年的时间,虽然取得了一些成功的应用经验,并且也有不少的变频起升机构现在正在工地正常运行,但与其他行业相比,变频调速技术在塔机上的应用还远远未达到应有的程度,其中有成本的原因,也有技术的原因。
国内和国外目前所采用的典型方案,从技术上来讲,大同小异,不同点在于:
(1)变频器的品牌不同,其采用的控制回路不同;
(2)系统是开环(不带PG)或者是闭环(带PG)
(3)机械结构的形式的不一样:L型布置、п型布置或一字型布置等;
(4)减速机的类型不一样,如:圆柱齿轮减速机或行星减速机;是定速比或可变速比等。
就传动控制技术而言,以上所述差异并未涉及控制方式的改变,均为采用一台变频器控制一台电动机进行调速的典型模式,也可称其为常规变频起升机构。
在所有的这些常规变频机构中,LIEBHERR公司在EC-H型塔机上装配的变频起升机构的特点最为突出,它采用250V电动机和与之匹配的变频器,配置可变速比的减速机,L型布置。
该方案具备较好的起升速度特性,其缺点是系统成本高,而且部件通用性差。
2.常规变频起升机构的设计要点。